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Abstract. The goals of the present paper are to introduce truncated Lupaş

type operators of max-product kind and give an estimation for the degree of
approximation with respect to first modulus of continuity function. We prove

that this estimate can not be improved; on the other hand, for some subclasses

of functions, better degree of approximation is obtained. We also showed the
piecewise convexity of the constructed operators on the interval [0, 1].

1. Introduction

As it takes very important place in the approximation theory, the sequences
of positive linear operators of discrete type have been studied by various authors
in the last century. One of those operators that we deal with in this paper was
constructed by A. Lupaş [23] in 1995. His starting point in this construction was
the identity

1

(1− a)
γ =

∞∑
k=0

(γ)k

k!
ak, |a| < 1.

With the help of this identity, he defined the following sequence of operators which
is linear and positive:

Ln (f) (x) = (1− a)
nx
∞∑
k=0

(nx)k

k!
akf

(
k

n

)
, x ≥ 0,
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with f : [0,∞)→ R. The notation here is the Pochhammer symbol and given by

(γ)0 = 1, (γ)k = γ (γ + 1) ... (γ + k − 1) , k ≥ 1.

Imposing Ln (e1) = e1, one finds a = 1/2 and therefore the operator turns into,

Ln (f) (x) = 2−nx
∞∑
k=0

(nx)k

2kk!
f

(
k

n

)
, x ≥ 0. (1)

Agratini [2] studied the approximation properties of these operators by means of
Korovkin’s theorem and gave estimates for the rate of convergence of the operators.
The well-known Korovkin’s theorem, which gives a simple proof of Weierstrass the-
orem, is based on the approximation of functions by linear and positive operators.
The underlying algebraic structure of these mentioned operators is linear over R
and they are also linear operators. The idea of nonlinear positive operators was
given by Bede et al. in [3]. They asked whether they could change the underlying
algebraic structure to more general structures. In this sense they presented nonlin-
ear Shepard-type operators by replacing the operations sum and product by max
and product.

Following this paper Bede et. al. [4] defined and studied pseudo linear approx-
imation operators. Based upon these studies, there appeared an open problem in
the book of S.Gal [17] in which the max-product type Bernstein operators were
introduced. Related to this open problem, a nonlinear modification of the classical
Bernstein operators were first studied by Bede and Gal [5] in detail. The idea be-
hind these studies were also applied to other well-known approximating operators.
Same authors introduced the nonlinear versions of the previously defined operators
and they studied the approximation order and shape-preserving properties of the
stated operators.

The nonlinear Favard-Szász-Mirakjan operators of max-product type F
(M)
n is

given in [5] as

F (M)
n (f) (x) =

∞∨
k=0

sn,k (x) f
(
k
n

)
n∨
k=0

sn,k (x)
, x ∈ [0,∞) , n ∈ N,

where sn,k (x) = (nx)k

k! . Bede, Coroianu and Gal [6] introduced the truncated
Favard-Szász-Mirakjan operators of max-product type as follows:

T (M)
n (f) (x) =

n∨
k=0

sn,k (x) f
(
k
n

)
n∨
k=0

sn,k (x)
, x ∈ [0, 1] , n ∈ N.

Recently, Güngör and İspir studied quantitative estimations for the generalized
Szász operators of max product type in [18]. Also, they constructed nonlinear
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Bernstein-Chlodowsky operators of max-product type in [19]. Holhos [20] stud-
ied weighted approximation of functions by Meyer-König and Zeller operators of
max-product type. Coroianu and Gal [8, 9] introduced truncated max-product
Kantorovich operators based on Fejer Kernel and generalized (ϕ,ψ)-kernels. By
Costarelli and Vinti, the max-product neural networks operators were studied
in [11]- [15]. Recently, in [1], the max-product of Bernstein operators for sym-
metric ranges are introduced by Acar et.al. and upper estimates of approximation
error for some subclasses of functions are obtained. Also, they investigated the
shape-preserving properties of the operators.

In this paper, the nonlinear truncated Lupaş operators of max-product type
are introduced. We estimate the degree of approximation of the defined sequence
of operators. More importantly, we show that the estimate with respect to the
modulus of continuity function cannot be improved. On the other hand, for some
subclasses of functions, better order of approximation is obtained. Finally, we
proved that our sequence of operators is piecewise convex on the interval [0, 1] for
any arbitrary function f .

Before proceeding further, we will recall some general notations about the max-
product type nonlinear operators. Considering the set of positive real numbers R+,
we deal with the maximum ”

∨
” and the product ”·” operations. Then (R+,

∨
, ·)

is called as Max-Product algebra.
Let I ⊂ R be a bounded or unbounded interval, and

CB+(I) = {f : I → R+; f continuous and bounded on I}.
A discrete max-product type approximation operator Ln : CB+(I)→ CB+(I), has
a general form

Ln (f) (x) =

n∨
i=0

Dn(x, xi)ḟ (xi) ,

or

Ln (f) (x) =

∞∨
i=0

Dn(x, xi)ḟ (xi)

where n ∈ N, f ∈ CB+(I), Dn(·, xi) ∈ CB+(I) and xi ∈ I, for all i. The above
form of the operators are positive and nonlinear. These operators also satisfy the
pseudolinearity condition which is of the form

Ln(a · f ∨ b · g)(x) = a · Ln(f)(x) ∨ b · Ln(g)(x),∀a, b ∈ R+, f, g : I → R+.

In order to give some properties of the operators Ln, we present the following
auxiliary Lemma.

Lemma 1. ( [5]) Let Ln : CB+(I) → CB+(I), n ∈ N be a sequence of operators
satisfying the following properties :

(i) (Monotonicity)
If f, g ∈ CB+(I) satisfy f ≤ g then Ln(f) ≤ Ln(g) for all n ∈ N ;

(ii) (Subadditivity)
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Ln(f + g) ≤ Ln(f) + Ln(g) for all f, g ∈ CB+(I).
Then for all f, g ∈ CB+(I), n ∈ N and x ∈ I we have

|Ln(f)(x)− Ln(g)(x)| ≤ Ln(|f − g|)(x).

2. Construction of the Operators

Now, we define our truncated max-product type operators as follows:

V (M)
n (f) (x) =

n∨
k=0

vn,k (x) f
(
k
n

)
n∨
k=0

vn,k (x)
, x ∈ [0, 1] , n ∈ N, (2)

where

vn,k (x) =
(nx)k

2kk!
, (nx)0 = 1, (nx)k = nx (nx+ 1) ... (nx+ k − 1) , k ≥ 1.

We can write the following properties of the operators V
(M)
n (f).

i) One can see that
n∨
k=0

vn,k (x) > 0 for x ∈ [0, 1].

For any f ∈ C+ [0, 1], the space of all positive real-valued and continuous functions

on [0, 1] , V
(M)
n (f) ∈ C+ [0, 1] . So, V

(M)
n : C+ [0, 1] → C+ [0, 1] is a sequence of

positive operators and since
n∨
k=0

vn,k (x) = 1 for x = 0, V
(M)
n (f) (0) = f(0).

ii) For any f ∈ C+ [0, 1] and λ ≥ 0,

V (M)
n (λf) = λV (M)

n (f) . (3)

Hence, the max-product operators V
(M)
n given by (2) are positive homogenous.

iii) For V
(M)
n the identity

V (M)
n (e0) = e0, e0 (x) = 1 (4)

holds.
iv) V

(M)
n (f) satisfy the pseudo-linearity condition, i.e., for any f, g ∈ C+ [0, 1] and

α, β ∈ R+

V (M)
n (αf ∨ βg) (x) = αV (M)

n (f) (x) ∨ βV (M)
n (g) (x) . (5)

From the above equality, we have

f ≤ g =⇒ V (M)
n (f) (x) ≤ V (M)

n (g) (x) . (6)

So, V
(M)
n (f) is a monotone operator.

v) For any f, g ∈ C+ [0, 1] , we get

V (M)
n (f + g) (x) ≤ V (M)

n (f) (x) + V (M)
n (g) (x) . (7)
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That is the sublinearity condition is satisfied by the operators V
(M)
n (f) .

vi) From the above properties and Lemma 1 we have∣∣∣V (M)
n (f) (x)− V (M)

n (g) (x)
∣∣∣ ≤ V (M)

n (|f − g|) (x) . (8)

Now, we can write the following corollary.

Corollary 2. For all f ∈ C+ [0, 1] ,∣∣∣V (M)
n (f) (x)− f (x)

∣∣∣ ≤ [1 +
1

δ
V (M)
n (ϕx) (x)

]
ω1 (f, δ) , (9)

where ϕx (t) = |t− x| , t, x ∈ [0, 1] and the modulus of continuity function of f is
defined as

ω1 (f, δ) = max
t,x∈[0,1]
|t−x|≤δ

{|f (t)− f (x)|} .

Proof. For the proof, see for example [6]. �

3. Auxiliary Lemmas

In the current section we will give some auxiliary lemmas which we need for the
proof of the main theorem.

Lemma 3. Let x ∈
[
j+1
n , j+2

n

]
and j ∈ {0, 1, ..., n− 2}. Then we have,

n∨
k=0

vn,k (x) = vn,j (x) .

Also,
n∨
k=0

vn,k (x) = 1, for x ∈
[
0, 2

n

]
.

Proof. In fact for fixed n ∈ N and k ≥ 0, the inequality

0 ≤ vn,k+1 (x) ≤ vn,k (x)

0 ≤ nx+ k ≤ 2 (k + 1)

is equivalent to

0 ≤ x ≤ k + 2

n
.

So, taking k = 0, 1, ..., n− 2, we get

0 ≤ vn,1 (x) ≤ vn,0 (x) ⇐⇒ x ∈
[
0,

2

n

]
,

0 ≤ vn,2 (x) ≤ vn,1 (x) ⇐⇒ x ∈
[
0,

3

n

]
,

...

0 ≤ vn,k+1 (x) ≤ vn,k (x) ⇐⇒ x ∈
[
0,
k + 2

n

]
,

...
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0 ≤ vn,n−1 (x) ≤ vn,n−2 (x) ⇐⇒ x ∈ [0, 1] .

For k = n− 1 we also have

0 ≤ vn,n (x) ≤ vn,n−1 (x) ⇐⇒ x ∈
[
0, 1 +

1

n

]
.

From all these inequalities, we can write

x ∈
[
0,

2

n

]
=⇒ vn,k (x) ≤ vn,0 (x) = 1 for all k = 0, 1, ..., n,

also

x ∈
[

2

n
,

3

n

]
=⇒ vn,k (x) ≤ vn,1 (x) for all k = 0, 1, ..., n,

x ∈
[

3

n
,

4

n

]
=⇒ vn,k (x) ≤ vn,2 (x) for all k = 0, 1, ..., n,

in general, for fixed j = 0, 1, ..., n− 2,

x ∈
[
j + 1

n
,
j + 2

n

]
=⇒ vn,k (x) ≤ vn,j (x) for all k = 0, 1, ..., n.

So, the proof is completed.
�

In order to proceed we need the following notations:

For each k ∈ {0, 1, ..., n} , j ∈ {0, 1, ..., n− 2}, state

Mk,n,j (x) =
vn,k (x)

∣∣ k
n − x

∣∣
vn,j (x)

, mk,n,j (x) =
vn,k (x)

vn,j (x)
. (10)

It is clear that if k ≥ j + 2 then

Mk,n,j (x) =
vn,k (x)

(
k
n − x

)
vn,j (x)

,

and if k ≤ j then

Mk,n,j (x) =
vn,k (x)

(
x− k

n

)
vn,j (x)

.

Lemma 4. For all k ∈ {0, 1, ..., n} , j ∈ {0, 1, ..., n− 2} and x ∈
[
j+1
n , j+2

n

]
, we

have

mk,n,j ≤ 1.

Proof. If k ≥ j then, since h(x) = 1
nx+k is nonincreasing on x ∈

[
j+1
n , j+2

n

]
, we

have
mk,n,j (x)

mk+1,n,j (x)
=

2 (k + 1)

nx+ k
≥ 2 (k + 1)

k + j + 2
≥ 1. (11)
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So, mj,n,j (x) ≥ mj+1,n,j (x) ≥ ... ≥ mn,n,j (x) is true.
If k ≤ j then,

mk,n,j (x)

mk−1,n,j (x)
=
nx+ k − 1

2k
≥ j + k

2k
≥ 1, (12)

which implies, mj,n,j (x) ≥ mj−1,n,j (x) ≥ ... ≥ m0,n,j (x) is true. Hence for all

k ∈ {0, 1, 2, ..., n} , j ∈ {0, 1, 2, ..., n− 2} , n ∈ N and x ∈
[
j+1
n , j+2

n

]
, we can write

mk,n,j ≤ mj,n,j (x) = 1.

�

Lemma 5. Let x ∈
[
j+1
n , j+2

n

]
,

i) If k ∈ {j + 2, ..., n− 2} is such that , k −
√

3k + 2 ≥ j then Mk,n,j (x) ≥
Mk+1,n,j (x) .

ii) If k ∈ {1, 2, ..., j} is such that k +
√

3k ≤ j, then Mk,n,j (x) ≥Mk−1,n,j (x) .

Proof. i) Since g(x) = 1
nx+k

k−nx
k+1−nx is nonincreasing, we can write g (x) ≥ g

(
j+2
n

)
and hence get,

Mk,n,j (x)

Mk+1,n,j (x)
=

2 (k + 1)

nx+ k

k
n − x
k+1
n − x

≥ 2 (k + 1)

k + j + 2

k − j − 2

k − j − 1

Then, the condition k −
√

3k + 2 ≥ j implies (k − j)2 ≥ 3k − j + 2. This implies
2 (k + 1) (k − j − 2) ≥ (k + j + 2) (k − j − 1) . So, we have

Mk,n,j (x)

Mk+1,n,j (x)
≥ 1.

ii) Since h(x) = (nx+ k − 1)
x− k

n

x− k−1
n

is nondecreasing, we can write g (x) ≥

g
(
j+1
n

)
and hence get,

Mk,n,j (x)

Mk−1,n,j (x)
=

(nx+ k − 1)

2k

x− k
n

x− k−1
n

≥ j + k

2k

j − k + 1

j − k + 2
.

Then, the condition k +
√

3k ≤ j implies (j − k)
2 ≥ 3k − j. Since this implies

(j + k) (j − k + 1) ≥ 2k (j − k + 2), we have

Mk,n,j (x)

Mk−1,n,j (x)
≥ 1.

So, the proof is completed. �
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4. Degree of Approximation by V
(M)
n (f)

Our aim is to estimate the degree of convergence of the sequence of max-product

operators V
(M)
n (f) given by (2) with respect to modulus of continuity function and

then show that this estimate can not be improved.

Theorem 6. Let V
(M)
n (f), n ∈ N be defined by (2). For all f ∈ C+ [0, 1] , the

following inequality∣∣∣V (M)
n (f) (x)− f (x)

∣∣∣ ≤ 8ω1

(
f,

1√
n

)
, x ∈ [0, 1]

holds.

Proof. One can see from Corollary 2 that, in order to reach the desired inequality,
we have to estimate the term

V (M)
n (ϕx) (x) =

n∨
k=0

vn,k (x)
∣∣ k
n − x

∣∣
n∨
k=0

vn,k (x)
, x ∈ [0, 1] .

From Lemma 3 we can write, for x ∈
[
0, 2

n

]
,

V (M)
n (ϕx) (x) =

n∨
k=0

vn,k (x)

∣∣∣∣kn − x
∣∣∣∣ = max

k=0,1,...,n
{Mk,n,0 (x)}

where Mk,n,0 (x) is defined by (10).
If k = 0 then,

M0,n,0 (x) = x ≤ 2

n
, x ∈

[
0,

2

n

]
.

If k ≥ 1 then,
for x ∈

[
0, 1

n

]
, since (1)k = k! and k ≤ 2k,

Mk,n,0 (x) ≤
(nx)k

2kk!

k

n
≤ k

2kn
≤ 1

n
,

for x ∈
[

1
n ,

2
n

]
and k = 1,

M1,n,0 (x) =
(nx)1

211!

(
x− 1

n

)
≤ 1

n
,

for x ∈
[

1
n ,

2
n

]
and k = 2, 3, ..., n

Mk,n,0 (x) ≤
(nx)k

2kk!

(
k

n
− x
)
≤ (k + 1) (k − 1)

2kn
≤ k2

2kn
.

If we take g(x) = x2

2x , since g(x) ≤ g
(

2
ln 2

)
< 2, x ∈ [0,∞), we can write

Mk,n,0 (x) ≤ k2

2kn
≤ 2

n
.
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Consequently, for x ∈
[
0, 2

n

]
V (M)
n (ϕx) (x) = max

k=0,1,...,n
{Mk,n,0 (x)} ≤ 2

n
.

Considering Lemma 3 once more, we can write

V (M)
n (ϕx) (x) = max

k=0,1,...,n
{Mk,n,j (x)} , j ∈ {1, ..., n− 2} .

Now, we will try to obtain an upper estimate for Mk,n,j (x) with x ∈
[
j+1
n , j+2

n

]
,

j ∈ {1, ..., n− 2} .We consider the following 3 cases:

i) If k = j + 1; for x ∈
[
j+1
n , j+2

n

]
, Mj+1,n,j (x) = (nx+j)

2j+2

(
x− j+1

n

)
≤ 1

n .

ii) If k ≥ j + 2;
a) Firstly, we suppose that k−

√
3k + 2 < j. From Lemma 4, since mk,n,j (x) ≤ 1 ,

we write

Mk,n,j (x) = mk,n,j (x)

(
k

n
− x
)
≤ k

n
− x ≤ k

n
− j + 1

n

≤ (
√

3k + 2− 1)

n
≤
√

3n+ 2

n
≤ 3√

n
.

b) Now, we suppose that k−
√

3k + 2 ≥ j. Since g (x) = x−
√

3x+ 2 is nondecreasing
on
[

1
12 ,∞

)
and since in this case k ≥ j + 2, we take 3 ≤ k ≤ n. Since g is

nondecreasing, there exists k ∈ {3, ..., n} of maximum value such that k−
√

3k + 2 <

j and k + 1−
√

3k + 5 ≥ j.

Mk+1,n,j (x) = mk+1,n,j (x)

(
k + 1

n
− x
)
≤ k + 1

n
− x

≤ k + 1

n
− j + 1

n
<

√
3k + 2

n
≤ 3√

n
. (13)

So, from Lemma 5, for k ∈
{
k + 1, k + 2, ..., n

}
, we getMk+1,n,j (x) ≥Mk+2,n,j (x) ≥

... ≥Mn,n,j (x) . Finally, by (13), we can writeMk,n,j (x) ≤ 3√
n
, for k ∈

{
k + 1, k + 2, ..., n

}
.

iii) k ≤ j;
a) Firstly, we suppose that k +

√
3k > j. From Lemma 4 we get

Mk,n,j (x) = mk,n,j (x)

(
x− k

n

)
≤ j + 2

n
− k

n

≤
√

3k + 2

n
≤
√

3n+ 2

n
≤ 4√

n
.

b) Now, we suppose that k +
√

3k ≤ j. Since h (x) = x +
√

3x is increasing on

[0,∞), there exists k̃ ∈ {1, ..., n} of minimum value such that k̃ +
√

3k̃ > j and
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k̃ − 1 +
√

3k̃ − 3 ≤ j and

Mk̃−1,n,j (x) = mk̃−1,n,j (x)

(
x− k̃ − 1

n

)
≤ x− k̃ − 1

n

≤ j + 2

n
− k̃ − 1

n
<
k̃ +

√
3k̃ + 2

n
− k̃ − 1

n

=

√
3k̃ + 3

n
≤
√

3n+ 2

n
≤ 4√

n
. (14)

We have j ≥ 1 in this case. Also, since j+
√

3j > j and k̃ ∈ {0, 1, ..., n} of minimum

value such that k̃+
√

3k̃ > j, k̃−1 ≤ j. So, from Lemma 5, for k ∈
{

1, 2, ..., k̃ − 1
}
,

we get Mk̃−1,n,j (x) ≥Mk̃−2,n,j (x) ≥ ... ≥M0,n,j (x) . Finally, by (14), we can write

Mk,n,j (x) ≤ 4√
n
, for k ∈

{
1, 2, ..., k̃ − 1

}
.

Considering all the estimates above, we can write

Mk,n,j (x) ≤ 4√
n

for all x ∈
[
j + 1

n
,
j + 2

n

]
which implies

V (M)
n (ϕx) (x) ≤ 4√

n
for all x ∈ [0, 1]

Since the first modulus of continuity function satisfies the property ω1 (f,mδ) ≤
mω1 (f, δ) , for m ∈ N, with all cases and subcases and taking δ = 4√

n
in (9), the

proof is completed. �

Remark 7. The estimate regarding the first order modulus of continuity function
given in Theorem 6 cannot be improved for n ≥ 4. Suppose that

jn =
[n

2

]
, kn = jn +

[√
n
]
, xn =

jn
n
,

With calculations, we can write

Mkn,n,jn(xn) =
(nxn + jn) ... (nxn + kn − 1)

2kn−jn (jn + 1) ...kn

∣∣∣∣knn − xn
∣∣∣∣

≥ (nxn + jn)
kn−jn

2kn−jnkkn−jnn

∣∣∣∣knn − xn
∣∣∣∣

=
(2jn)

kn−jn

2kn−jnkkn−jnn

∣∣∣∣knn − xn
∣∣∣∣

=
(jn)

kn−jn

kkn−jnn

(kn − jn)

n
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=

( [
n
2

][
n
2

]
+ [
√
n]

)[
√
n]

[
√
n]

n
.

From definition of the greatest integer function, we can write( n
2 − 1
n
2 +
√
n

)√n
≤

( [
n
2

][
n
2

]
+ [
√
n]

)[
√
n]

≤
( n

2
n
2 +
√
n− 2

)√n−1

.

One can obtain that lim
n→∞

(
[n
2 ]

[n
2 ]+[

√
n]

)[
√
n]

= e−2 and there exists n0 ∈ N such that

Mkn,n,jn(xn) ≥ [
√
n]

e3n
, n ≥ n0.

Also
[
√
n]√
n
≥
√
n−1√
n
≥ 1

2 for n ≥ 4. Therefore we can say

Mkn,n,jn(xn) ≥ 1

2e3
√
n
, n ≥ n0.

Now, we will show that better order of approximation can be obtained for some
subclasses of functions f .

For x = 0, since vn,k (0) = 0 for all k ∈ {1, ..., n} and vn,0 (0) = 1, V
(M)
n (f) (0) −

f(0) = 0. So, we assume x > 0.
For any k ∈ 0, 1, ...n and j ∈ {0, 1, ..., n− 2} consider the functions

fk,n,j (x) =
vn,k (x)

vn,j (x)
f

(
k

n

)
= mk,n,j(x)f

(
k

n

)
.

For any j ∈ {0, 1, ..., n− 2} and x ∈
[
j+1
n , j+2

n

]
we can write

V (M)
n (f) (x) =

n∨
k=0

vn,k (x)

vn,j (x)
f

(
k

n

)
=

n∨
k=0

fk,n,j (x) .

Lemma 8. For f : [0, 1] −→ [0,∞) and j ∈ {0, 1, ..., n− 2} , if

V (M)
n (f) (x) = max {fj,n,j (x) , fj+1,n,j (x) , fj+2,n,j (x)} , for all x ∈

[
j + 1

n
,
j + 2

n

]
(15)

then ∣∣∣V (M)
n (f) (x)− f (x)

∣∣∣ ≤ 2ω1

(
f,

1

n

)
, for all x ∈

[
j + 1

n
,
j + 2

n

]
.

Proof. We proceed in the same manner as Bede et.al. [6]. This time we have three
cases to examine:
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Case (i) Let V
(M)
n (f) (x) = fj,n,j (x) = f

(
j
n

)
for fixed x ∈

[
j+1
n , j+2

n

]
. Since

1
n ≤ x−

j
n ≤

2
n ∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ ≤ ω1

(
f,

2

n

)
.

Case (ii) Let V
(M)
n (f) (x) = fj+1,n,j (x) for fixed x ∈

[
j+1
n , j+2

n

]
.

Subcase (a) If V
(M)
n (f) (x) ≤ f (x) then∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ = f (x)− fj+1,n,j (x)

≤ f (x)− fj,n,j (x) ≤ ω1

(
f,

2

n

)
.

Subcase (b) If V
(M)
n (f) (x) > f (x) then∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ = fj+1,n,j (x)− f (x)

= mj+1,n,j (x) f

(
j + 1

n

)
− f (x)

≤ f

(
j + 1

n

)
− f (x) .

Since 0 ≤ x− j+1
n ≤

1
n ∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ ≤ ω1

(
f,

1

n

)
.

Case (iii) Let V
(M)
n (f) (x) = fj+2,n,j (x) for fixed x ∈

[
j+1
n , j+2

n

]
.

Subcase (a) If V
(M)
n (f) (x) ≤ f (x) then∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ = f (x)− fj+2,n,j (x)

≤ f (x)− fj,n,j (x) ≤ ω1

(
f,

2

n

)
.

Subcase (b) If V
(M)
n (f) (x) > f (x) then∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ = fj+2,n,j (x)− f (x)

= mj+2,n,j (x) f

(
j + 2

n

)
− f (x)

≤ f

(
j + 2

n

)
− f (x) .

Since 0 ≤ j+2
n − x ≤

1
n ∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ ≤ ω1

(
f,

1

n

)
.
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So the proof is completed. �

Theorem 9. For f : [0, 1] −→ [0,∞) is a nondecreasing function and the function

g : (0, 1]→ [0,∞) g (x) = f(x)
x is nonincreasing, we have∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ ≤ 2ω1

(
f,

1

n

)
for all x ∈ [0, 1] .

Proof. From the monotonocity of f and k ≤ j ,

fk−1,n,j (x) =
2j−k+1j!

(k − 1)! (nx+ k − 1) ... (nx+ j − 1)
f

(
k − 1

n

)
≤ 2j−kj!

k! (nx+ k) ... (nx+ j − 1)

2k

(nx+ k − 1)
f

(
k

n

)
≤ 2j−kj!

k! (nx+ k) ... (nx+ j − 1)

2k

j + k
f

(
k

n

)
≤ fk,n,j (x)

So, we can write

j∨
k=1

fk,n,j (x) = fj,n,j (x) ,

V (M)
n (f) (x) =

n∨
k=j

fk,n,j (x) . (16)

Let k ∈ {0, 1, ..., n} with k ≥ j. Since g is nonincreasing and x ∈
[
j+1
n , j+2

n

]
, we

have

fk+1,n,j (x) =
j! (nx+ j) ... (nx+ k)

2k+1−j (k + 1)!
f

(
k + 1

n

)
≤ j! (nx+ j) ... (nx+ k)

2k+1−j (k + 1)!

k + 1

k
f

(
k

n

)
=

j! (nx+ j) ... (nx+ k − 1)

2k−jk!

(nx+ k)

2k
f

(
k

n

)
≤ fk,n,j (x)

k + j + 2

2k
.

So, we get

fk+1,n,j (x) ≤ fk,n,j (x) , for k ≥ j + 2,

from which, we have,

n∨
k=j+2

fk,n,j (x) = fj+2,n,j (x) , j ∈ {0, 1, ..., n− 2} . (17)
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From (16) and (17), we obtain (15) for all x ∈
[
j+1
n , j+2

n

]
, i.e.,

V (M)
n (f) (x) = max {fj,n,j (x) , fj+1,n,j (x) , fj+2,n,j (x)} , j ∈ {0, 1, ..., n− 2} .

By Lemma 8, the proof is completed. �

Lemma 10. [7] If f : [0, 1] −→ [0,∞) is a concave function then g : (0, 1]→ [0,∞)

g (x) = f(x)
x is nonincreasing.

Proof. For the proof see [7] �

Corollary 11. For f : [0, 1] −→ [0,∞) is a nondecreasing concave function, we
have ∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ ≤ 2ω1

(
f,

1

n

)
, for all x ∈ [0, 1] .

Proof. The proof is completed by Theorem 9 and Lemma 10. �

The last theorem is about the piecewise convexity of the truncated Lupaş oper-
ators of max-product type on the interval [0, 1].

Theorem 12. For any f : [0, 1] −→ R+ , V
(M)
n (f) is convex on

[
j+1
n , j+2

n

]
,

j ∈ {0, 1, ..., n− 2} .

Proof. For any j ∈ {0, 1, ..., n− 2} and x ∈
[
j+1
n , j+2

n

]
, since we can write V

(M)
n (f) (x) =

n∨
k=0

fk,n,j (x), we will show for any fixed j, fk,n,j is convex on
[
j+1
n , j+2

n

]
. This imply

that V
(M)
n (f) is convex, as being the maximum of convex functions on

[
j+1
n , j+2

n

]
.

Since f ≥ 0 and fk,n,j (x) =
(nx)k j!

2k−j(nx)j k!
f
(
k
n

)
, we will prove that gk,n,j (x) =

(nx)k
(nx)j

are convex on
[
j+1
n , j+2

n

]
.

For k = j, gj,n,j is constant so it is convex.
For k = j + 1, gj+1,n,j (x) = nx+ j is convex.

For k = j − 1, gj−1,n,j (x) = 1
nx+j−1 and since g′′j−1,n,j (x) = 2n2

(nx+j−1)3
> 0 on[

j+1
n , j+2

n

]
, it is convex.

For k ≥ j+2, gk,n,j (x) = (nx+ j) ... (nx+ k − 1) and ln (gk,n,j (x)) = ln (nx+ j)+

...+ ln (nx+ k − 1) . Since g′k,n,j (x) = ngk,n,j (x)
[

1
nx+j + ...+ 1

nx+k−1

]
and

g′′k,n,j (x) = ng′k,n,j (x)
[

1
nx+j + ...+ 1

nx+k−1

]
−n2gk,n,j (x)

[
1

(nx+j)2
+ ...+ 1

(nx+k−1)2

]
,

we obtain

g′′k,n,j (x) = n2gk,n,j (x)

{(
1

nx+j + ...+ 1
nx+k−1

)2

−
(

1
(nx+j)2

+ ...+ 1
(nx+k−1)2

)}
>

0.
For k ≤ j − 2, gk,n,j (x) = 1

(nx+k)...(nx+j−1) and since

g′k,n,j (x) = −ngk,n,j (x)
[

1
nx+k + ...+ 1

nx+j−1

]
, we get
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g′′k,n,j (x) = n2gk,n,j (x)

{(
1

nx+k + ...+ 1
nx+j−1

)2

+
(

1
(nx+k)2 + ...+ 1

(nx+j−1)2

)}
>

0.
Hence, we see that all the functions gk,n,j are convex on

[
j+1
n , j+2

n

]
. As being

maximum of all these functions, V
(M)
n (f) is convex on

[
j+1
n , j+2

n

]
. �

5. Conclusion

The nonlinear max product type operators have been studied by various au-
thors for the last two decades. For example, in [16] Duman obtained convergence
results for a sequence of max-product operators in the statistical sense. Karakuş
and Demirci [22] examined the σ-statistical convergence of the max product type
operators. For the future studies, one can examine whether the truncated Lupaş
operators of max product kind can be generalized in the light of these studies or
not. Also the statistical convergence of the constructed operators may be investi-
gated.
Another study related to this topic is due to Holhoş. He examined the approxima-
tion properties of Meyer-König and Zeller and Favard-Szász-Mirakyan operators of
max-product type in weighted space of functions in the papers [20] and [21], re-
spectively. Taking these studies into account, Lupaş operators of max-product type
may be constructed on an unbounded interval [0,∞) and weighted approximation
results of the operators can be examined.
Very recently, Coroianu and Gal [10] have studied the Kantorovich type max-
product operators. In view of this paper one can consider the Lupaş-Kantorovich
operators of max-product type and analyze the approximating properties.
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[19] Güngör, Ş. Y., İspir N., Approximation by Bernstein-Chlodowsky operators of max-product
kind, Mathematical Communications, 23 (2018), 205–225.
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