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The closed-form expression for pure R2 vacuum solution obtained in Phys. Rev. D 107, 104008
(2023) lends itself to a generalization to axisymmetric setup via the modified Newman–Janis al-
gorithm. We adopt the procedure put forth in Phys. Rev. D 90, 064041 (2014) bypassing the
complexification of the radial coordinate. The procedure presumes the existence of Boyer-Lindquist
coordinates. Using the Event Horizon Telescope Collaboration results, we model the central black
hole M87* by the thus obtained exact rotating metric, depending on the mass, rotation parame-
ter and a third dimensionless parameter. The latter is constrained upon investigating the shadow
angular size assuming mass and rotation parameters are those of M87*. Stability is investigated.

I. INTRODUCTION

The family of f(R) theories is an active arena of re-
search in modified gravity. It is considerably less involved
than theories containing the Ricci or Riemann tensors in
their action [1–4]. It is also advantaged by being ghost-
free, as its scalar degree of freedom, when moving from
the Jordan frame to the Einstein frame, involves deriva-
tives no higher than two. This theory offers a number
of exact analytical solutions, some of which project non-
constant scalar curvature [5–8]. However, these solutions
do not align with the Schwarzschild metric and fail to
pass tests in the Solar System and binary stars.

Prior to proposing f(R) gravity [9], Buchdahl consid-
ered the pure R2 action around 1962, which is a sim-
ple and natural extension of General Relativity [10]. Its
action contains one single term in the gravitation sec-
tor, 1

2κ

∫
d4x

√
−gR2, making it more parsimonious than

Brans-Dicke gravity which involves the Brans-Dicke pa-
rameter ω, and conformal gravity which involves the nu-
anced Bach tensor. The action is scale invariant, with the
parameter κ being dimensionless. In vacuum, the action
leads to the field equation

R
(

Rµν − 1
4gµνR

)
+ (gµν□ − ∇µ∇ν) R = 0, (1)

and, consequently, the trace equation

□R = 0. (2)

In [10] Buchdahl demonstrated that the trace equation
(2) allows for a non-constant Ricci scalar field. To es-
tablish this, he expressed the metric in the “harmonic
gauge” as

ds2 = −A(u)dt2 +B(u)du2 +
√
B(u)/A(u)dΩ2, (3)
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where A(u) and B(u) are two unknown functions of u,
a harmonic coordinate in the radial direction. For this
metric, the d’Alembertian acting on a scalar field is

□R ≡ 1√
−g

∂µ

(√
−ggµν∂νR

)
= B−1 d

2R
du2 . (4)

The trace equation in vacuum (2) directly yields d2R
du2 = 0,

resulting in R being an affine function of u, viz.

R = Λ + k u, (5)

where Λ and k are two constants.

Recently, one of us revisited Buchdahl’s 1962 work and
discovered a class of spacetime solutions for pure R2 grav-
ity [11]. Consistent with the finding expressed in Eq. (5),
these Buchdahl-inspired solutions are asymptotically de
Sitter and exhibit non-constant scalar curvature. In ad-
dition to the asymptotic value of the scalar curvature
at spatial infinity, the solutions are specified by a new
(Buchdahl) parameter, k, which has dimensions of length
and is of higher-derivative nature.

The role of the Buchdahl parameter k can be likened to
the “scalar charge” in scalar-tensor theories. As demon-
strated in [12], for the BD action LBD =

√
−g

[
ϕR +

ω
ϕϕ;µϕ

;µ
]
, by switching from the Jordan frame to the

Einstein frame via the transformations:

g̃µν := ϕ gµν and φ :=
√

|ω + 3/2| lnϕ , (6)

the action takes the form of General Relativity with a
minimally coupled scalar field φ, per

LBD =
√

−g̃
[
R̃+ε g̃µν∂µφ∂νφ

]
; ε := sgn

(
ω+ 3

2

)
. (7)

The resulting field equations are

R̃µν = −ε ∂µφ∂νφ , (8)

and

□̃φ = 0. (9)
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Similarly to the steps taken in Eqs. (3)–(5), in the har-
monic coordinate u, the harmonic equation (9) directly
yields

φ = φ0 + C u ; φ0, C = const , (10)

with C representing a scalar charge, a notion first ad-
vanced by Bronnikov in 1973 [13]. When C = 0, the
Schwarzschild metric is recovered. In general, C ∈ R.
The scalar charge plays a central role in generating new
physics for Brans-Dicke gravity [12]. For C ̸= 0, as φ
varies, resulting in R̃µν ̸= 0 in vacuum per Eq. (8), non-
Schwarzschild solutions are obtained. Furthermore, it
has been determined that these solutions in scalar-tensor
theories are typically stable [12, 14, 15].

Considering the close analogy of the two harmonic
equations, Eq. (5) vs Eq. (10), and of the pure R2

and Brans-Dicke theories 1, it follows that the Buchdahl
parameter k can be considered as the scalar charge and
should take on any value in R unrestricted.

Within the class of Buchdahl-inspired solutions men-
tioned above, a specific case has been derived in Ref.
Ref. [16] which provides an exact closed analytical so-
lution describing asymptotically flat spacetimes. This
special Buchdahl-inspired metric recovers Schwarzschild
when the Buchdahl parameter k vanishes. Yet, for k ̸= 0,
this solution exhibits novel intriguing properties for R2

spacetimes [16]. Pure R2 gravity is thus an example of a
higher-order theory capable of producing a diverse range
of phenomena, even in the absence of complex ingredients
such as torsion, non-metricity, or non-locality.

The new metrics invite extensions to the stationary
axisymmetric setup, via the use of the Newman-Janis
algorithm (NJA). The method starts with a “seed” static
spherically symmetric metric in a closed form

ds2
seed = −G(r)dt2 + dr2

F (r) +H(r)
(
dθ2 + sin2 θdφ2)

.

(11)
A crucial step in the NJA is the complexification of the
radial coordinate, viz. r → r + ia cos θ, in which the
following replacements are adopted:

r2 → (r + ia cos θ)(r − ia cos θ) = r2 + a2 cos2 θ, (12)
1
r

→ 1
2

(
1

r + ia cos θ + 1
r − ia cos θ

)
= r

r2 + a2 cos2 θ
.

For the “seed” Reissner–Nordström metric, viz. F (r) =
G(r) = 1 − 2M

r + Q2

r2 and H(r) = r2, the NJA aptly pro-
duces the Kerr-Newman metric that describes a charged
rotating black hole in General Relativity.

1 We also establish that a special case of the Buchdahl-inspired
solutions is related to the Campanelli-Lousto solution of Brans-
Dicke gravity; see our comment at the end of Section II. This
connection further underscores the similarities and shared char-
acteristics between these two gravitational theories.

As the complexification scheme adopted in Eq. (12)
is rather ad hoc, in Refs. [17–19], the other author of us
proposed another route with a higher degree of plausi-
bility. It assumes the existence of Boyer-Lindquist coor-
dinates and imposes an integrability condition in some
of its coordinate transformations. The procedure is an
improvement over the NJA and bypasses the complexifi-
cation step.

The purpose of our current paper is to apply the non-
complexification technique put forth in Ref. [19] to the
Buchdahl-inspired solutions, in order to obtain rotating
solutions for uncharged rotating sources in pure R2 grav-
ity. We will be able to derive an exact rotating solution
up to a conformal factor, the determination of which re-
quires solving some challenging partial differential equa-
tion. However, for the purpose of this work, the exact
form of the conformal factor is not needed and will not
affect our conclusions. Our paper is organized as fol-
lows. In Section II we first review the general and spe-
cial Buchdahl-inspired metrics obtained in [11, 16]. In
Sections III and IV, we recast the generic metric in a
new set of coordinates to bring it to a “Schwarzschild
gauge” in the Einstein frame. We then apply the non-
complexification algorithm to this “seed” metric in Sec-
tion V and to the special case where Λ = 0 in Section VI.
Finally, in Section VII we apply the rotation metric to
the M87* shadow and obtain a bound for the Buchdahl
parameter k. Section VIII is devoted to the stability
analysis. We conclude in Section IX.

II. BUCHDAHL-INSPIRED SOLUTIONS

In Ref. [11] the static spherically symmetric vacuo so-
lution to the R2 field equation (1) was found to be ex-
pressible in terms of two auxiliary functions p(r) and q(r)

ds2 = e
k
∫

dr
r q(r)

{
−p(r)q(r)

r
dt2 + p(r) r

q(r) dr
2 + r2dΩ2

}
,

(13)
in which p(r) and q(r) obey a coupled set of first-order
“evolution” type ordinary differential equations (ODE):

dp(r)
dr

= 3 k2

4 r
p(r)
q2(r) , (14)

dq(r)
dr

= (1 − Λ r2) p(r), (15)

and the Ricci scalar is given by

R(r) = 4Λ e−k
∫

dr
r q(r) . (16)

The generic Buchdahl-inspire metric is specified by
four parameters, viz. {Λ, k, p(r0), q(r0)}, reflecting the
fourth order nature of the R2 action. The Ricci scalar
approaches 4Λ at spatial infinity, indicating its asymp-
totic de Sitter behavior. The new (Buchdahl) parameter
k, which has units of length, enables the metric to devi-
ate from the Schwarzschild-de Sitter metric. In the limit
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where k = 0, the metric recovers the Schwarzschild-de
Sitter solution.

For the case where Λ = 0, the “evolution” ODE’s (14)
and (15) are fully soluble. The solution is [16]

r = |q − q+|
q+

q+−q− |q − q−|−
q−

q+−q− , (17)

p = (q − q+)(q − q−)
r q

, (18)

q± := 1
2

(
−rs ±

√
r2

s + 3k2
)
, (19)

with rs being an integration constant and q± the two
real roots of the algebraic equation q2 + rsq − 3k2

4 = 0.
Interestingly, although the Buchdahl ODE (15) involves
q as a function of r, the solution (17) has r expressed in
terms of q.

Ref. [16] made a further transformation from r to a
new radial coordinate ρ per

r(ρ) :=
ζ rs

∣∣1 − rs
ρ

∣∣ 1
2 (ζ−1)

1 − sgn
(
1 − rs

ρ

) ∣∣1 − rs
ρ

∣∣ζ
, (20)

ζ :=
√

1 + 3k2

r2
s
. (21)

In this new coordinate, the special Buchdahl-inspired
metric takes on a strikingly well-structured form. It is
specified by a “Schwarzschild” radius rs and the scaled
(dimensionless) Buchdahl parameter k̃ := k/rs per

ds2 =
∣∣∣∣1 − rs

ρ

∣∣∣∣k̃ {
−

(
1− rs

ρ

)
dt2 + dρ2

1 − rs
ρ

r4(ρ)
ρ4 +r2(ρ) dΩ2

}
.

(22)
For k̃ ̸= 0, the special Buchdahl-inspired metric is not
Ricci-flat and is therefore non-Schwarzschild. However, it
is asymptotically flat and Ricci-scalar-flat. When k̃ = 0,
it precisely recovers the Schwarzschild metric since r(ρ) ≡
ρ for all ρ ∈ R, hence being viable of passing tests in the
Solar System and binary star systems.

The metric given in Eq. (22) possesses two additional
noteworthy properties:

(I) Non-triviality of the asymptotically flat Buchdahl-
inspired metric: The metric in (22) is Ricci-scalar flat,
viz. R ≡ 0 ∀r ∈ R+. While it is known that any null-
Ricci-scalar metric is automatically a vacuum solution to
the pure R2 field equation (thus forming a trivial branch
of solutions), the metric in (22) is non-trivial since it
satisfies a “stronger” version the field equation:

Rµν − 1
4gµνR + gµνR−1□R − R−1∇µ∇νR = 0. (23)

Despite R−1 being singular, the combinations R−1□R
and R−1∇µ∇νR are free of singularities. This result has
recently been reported in [20].

(II) Embedding into the generalized Campanelli-Lousto
solution of Brans-Dicke gravity: Furthermore, it has been

shown in [21, 22] that the metric in (22) is equivalent to

ds2 = −s
∣∣∣∣1 − ζrs

r

∣∣∣∣A

dt2 + s
∣∣∣∣1 − ζrs

r

∣∣∣∣B

dr2

+
∣∣∣∣1 − ζrs

r

∣∣∣∣B+1
r2dΩ2, (24)

in which s := sgn
(

1 − ζrs
r

)
is the signum function, and

A := k̃ + 1
ζ

, B := k̃ − 1
ζ

. (25)

Expression (24) is a special case of the generalized
Campanelli-Lousto solution that we reported for Brans-
Dicke gravity [22]. This relationship between the two
solutions further highlights the shared characteristics of
pure R2 gravity and Brans-Dicke gravity.

III. A COORDINATE CHANGE FOR
BUCHDAHL-INSPIRED SOLUTION

Regarding the metric in (13), let us make a coordinate
change r(R) to make −gtt and gRR, when excluding the
conformal factor, reciprocal to each other. The change
of coordinate is meant to be{

p(r)q(r)
r

}
×

{
p(r) r
q(r)

dr2

dR2

}
= 1, (26)

hence yielding

dR = p(r) dr. (27)

In this new coordinate, the evolution rules (14)–(15) are
enlarged to three coupled equations:

dp(R)
dR

= 3 k2

4 r(R)
1

q2(R) , (28)

dq(R)
dR

= 1 − Λ r2(R), (29)

dr(R)
dR

= 1
p(R) . (30)

Note that the right hand sides of these equations do not
depend explicitly on R; they are thus “translationally
invariant” with respect to arbitrary shift R → R + R0.
The integral in the conformal factor of (13) becomes∫

dr

r q(r) =
∫

dR

p(R)q(R)r(R) . (31)

Despite the appearance of three variables {p, q, r}, the
metric in the new coordinate R still involves only two
degrees of freedom (as a general result of gauge choice in
the static spherically symmetric setup), viz. r(R) and a
function Ψ(R) defined as

Ψ(R) := p(R)q(R)
r(R) , (32)
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namely

ds2 = e
k
∫

dR
Ψ(R)r2(R)

{
−Ψ(R)dt2 + dR2

Ψ(R) + r2(R)dΩ2
}
. (33)

The Ricci scalar is

R(R) = 4Λ e−k
∫

dR
Ψ(R)r2(R) . (34)

Note that one might be tempted to start from Eq. (33)
then derive two ODE’s for Ψ(R) and r(R) but the re-
sulting ODE’s would be non-linear and high-order. The
success of Buchdahl’s program is to decompose Ψ(R) into
{p, q, r} that obey “simpler” coupled ODE’s, Eqs. (28)–
(30).

The purpose of this section was to bring metric (13)
to form (33), which upon moving to the Einstein frame
(Sec. IV) will result in a “seed” metric suitable for gener-
ating its rotating counterpart, as will be done in Sec. V.

IV. MOVING TO EINSTEIN FRAME

Metric (33)–(34)

gµνdx
µdxν = 4Λ

R(R)

{
−Ψ(R)dt2 + dR2

Ψ(R) + r2(R)dΩ2
}
,

(35)
is the vacuo solution to the pure R2 action in the Jordan
frame ∫

d4x
√

−g 1
2κR2. (36)

The action can be recast in terms of an auxiliary scalar
field ω as ∫

d4x
√

−g 4Λ
κ

[
ωR − 2Λω2]

. (37)

Upon a conformal transformation

gµν = ω−1 g̃µν , (38)

the term
√

−g ωR becomes (e.g., see Formula (27) in [23])
√

−g ωR =
(
ω−2√

−g̃
)
ω ω

[
R̃ + 3 □̃ lnω − 3

2
(
∇̃ lnω

)2
]
,

(39)
whereas the term

√
−g ω2 =

√
−g̃. The action – in the

Einstein frame – thus becomes (with the total derivative
□̃ being dropped)∫

d4x
√

−g̃ 4Λ
κ

[
R̃ − 3

2
(
∇̃ lnω

)2 − 2Λ
]
. (40)

Further note that upon variation of action (37)

ω = R
4Λ , (41)

which is equivalent to

R̃ = 4Λ − 3 □̃ lnω + 3
2

(
∇̃ lnω

)2
.

The metric in the Einstein frame is

g̃µνdx
µdxν = −Ψ(R)dt2 + dR2

Ψ(R) + r2(R)dΩ2, (42)

which retains only the proper part of metric (35). This
“seed” metric, Eq. (42), may be suitable for generalizing
to the stationary axisymmetric setup.

V. THE NON-COMPLEXIFICATION
PROCEDURE

This procedure has been detailed in [19], we shall only
directly apply it here. The procedure is applicable for a
generic static “seed” metric

ds2
stat = −G(R)dt2 + dR2

F (R) +H(R) dΩ2, (43)

with F (R) = G(R) = Ψ(R) = p(R)q(R)
r(R) , and H(R) =

r2(R). Setting [19]

ρ2 := r2(R) + a2 cos2 θ,

2f(R) := r2(R) − r(R)p(R)q(R),
∆(R) := r(R)p(R)q(R) + a2, (44)

Σ(R, θ) := [r2(R) + a2]2 − a2∆(R) sin2 θ,

with the evolution rules for {p, q, r} given in Eqs. (28)–
(30). A stationary axisymmetric “candidate” metric – in
the Einstein frame – is

ds2 = ψ(R, θ; a)
ρ2

{
−

(
1 − 2f(R)

ρ2

)
dt2 − 4af(R) sin2 θ

ρ2 dt dϕ

+ ρ2

∆(R)dR
2 + ρ2dθ2 + Σ(R, θ)

ρ2 sin2 θdϕ2
}
, (45)

with yet an undetermined ψ(R, θ; a) satisfying some par-
tial differential equation.

A reverse conformal mapping would be needed to bring
the candidate metric back to the Jordan frame. Since Ψ
is yet determined, perhaps it should be chosen such that
the above metric satisfies the pure R2 vacuo equation.
Of course, it is still a daunting task without a guarantee
of eventual success, but it is some progress. It recovers
known metrics as a → 0 and/or k → 0, and everything
looks gracious in between.

Whatever the reverse conformal mapping is, the exact
rotating metric will be given by the following ansatz

ds2 = A(R, θ; a)
[

−
(

1 − 2f(R)
ρ2

)
dt2 − 4af(R) sin2 θ

ρ2 dt dϕ

+ ρ2

∆(R)dR
2 + ρ2dθ2 + Σ(R, θ)

ρ2 sin2 θdϕ2
]
, (46)

where A(R, θ; a) satisfies some challenging partial differ-
ential equation that remains to be solved.
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VI. THE CASE OF ASYMPTOTICALLY FLAT
Λ = 0

Let us apply the ansatz (46) to the case Λ = 0 (leading
to q = R, noting the “translational invariance” R →
R+R0), the static solution of which takes the form [16]

ds2 =
(
q − q+

q − q−

) k
q+−q−

[
− qp(q)

r(q) dt
2 + r(q)

qp(q)dq
2 + r2(q)dΩ2

]
,

(47)
where we have used the function q as a radial coordinate
since in this case R(r) = q(r). In this metric we have

q+ = rs

2 [
√

1 + 3k̃2 − 1], q− = −rs

2 [
√

1 + 3k̃2 + 1],

p(q) = (q − q+)(q − q−)
qr(q) , q−q+ = −3k2

4 , (48)

r2(q) = (q − q+)
2q+

q+−q− (q − q−)
−2q−

q+−q− ,

where we have introduced the dimensionless parameter
k̃ = k/rs.

The rotating solution is given by (46) with its various

functions as given in (44) and R(r) = q(r). In particular

ρ2 := (q − q+)
2q+

q+−q− (q − q−)
−2q−

q+−q− + a2 cos2 θ

2f(q) := (q − q+)
2q+

q+−q− (q − q−)
−2q−

q+−q−

− (q − q+)(q − q−)
∆(q) := (q − q+)(q − q−) + a2 (49)

Σ(q, θ) :=
[
(q − q+)

2q+
q+−q− (q − q−)

−2q−
q+−q− + a2

]2

− a2 [
(q − q+)(q − q−) + a2]

sin2 θ

and

ds2 = A(q, θ; a)
[

−
(

1 − 2f(q)
ρ2

)
dt2 − 4af(q) sin2 θ

ρ2 dt dϕ

+ ρ2

∆(q)dq
2 + ρ2dθ2 + Σ(q, θ)

ρ2 sin2 θdϕ2
]

(50)

where the function A satisfies the following nonlinear par-
tial differential equation with y = cos θ.

2{4q3p3ra2y2 + qpr[(3k2 − 4q2)a2y2 + 3k2r2] + 4a2q2p2[a2y2 − (1 − y2)r2] + a2[(3k2 − 4q2)a2y2 + (3k2 + 4q2(1 − y2))r2]}A2

+ 6q2p2(a2y2 + r2)2[(a2 + qpr)(∂qA)2 + (1 − y2)(∂yA)2] − 3qp2(a2y2 + r2)2

× [(3k2 + 4q2 + 4qpr)∂qA+ 4q(a2 + qpr)∂q,qA+ 4q∂y((1 − y2)∂yA)]A = 0.

Here p and r are functions of q defined in (48). Note
that if one sets a = 0 in this equation, one obtains the

differential equation to which the factor
(q − q+
q − q−

) k
q+−q−

in (47) is a solution.
The function A, as plotted in Figs. 1 and 2, has no

zeros, so the horizons are solution to ∆(q) = 0 where
∆(q) is given in Eq. (49). Equation ∆(q) = 0 reduces
to (q − q+)(q − q−) + a2 = 0, which has at most two
horizons and the solutions of which are trivially obtained
expressing the new radial coordinate q in terms of the
parameters (q+, q−, a):

q =
q+ + q− ±

√
(q+ − q−)2 − 4a2

2 .

Here q+ and q− are defined in Eq. (48). The non-rotating
case corresponds to a = 0, yielding q = q+ or q = q−.

Since in the limit a → 0, the metric inside the square
brackets in (50) reduces to the metric inside the square
brackets in (47), we should take

A(q, θ; a) =
(q − q+
q − q−

) k
q+−q−

B(q, θ; a), (51)

where lima→0 B(q, θ; a) = 1. Note that we must also have
limq→∞ B(q, θ; a) = 1 to preserve asymptotic flatness. It

remains a technical challenge to determine a solution to
the partial differential equation satisfied by the function
B(q, θ; a), which emanates from that satisfied by the con-
formal factor A(R, θ; a) (46). However, we are reassured,
based on existence theorems, that solutions to this partial
differential equation exist. Numerically we can determine
either function, A(q, θ; a) or B(q, θ; a), and generate plots
for different values of (a/rs, θ, k̃). Figures 1 and 2 depict
the function A(q, θ; a) for selected values of (a/rs, θ) and
k̃ has been constrained by the shadow observations (69).

If we identify B(q, θ; a) with unity we obtain a rotating
solution up to a2, that is, R = O(a2) + · · · and the left-
hand sides of the field equations,

R
(

Rµν − 1
4gµνR

)
+ (gµν□ − ∇µ∇ν)R = 0,

are of the same order.
However, for the remaining section of this work we

will not identify B(q, θ; a) with unity, nor rely on the nu-
merical solutions depicted in Fig. 1 and 2, as for some
interesting physical applications the exact form the con-
formal factor A(q, θ; a) is not needed. This is indeed the
case when investigating the shadow of such rotating so-
lutions as the null geodesic equations are separable for
any A(q, θ; a).
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Figure 1: The plots depict the function A(q, θ; a) versus x/rs =
√

q2 + a2 cos2 θ/rs for selected values of (a/rs, θ) and k̃ = 0.003 has been
constrained by the shadow observations (69). The black, red, blue, and magenta curves correspond to a/rs = 0, 0.3, 0.6, 0.9, respectively.

The black plot, corresponding to a = 0, coincides with the plot of A(q) =
(

q−q+
q−q−

) k
q+−q− (47).
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Figure 2: The plots depict the function A(q, θ; a) versus x/rs =
√

q2 + a2 cos2 θ/rs for selected values of (a/rs, θ) and k̃ = −0.02 has been
constrained by the shadow observations (69). The black, red, blue, and magenta curves correspond to a/rs = 0, 0.3, 0.6, 0.9, respectively.

The black plot, corresponding to a = 0, coincides with the plot of A(q) =
(

q−q+
q−q−

) k
q+−q− (47).

VII. SHADOW

In order to investigate the shadow, it is better to
rewrite the rotating metric (50) keeping the only func-
tion r(q) and ∆(q):

ds2 = A(q, θ; a)
[

− ∆ − a2 sin2 θ

ρ2 dt2 + ρ2

∆ dq2 + ρ2dθ2

+ 2a sin2 θ

ρ2 (∆ − r2 − a2)dt dϕ+ Σ
ρ2 sin2 θdϕ2

]
, (52)

where ρ2(q, θ) = r2 +a2 cos2 θ and Σ(q, θ) = (r2 +a2)2 −
∆a2 sin2 θ.

Separability of the equations of motion for massive
and massless particles has been done for the case where
A(q, θ; a) ≡ 1 first in [19] then elsewhere. For the generic
case where A(q, θ; a) is not constant, the separability of
the equations of motion is only possible for null geodesics
(massless particles), as shown in [24]. The equations de-
scribing the null geodesics are straightforwardly brought

to the form

A2ρ4(q̇)2 =[E(r2 + a2) − aL]2 − ∆[Q+ (aE − L)2],
≡E2R(q), (53)

A2ρ4(θ̇)2 =Q+ a2E2 cos2 θ − L2 cot2 θ ≡ E2Θ(θ), (54)

ṫ = EΣ
Aρ2∆ + aL(∆ − r2 − a2)

Aρ2∆ , (55)

ϕ̇ =L(∆ − a2 sin2 θ)
Aρ2∆ sin2 θ

− aE(∆ − r2 − a2)
Aρ2∆ , (56)

where E and L are the energy and angular momentum,
respectively, Q is the Carter’s constant, and the dot de-
notes derivative with respect to proper time or affine pa-
rameter. In terms of the impact parameters η ≡ Q/E2

and ξ ≡ L/E, the functions R(q) and Θ(θ) take the form

R(q) = [r2 + a2 − aξ]2 − L∆, (57)
Θ(θ) = L − (a sin θ − ξ csc θ)2, (58)
L ≡ η + (a− ξ)2 (59)
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Now, we require the presence of unstable spherical null
geodesics obeying the constraints R(q) = 0 and R′(q) =
0, where prime denotes derivative with respect to q, along
with R′′(q) > 0. This yields2

η = r2[8∆r′(2a2r′ + r∆′) − 16∆2(r′)2 − r2(∆′)2]
a2(∆′)2 , (60)

ξ = r2 + a2

a
− 2∆(r2)′

a∆′ . (61)

For the determination of the shadow, the celestial coor-
dinates x and y, which allow to span the observer’s sky,
are defined for a distant observer by

x = lim
r→∞

[
− r2 sin θ dϕ

dr

∣∣∣
θ=θi

]
= lim

q→∞

[
− q2 sin θ dϕ

dq

∣∣∣
θ=θi

]
,

(62)

y = lim
r→∞

[
r2 dθ

dr

∣∣∣
θ=θi

]
= lim

q→∞

[
q2 dθ

dq

∣∣∣
θ=θi

]
, (63)

where θi is the observer’s inclination. Using Eqs. (53),
(54), (56) we obtain:

x = − ξ csc θi, (64)

y = ±
√
η + a2 cos2 θi − ξ2 cot2 θi ,

= ±
√

L − (a sin θi − ξ csc θi)2 . (65)

These last equations along with (60) and (61) will allow
us to sketch the shape of the shadow angular size versus
the dimensionless parameter k̃ = k/rs. From the static
solution (47) we obtain

rs = 2M
1 + k̃

, (66)

which will allow us to express the functions of the ro-
tating solution (48) and (49) in terms of M , k̃, and
a∗ = a/M .

2 The system R(q) = 0 and R′(q) = 0 has another solution η =
−r4/a2, ξ = (r2 + a2)/a yielding L = 0. Now, since Θ(θ) ≥ 0,
from (58) we have ξ = a sin2 θ0 with θ0 being constant. These
two expressions of ξ yield r2 + a2 cos2 θ0 = 0, which is possible
only on the ring singularity: r = 0, θ0 = π/2.
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44

45
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Figure 3: The plot depicts the shadow angular size θd versus the
dimensionless parameter k̃ assuming that M87* if modeled by the
rotating metric (52). If k̃ = k/rs ∈ [−0.129, 0.004], then θd =
42 ± 3 µas [26–29]. We took M = 6.5 × 109M⊙, a∗ ≡ a/M = 0.5,
distance to Earth D = 16.8 Mpc, inclination θi = 17o.
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45
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Figure 4: The plot depicts the shadow angular size θd versus the
dimensionless parameter k̃ assuming that M87* if modeled by the
rotating metric (52). If k̃ = k/rs ∈ [−0.155, −0.033], then θd =
42 ± 3 µas [26–29]. We took M = 6.5 × 109M⊙, a∗ ≡ a/M = 0.94,
distance to Earth D = 16.8 Mpc, inclination θi = 17o.

The shadow angular size θd is defined by

θd = 2Rs

D
, (67)

where D is the distance to Earth and Rs is the radius
of the circle that shares with the closed curve describing
the shadow the following three points: The rightmost
point of the shadow (x = xr, y = 0), the upper- and
lowermost points of the shadow (x = xb, y = ymax) and
(x = xb, y = −ymax). These are the three red points of
Figure 3 of Ref. [25] where α denotes x and β denotes y:

Rs = (xr − xb)2 + y2
max

2(xr − xb) . (68)

Now, if the rotating metric (52) describes the cen-
tral black hole M87* we must have M = 6.5 × 109M⊙,
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a∗ ≡ a/M ∈ [0.5, 0.94], distance to Earth D = 16.8 Mpc,
inclination θi = 17o, and shadow angular size θd =
42 ± 3µas [26–29]. This yields the bounds for k̃ ∈
[−0.129, 0.004] if a∗ = 0.5 and k̃ ∈ [−0.155, −0.033] if
a∗ = 0.94, as shown in Fig. 3 and Fig. 4, respectively.
These two bounds restrict k̃ by

−0.155 ≤ k̃ ≤ 0.004 . (69)

VIII. STABILITY ANALYSIS

Upon comparing our action in the Einstein frame (40)
with that in the same frame given in Eq. (2.10) of [30],
we make the following identification

M2 = 8Λ
κ
, ζ =

√
12Λ
κ

lnω, U(ζ) = 8Λ2

κ
, (70)

and ρ ≡ 0. If (hµν , δζ) denote the perturbations of the
fields,

gµν = g̃µν + hµν , ζ = ζ̃ + δζ,

where the tilde notation is used for the background fields
in the Einstein frame, the field equations reduce to [30]

δG̃µν + Λhµν = 0, □̃(δζ) = 0. (71)

Since these are the same perturbation equations of gen-
eral relativity in a de Sitter background in the presence
of a scalar field which has led to the stability of the static
Schwarzschild–de Sitter black hole against linear pertur-
bations [31], we conclude that our static solutions, re-
gardless of the value of R̃ (R̃ = 0 or R̃ ≠ 0), are also sta-
ble against linear perturbations. We could have reached
the same conclusion upon applying the analysis given ei-
ther in [31, 32] or in [33].

Since the conformal factor is not given analytically,
the stability of rotating solutions cannot be performed
following the work done in [31] or any other reference.
However, for small rotation parameter a we may claim
stability of rotating solutions by continuity.

We conclude that the non-rotating solution is stable
against linear radial perturbations and we claim that the

rotating solution is also stable as far as the rotating pa-
rameter remains small compared to the mass of the so-
lution.

IX. CONCLUSION

In this work we have emphasized the role of the Buch-
dahl parameter k, which has dimensions of length and
is of higher-derivative nature. We have shown that the
Buchdahl parameter k can be considered as the scalar
charge and should take on any in real value.

Upon making a recap of the general and special
non-rotating Buchdahl-inspired metrics, we proceeded
to transform the general non-rotating Buchdahl-inspired
metric to a seed metric suitable for generalizing its
rotating counterpart. Then we applied the non-
complexification procedure of the Newman-Janis algo-
rithm to reduce the number of unknown functions of the
rotating metric to 1: This is the function ψ in Eq. (45)
or the function A in Eq. (46).

After that, we specialized to the special metric hav-
ing Λ = 0 and obtained its exact rotating counterpart,
Eqs. (49) & (50), up to a conformal factor A, which we
could not determine analytically but numerically, upon
solving the equation R = 0, as depicted in Figs. 1 & 2.

The shadow analysis of the exact rotating solution has
shown that the reduced Buchdahl parameter k̃ could be
restricted by −0.155 ≤ k̃ ≤ 0.004 (69).

Finally, we concluded that the non-rotating solution is
stable against linear radial perturbations. The stability
of the rotating solution cannot be performed as A is not
given analytically; however, we may claim that it is con-
tinuous too by continuity at least for small values of the
rotation parameter compared to the mass of the solution.
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