
INTRODUCTION

Posterior teeth frequently show hard tissue loss due 
to cracks, caries, abrasion, or restoration failure. The 
remaining tooth structures, pulp vitality, and restorative 
material should be considered when restoring such teeth. 
Tooth preparation for a complete crown requires removal 
of 67.5% to 75.6% intact tooth structures1). Indirect 
restorations such as inlays and onlays are conservative 
alternatives for posterior teeth. Gold alloys, ceramics, 
and composite resins are favorable restorative materials 
for inlays2).

Composite resins allow shade matching with 
the remaining tooth structures. Polymerization 
shrinkage and poor interproximal contact are the major 
problems in direct composite resin restorations. Better 
polymerization can be achieved in curing ovens by using 
light, pressure, or heat singly or combinatorially. The 
other advantages of indirect composite resin restorations 
are better anatomic contour, interproximal contact, 
wear resistance, and polishing and potentially less 
postoperative sensitivity3-6). 

Ceramic is another durable tooth-colored restorative 
material. High-strength ceramic and high-strength 
ceramic core veneered with translucent ceramic can 
be used for inlays7). Ceramic inlays ensure excellent 
anatomic form and are esthetic long-lasting alternatives 
with a predictable degree of clinical success8).

Gold alloys are less popular because of economic 
and esthetic considerations. Nevertheless, they have 
excellent characteristics such as durability, minimal 
wear of restored and antagonist teeth, burnishability 
and malleability, corrosion and fracture resistance, and 
long-term service9). Gold alloy inlays are a strong option 
for high-load locations, such as the second molars, and 
where esthetic is not important10,11).

Adhesive resin must be used to achieve adequate 
bond strength in both composite resin and ceramic 
inlays12). It also improves the characteristics of cast-
gold inlays13). Adhesive resin restricts microleakage 
and enhances the strengthening mechanism of the 
restoration and residual tooth structure14). 

A main requirement of posterior restorations is 
resistance to occlusal loads2). Another important factor 
affecting their longevity is thermal fluctuation due to 
intake of hot and cold food and drinks15,16). Functional 
occlusal loads and intraoral temperature changes create 
stress in teeth. Thermomechanical loads are cyclic, may 
cause restoration failure, and result in microleakage17). 
These effects are significant because of differences in 
physical and thermal properties between tooth structures 
and restorative materials18).

Analysis of the properties of restorative materials 
and tooth structures presents methodological 
difficulties. Mathematical modeling by finite element 
analysis is an alternative approach15,16). Mechanical 
failure characteristics of inlays have been studied 
extensively2,9,19,20), but the influence of thermal fluctuation 
on restored teeth has received far less attention. 
The purpose of this study was to evaluate the impact 
of simultaneous thermomechanical loads on stress 
distribution related to inlays of gold alloy, ceramic, and 
composite resin by three-dimensional finite element 
analysis. 

MATERIAL AND METHODS

A three-dimensional finite element model of the 
permanent mandibular first molar was built according  
to the standard anatomy described in Wheeler’s atlas21). 
The model simulated enamel, dentin, periodontal 
ligament, and surrounding spongious and cortical 
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Fig. 1	 Illustration of the finite element models.

Fig. 2	 Nodes for mechanical loading. 
	 An oblique load of 40 N was applied to the 

mesiobuccal, distobuccal, and distal cusp tips as 
well as the central fossa and distal marginal ridge 
(red dots).

Table 1	 Thermal and physical properties of the study materials

Material
Young’s 
modulus 

(GPa)

Poisson 
ratio

Coefficient 
of thermal 
expansion 
(×10−6/°C)

Specific 
heat 

(J/g°C)

Density 
(×10−3 g/mm3)

Thermal 
conductivity 

(×10−4 J/smm °C)

Enamel16) 84.1 0.33 17.0 0.75 2.8 9.2

Dentin16) 18.6 0.31 10.6 1.17 2.0 6.3

Periodontal ligament22-24) 0.069 0.45 10.0 1.84 1.1 5.8

Spongious bone23-25) 1.37 0.30 10.0 1.84 1.3 5.8

Cortical bone23-25) 13.7 0.30 10.0 1.84 1.3 5.8

Ceramic core26) 95 0.30 10.6 0.98 2.4 14.7

Ceramic veneer26) 60 0.30 9.7 0.98 2.4 14.7

Composite resin16) 16.6 0.33 37.0 0.82 2.0 1.1

Adhesive resin26) 8.3 0.35 39.0 1.15 2.02 2.61

Type II gold alloy27) 90.5 0.35 15.5 0.14 18.3 26.7

bone (Fig. 1). Surrounding bone was assumed to be 
homogeneous, isotropic, and linearly elastic with the 
cortical bone of 1.5 mm thickness. The simulated cavity 
had a depth of 3.7 mm, isthmus width of 2.5 mm, and 
gingival wall width of 1.2 mm. Type II gold alloy , ceramic 
(IPS Empress 2), and composite resin inlays were also 
modeled. The ceramic core had a minimal thickness 
of 0.8 mm and the rest comprised porcelain veneer. 
Adhesive resin of 0.1 mm thickness was modeled on the 
cavity surface. The physical and thermal properties of 
the materials are shown in Table 116, 22-27).

The mesh structure of the finite element model was 
constructed by using commercial software Hypermesh 
(Altair Engineering) and the solution was conducted 
in Abaqus/Standard v.6.11 software (Dassault 
Systèmes, Waltham, MA, USA). The solid model was 

generated with first order tetrahedral solid elements 
and it comprised 35,057 nodes and 193,661 elements. 
Transient thermomechanical finite element analysis 
was performed to determine stress distribution in the 
models during simulated intake of hot and cold food and 
drinks with mechanical loading. The tooth temperature 
was assumed to be 36°C initially and change to 4°C and 
60°C respectively, for 2 s. The thermal exposure was 
applied to the occlusal and lingual surfaces of the tooth. 
The temperature distribution after 2 s was recorded and 
used for thermomechanical stress analysis. 

A simultaneous oblique load of 40 N was applied 
to the mesiobuccal, distobuccal, and distal cusp tips 
as well as the central fossa and distal marginal ridge, 
totaling 200-N mechanical loading (Fig. 2). Von Mises, 
tensile, compressive, and shear stresses were evaluated 
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Fig. 3	 Temperature distributions under 4ºC thermal condition at 2 s in the restored teeth.

Fig. 4	 Compressive stress patterns under 200-N mechanical loading at 4°C for 2 s in enamel.

Fig. 5	 Tensile stress patterns under 200-N mechanical loading at 4°C for 2 s in dentin.

separately in enamel, dentin, the inlays, and the 
adhesive resin. 

RESULTS

Figure 3 shows the temperature distributions caused 
by 4°C cold exposure at 2 s in the restored teeth. The 
temperature distributions were similar in the restoration 
models.

Compressive stress yielded the highest values 
(190–200 MPa) at 4°C in enamel (Fig. 4). Von Mises and 

shear stresses had similar values, ranging between 165 
MPa and170 MPa. The tensile stress values were lower, 
ranging between 95 MPa and100 MPa. The functional 
loading points showed the maximum stress. Secondary 
stress occurred near the cervical region (80–95 MPa). 
The stress values were similar in dentin, ranging 
from 38 MPa to 43 MPa. Except for tensile stress, the 
maximum stress occurred at the lingual cervical root 
surface; tensile stress was seen at the buccal cervical 
root surface (Fig. 5). 

In the inlays, the maximum stress was noted at 
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Fig. 6	 Compressive stress patterns under 200-N mechanical loading at 4°C for 2 s in inlays.

Fig. 7	 Shear stress patterns under 200-N mechanical loading at 4°C for 2 s in adhesive resin.

Fig. 8	 Temperature distributions under 60ºC thermal condition at 2 s in the restored teeth.

the loading points. Compressive stress had the highest 
values (170–185 MPa) and showed the following order of 
magnitude: Type II gold alloy>ceramic>composite resin 
(Fig. 6). Concerning the adhesive resin, the gold alloy 
model had the highest values of von Mises, compressive, 
and shear stresses (100–110 MPa) and lowest tensile 
stress value (32 MPa). Contrarily, the composite resin 
model had the highest tensile stress value (70 MPa) and 
the lowest values of the other stress types (45–55 MPa). 
The maximum stress in the adhesive resin occurred at 

the occlusal margins (Fig. 7).
Figure 8 shows the temperature distributions 

caused by 60°C hot exposure at 2 s in the restored 
teeth. The temperature distributions were similar in the 
restoration models.

In the 60°C with 200-N loading condition, 
compressive stress yielded the highest value in enamel 
(195–200 MPa), followed by von Mises and shear stress 
values (165–175 MPa). Tensile stress ranged between 95 
MPa and 100 MPa. Again, the maximum stress values 
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Fig. 9	 Compressive stress patterns under 200-N mechanical loading at 60°C for 2 s in enamel.

Fig. 10	 Tensile stress patterns under 200-N mechanical loading at 60°C for 2 s in dentin.

Fig. 11	 Compressive stress patterns under 200-N mechanical loading at 60°C for 2 s in inlays.

were recorded at the functional loading points. Secondary 
stress occurred near the cervical region (80–95 MPa; 
Fig 9). The values of all the stress types were similar in 
dentin, ranging from 40 MPa to 50 MPa. Tensile stress 
occurred at the buccal cervical root surface, whereas 
the other stresses occurred at the lingual cervical root 
surface (Fig. 10). 

The inlays showed the maximum stress at the 
loading points (Fig. 11). Compressive stress yielded the 
highest values (gold alloy>composite resin>ceramic), 

ranging between 175 MPa and 185 MPa. The gold alloy 
model had the highest values of all the stresses (100–
115 MPa) except tensile stress at the occlusal margins 
of the adhesive resin; the composite resin model had the 
lowest values of these stresses (65–70 MPa; Fig. 12). 
Regarding tensile stress, the highest value was noted in 
the composite resin model (56 MPa), whereas the lowest 
value was recorded in the gold alloy model (32 MPa).
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Fig. 12	 Shear stress patterns under 200-N mechanical loading at 60°C for 2 s in adhesive resin.

DISCUSSION

In the present study, the influence of simultaneous 
thermomechanical loads on stress distribution 
associated with three types of inlays was investigated 
by finite element analysis. The different properties 
of the restorative materials did not affect the stress 
distribution. However, the stresses resulting from 
combined thermomechanical loads were considerably 
higher than those caused by mechanical loading 
alone2,19,20).

Posterior teeth are subjected to different magnitudes 
and directions of functional and parafunctional forces19). 
Intraoral loads vary from 10 N to 431 N3). Oblique 
loads create higher stress than loads directed along the 
long axis of a tooth28-30). The oblique loads in this study 
simulated the force acting on the mandibular molar 
during the closing phase of mastication. Further, during 
daily intake of food and drinks, the intraoral temperature 
varies between 0°C and 67°C31). In this study, 4°C was 
determined as suitable for cold exposure and 60°C was 
selected for hot exposure and the thermal exposure time 
period, simulating the intake of hot and cold food drink, 
was assumed 2 s, according to the work of Cornacchia 
et al.12). 

Two properties should be considered when 
evaluating stress distribution under thermomechanical 
loads: elastic modulus and coefficient of thermal 
expansion. Composite resin has low elastic modulus 
but high coefficient of thermal expansion, whereas gold 
alloy has high elastic modulus but low coefficient of 
thermal expansion. These properties explain the similar 
stress distribution in tooth structures and restorative 
materials of the inlay models, contradicting previous 
findings based on mechanical loading alone2,19,20).

Dejak and Mlotkowski32) reported that the 
restorative material influences adhesive and cohesive 
failures in adhesive resin. In this study, the stresses in 
the adhesive resin occurred at the occlusal margins in all 
the models. However, the stress values in the composite 
resin model were lower than those in the gold alloy and 
ceramic models. This result may be attributed to the 
similar elastic moduli of composite resin, dentin, and 

adhesive resin. In spite of the relatively higher thermal 
expansion coefficiency, composite resin absorbs loads 
without conducting stresses to adhesive resin. 

Shear bond strength is an important factor for 
success of a restoration. Excessive stress at the adhesive 
resin-tooth interface can cause adhesive failure and  
result in microleakage, recurrent caries, and 
postoperative sensitivity33). The shear bond strength 
values associated with the adhesive resin used in this 
study are as follows: enamel, 32.8 MPa; dentin, 15.1 
MPa; ceramic, 17.2 MPa; and gold alloy, 5.4 MPa34,35). 

Notably, the shear stress values at the gingival floor and 
axial walls in the ceramic and gold alloy models were 
about 20 MPa. Therefore, adhesive failure can occur in 
these areas. For cohesive failure, compressive stress 
did not exceed the compressive strength of the adhesive 
resin (240 MPa)2).

Three-dimensional finite element analysis does not 
allow exact reproduction of some clinical situations. 
First, the adhesive resin had the same thickness around 
the restorative materials. In reality, the thickness may  
be non-uniform. Second, the thermal and physical 
properties of tooth structures and restorative materials 
vary widely and differ from the linear isotropic properties 
used in this analysis. In addition, oral temperature 
changes can influence the mechanical properties of 
dental restorative materials. Composite resins behave as 
viscoelastic materials and their mechanical properties are 
more sensitive to temperature fluctations36,37). Therefore, 
the data obtained in this study are not completely 
accurate and must be interpreted cautiously. 

CONCLUSIONS

Within the limitations of this study, the following 
conclusions are drawn:

1.	 Simultaneous thermomechanical loads caused 
high stress patterns in inlay-restored teeth. 

2.	 Type II gold alloy, ceramic, and composite resin 
inlays showed similar stress distribution in the 
tooth structures and restorative materials. 

3.	 Simultaneous thermomechanical loads may 
contribute to adhesive failure at the gingival 

185Dent Mater J 2016; 35(2): 180–186



floor and axial walls of gold and ceramic inlays. 
Composite resin inlays may be the better choice 
to avoid adhesive failure. 
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