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Abstract We briefly discuss some of the known and new
properties of rotating geometries that are relevant to this
work. We generalize the analytical method of superposition
of fields, known for generating nonrotating solutions, and
apply it to construct massless and massive rotating physical
wormholes sourced by a source-free electromagnetic field
and an exotic fluid both anisotropic. Their stress-energy ten-
sors are presented in compact and general forms. For the mas-
sive rotating wormholes there exists a mass–charge constraint
yielding almost no more dragging effects than ordinary stars.
There are conical spirals through the throat along which no
local negative energy densities are noticed for these rotating
wormholes. This conclusion extends to nonrotating massive
type I wormholes derived previously by the author, which
seem to be the first kind of nonrotating wormholes with this
property. Based on the classification made in Azreg-Aïnou
(J Cosmol Astropart Phys 07:037, arXiv:1412.8282 [gr-qc],
2015): “Type I wormholes have their radial pressure dying
out faster, as one moves away from the throat, than any other
component of the stress-energy and thus violate the least the
local energy conditions. In type II (resp. III) the radial and
transverse pressures are asymptotically proportional and die
out faster (resp. slower) than the energy density”.

1 Introduction

Detection of a negative energy density of any source whatso-
ever has not been made so far. This does not seem to be possi-
ble in the near future. However, its indirect effects have been
measured for both the Casimir effect [1,2] and the squeezed
vacuum states where vacuum fluctuations are suppressed,
giving rise to regions of alternating positive and negative
energy [3,4].

The discussion of exotic matter involves negative energy
densities necessary for sustaining the so-called wormholes,
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which are hypothesized tunnels connecting regions of space-
time. These have always been subject of intense research
area. Many nonrotating and rotating wormholes have been
found for general relativity and generalized theories of grav-
ity (the list of references is too long to mention all of them).
In this work we determine new rotating wormholes that are
counterparts of existing nonrotating ones and attach physical
interpretations to their sources. We develop a new analytical
method based on the superposition of fields each attached
to an anisotropic rotating fluid. The method is known for,
and was applied to, nonrotating solutions [5–8]. The gener-
alization of the method to rotating solutions necessitates the
introduction of different rotating or comoving bases.

In the following section we discuss the properties of the
metric of a rotating star and in Sect. 3 we discuss and extend
the properties of its special form used for generating rotating
wormholes. In Sect. 4 we show that the rotating wormhole
derived by Teo [9] using the metric of Sect. 3, which was
shown to be sourced by no fluid [10], could be sourced by
two rotating fluids.

In Sect. 5 we superpose a source-free electromagnetic
field to an exotic matter to generate an exact redshift-free
rotating wormhole solution, which turns out to be a rotat-
ing counterpart of the Bronnikov–Ellis wormhole [11,12].
Based on their asymptotic behavior, a classification of nonro-
tating wormholes into three types has been made in Ref. [13]:
Type I wormholes have their radial pressure dying out faster,
as one moves away from the throat, than any other compo-
nent of the stress-energy. In type II (resp. III) the radial and
transverse pressures are asymptotically proportional and die
out faster (resp. slower) than the energy density. For type
I wormholes, the violation of the local energy conditions
(LECs) occurs in a narrow region adjacent to the throat [13],
while for type III wormholes, the region may extend to spa-
tial infinity. In Ref. [13] we described this behavior by stating
that type I wormholes violate the least – when compared to
other types of wormholes – the LECs; stated otherwise, they
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yield the minimum violation of the LECs rather than the other
types of wormholes, and we stated that type III wormholes
violate them relatively the most; that is, they cause the most
harm to the LECs. In Sect. 6 we generalize the procedure
to rotating wormholes with redshift effects and construct a
rotating counterpart of a nonrotating type I wormhole derived
in Ref. [13].

In all derived rotating solutions we provide compact
expressions for the components of the SETs of the two fluids
as well as an expression for evaluating the angular veloc-
ity ω of the rotating wormhole. This velocity is determined
upon requiring the components of the SETs, which generally
depend on ω, to reduce to their static values, which do not
depend on ω, in the limit of no rotation.

In this work we provide a first example of a nonrotating
massive type I wormhole where no local negative energy
densities are noticed on conical spiraling paths through the
throat. This refutes the belief that rotation is the only way to
reduce the effects of exotic matter.

In Sect. 7 we address the question pertaining to the NEC
and WEC for the rotating wormholes derived here and for
their nonrotating counterparts. We show that on a cone of
equation θ = constant it is possible to find ways through the
throat where no local negative energy densities are noticed.
This conclusion extends only to the nonrotating type I worm-
hole derived in Ref. [13] but not to the Bronnikov–Ellis one.
We conclude in Sect. 8.

2 On the metric of a rotating star

Using the required symmetry properties of a stationary and
axisymmetric spacetime that is circular (particularly the exis-
tence of two commuting Killing vectors ∂t and ∂ϕ), the stan-
dard metric for a rotating star in equilibrium may be brought
to the following form in quasi-isotropic coordinates [14,15]
(see [16] for more details):

ds2 = N 2dt2−A2(dR2+R2dθ2)−D2R2 sin2 θ(dϕ−ωdt)2.

(1)

In quasi-isotropic coordinates the equality gRR = gθθ /R2

is justified by the fact that all two-dimensional metrics are
related by a conformal factor. Here (N 2, A2, D2, ω) are
positive functions depending on (R, θ ). Under the further
assumption that the star rotates slowly, it retains its spher-
ical symmetry without being flattened, and this results in
gθθ = gϕϕ/ sin2 θ , that is, in A2 = D2 [16]. So, the metric
of slowly rotating stars reads

ds2 = N 2dt2 − A2dR2 − A2R2[dθ2 + sin2 θ(dϕ − ωdt)2].
(2)

The form (2) is not convenient for constructing wormhole
or black hole solutions. Introducing a new radial coordinate r :

R ≡ R(r), (3)

we bring it to the form

ds2 =N 2dt2−eμdr2−r2K 2[dθ2+sin2 θ(dϕ−ωdt)2], (4)

first derived in [17]. Here we have set

(
A

dR

dr

)2 = eμ(r,θ) and A2R2 = r2K 2(r, θ).

Notice that, in order to satisfy the symmetry requirements, if
A depends only on the radial coordinate, so are the functions
(μ, K ):

A ≡ A(r) ⇒ μ ≡ μ(r) and K ≡ K (r). (5)

The metric (4) has the further property that gθθ and
gϕϕ/ sin2 θ = −r2K 2 are everywhere equal; it is sufficient
that they are equal on the axis of rotation (θ = 0 or θ = π )
for the metric (4) not to have a conical singularity on it [16].

Initially derived for slowly rotating stars [17], however, the
metric (4) has been used as a standard form for the discus-
sion and derivation of rotating wormholes [9]. This implic-
itly assumes the absence of effects due to centrifugal forces
which cause the “surface” of the rotating solution to flatten.

It is worth mentioning that static [18] and rotating [19,20]
cylindrically symmetric wormholes are now an active topic
of research. The metric (1) in quasi-isotropic coordinates is
also useful for describing solutions endowed with cylindrical
symmetry. In fact, if the metric coefficients (N 2, A2, D2, ω)
are all one-variable functions depending on the new radial
variable u, then by the coordinate transformation R2 = u2 +
z2 and θ = arctan(z/u), where z is a longitudinal coordinate,
one brings (1) to the metric (3) of Ref. [20] in the gauge
A = C according to the notation of that reference.

3 On the metric of a rotating wormhole

In this paper a prime notation f ′(r, θ, . . .) denotes the partial
derivative of f with respect to (w.r.t.) r , and derivation w.r.t.
to other variables is shown using the index notation, as in
f,θ ≡ ∂ f/∂θ .

The work done in Ref. [21], concerning the construction
of nonrotating wormhole solutions, has suggested the intro-
duction of the shape function [9] B(r, θ)

1 − B(r, θ)

r
≡ e−μ(r,θ), (6)

in terms of which the metric (4) takes the form
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ds2 =N 2dt2− dr2

1− B
r

− r2K 2[dθ2+sin2 θ(dϕ − ωdt)2],
(7)

where N 2 > 0 to ensure that the metric does not have hori-
zons. We may choose K > 0; in that case K is a nondecreas-
ing function of r (K ′ > 0). Now, to ensure that the metric is
free of singularity on the axis of rotation (θ = 0 or θ = π ),
further regularity conditions must be imposed. These condi-
tions include the elementary flatness constraint (absence of
conical singularity on the symmetry axis), which has been
discussed in the previous section, the spacelike nature con-
straint of the axial Killing vector ∂ϕ in a neighborhood of the
axis, and the existence of a Taylor series with only positive
integer powers of the local Cartesian coordinates (x, y, z)
of any metric function. This last constraint implies that the
derivatives of (N , B, K ) w.r.t. θ have to vanish on the axis of
rotation [9,22]. For instance, we can write B,θ as

B,θ = x,θ B,x + y,θ B,y + z,θ B,z

= r cos θ cos ϕB,x + r cos θ sin ϕB,y − r sin θB,z, (8)

which reduces to

B,θ = r cos θB,r̄ − −r sin θB,z (9)

(with r̄ = r sin θ ) if axisymmetry is imposed. To avoid a
jump discontinuity in the value of B,θ on the axis of symmetry
as z changes sign (cos θ changes from −1 to +1), we take
B,θ = 0 there. As we shall see below, the scalar curvature
depends on B,θθ (and on other second derivatives w.r.t. θ ), so
the vanishing of the θ derivatives of (N , B, K ) ensures that
the scalar curvature does not diverge on the axis.

Asymptotic flatness requires

lim
r→∞ N 2 = lim

r→∞ K 2 = 1, lim
r→∞ B/r = 0. (10)

As in the nonrotating case, the surface of the throat is
defined by

B(r0, θ0) = r0. (11)

This provides r0 as a function of θ0; that is, for a given value
of θ0 we solve (11) for r0 and we keep the largest value.

In this work we only consider analytic functions B(r, θ)

admitting Taylor series about the point (r0, θ0). The curvature
scalar R is given in Eq. (92) of Ref. [22], the only factors of
it that may diverge are [22]

B,θ

r − B
and

B,θθ

r − B
+ 3

2

( B,θ

r − B

)2
, (12)

and all the other terms of R are finite on the throat and else-
where [22]. The second factor in (12) has been missed in

Ref. [9]. Thus, the curvature scalar associated with (7) is
nonsingular everywhere provided the values of B,θ and B,θθ

are zero on the throat:

B,θ |(r0,θ0) = 0 and B,θθ |(r0,θ0) = 0. (13)

These two constraints remove any divergence of R but they
do not ensure a well-defined value of it on the throat, for the
limit as (r, θ) → (r0, θ0) of the second factors in (12) is still
path dependent unless we take

B,θθθ |(r0,θ0) = 0. (14)

With this additional constraint, the limits, as (r, θ) →
(r0, θ0), of the terms in (12) have well-defined values,

lim
(r,θ)→(r0,θ0)

B,θ

r − B
= B ′

,θ |(r0,θ0)

1 − B ′|(r0,θ0)

,

lim
(r,θ)→(r0,θ0)

B,θθ

r − B
= B ′

,θθ |(r0,θ0)

1 − B ′|(r0,θ0)

, (15)

provided B ′|(r0,θ0) �= 1. If B ′|(r0,θ0) = 1, we have to impose
the following extra constraints:

B ′
,θ |(r0,θ0) = 0, B ′

,θθ |(r0,θ0) = 0, B ′
,θθθ |(r0,θ0) = 0. (16)

Thus, we have shown that the curvature scalar is regular
everywhere off the throat and it has a well-defined and finite
value on it if (a) the constraints (13) and (14) are satisfied
in the case B ′|(r0,θ0) �= 1 or (b) the constraints (13), (14),
and (16) are satisfied in the case B ′|(r0,θ0) = 1. Instances of
functions B that satisfy the constraints (13), (14), and (16)
are the one-variable relations B ≡ B(r). In this case, the
curvature scalar converges everywhere off the throat and on
it, whether B ′|(r0,θ0) �= 1 or not.

The mathematical expression of the Kretschmann scalar
RαβμνRαβμν is very sizable, so we will not give it here; how-
ever, we find that the only terms that may diverge on the throat
are the following:

− 9 sin4 θB,θ
4

4r4K 4(r − B)4

+ 3 sin2 θ{sin2 θ [B,θθ − (ln K ),θ B,θ ] − cos θB,θ }B,θ
2

r4K 4(r − B)3

+ [2 cos2 θ + 3 sin2 θK (r K )′(1 − B ′)]B,θ
2

r4K 4(r − B)2

+ {2N 2[2(ln K ),θ
2 + (ln N ),θ

2] − r2K 2 sin2 θω,θ
2} sin4 θB,θ

2

2r4K 4N 2(r − B)2

+ [sin2 θB,θθ − 2 cos θB,θ − 2 sin2 θ(ln K ),θ B,θ ] sin2 θB,θθ

r4K 4(r − B)2

+ 2 sin2 θ(1 − B ′)[1 + r(ln K )′]B,θθ

r4K 2(r − B)
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+
[

2 sin2 θ(ln N )′(ln N ),θ

r3K 2 − [1 + r(ln K )′]4 cos θ

r4K 2

− sin4 θω′ω,θ

r N 2

]
(1 − B ′)B,θ

(r − B)

+
[

13(ln K )′

r4K 2 + 2(ln K )′2 + 2(ln N )′2

r3K 2 + 6K ′′

r3K 3 − 1

r5K 2

− sin2 θω′2

N 2r

]
sin2 θB,θ

2

(r − B)
, (17)

and that all the other terms of RαβμνRαβμν are finite on the
throat and elsewhere. All that we have said in the paragraph
following (16), concerning the convergence of the curvature
scalar, applies to the convergence of the Kretschmann scalar.

We have derived the properties of (7) which were not
discussed elsewhere. We refer the reader to Refs. [9,22] for an
extended discussion of its other properties. It was particularly
shown that the physical1 NEC, that is, Tμνkμkν ≥ 0, where
kμ is a null vector, is not violated in some regions around the
throat allowing an infalling observer to avoid the (necessary)
exotic matter sustaining the throat.

4 First example of a rotating wormhole

The first rotating wormhole derived using the metric (7) is
Teo’s wormhole [9] given by

N = K = 1 + (4a cos θ)2

r
, B = 1, ω = 2a

r3 , (18)

where a is the rotation parameter. Very recently, Teo’s worm-
hole has been used to study collisional processes in the geom-
etry of a rotating wormhole [23,24].

For at least a = 1/4, it was concluded [9] that null and
timelike geodesics, passing through the neck of the worm-
hole, do not encounter exotic matter; that is, they do not
observe violations of the NEC.

Since K depends on (r, θ ) while B is constant, by the
requirement (5) Teo’s metric (18) cannot be derived from (2)
by the coordinate transformation (3).

It was shown in Ref. [10] that Teo’s wormhole cannot be
generated by a single perfect or anisotropic fluid. It is, how-
ever, possible to show that this solution is generated by two
rotating anisotropic fluids the SETs of which are unphysical
and not related to any known matter distributions. In the fol-
lowing we outline the steps of the proof without providing
the full expressions of the two SETs, which are very sizable.

1 If kμ denotes a null vector, the condition Tμνkμkν ≥ 0 is called the
physical NEC. In general relativity, this implies the geometrical NEC
Rμνkμkν ≥ 0. In nonrotating solutions, the physical NEC implies the
effective NEC ε + pr ≥ 0 and ε + pt ≥ 0, where ε is the energy
density and (pr , pt ) are the radial and transverse pressures, respectively.
If uμ denotes a timelike vector, similar definitions exist for the physical
Tμνuμuν ≥ 0 and geometrical Gμνuμuν ≥ 0 WEC.

The unphysical thing with Teo’s wormhole is the compo-
nent Grθ of the Einstein tensor, which is not zero:

Grθ = −32a2(3r + 16a2 cos2 θ) cos θ sin θ

r(r + 16a2 cos2 θ)2 .

Because of this property, we use a usual orthonormal basis,
b = (et , er , eθ , eϕ),

eμ
t =

(
gtt − 2ω2gϕϕ

Ngtt
, 0, 0,− ω

N

)
,

eμ
r =

(
0,

√
r − B√
r

, 0, 0

)
, eμ

θ =
(

0, 0,
1

r K
, 0

)
,

eμ
ϕ =

(
− 2rωK sin θ

gtt
, 0, 0,

1

r K sin θ

)
, (19)

(where gtt = N 2 − r2ω2K 2 sin2 θ , gϕϕ = −r2K 2 sin2 θ ,
and gtϕ = −ωgϕϕ) in terms of which we expand the first
anisotropic SET Tμν

Tμν = εeμ
t e

ν
t + pr e

μ
r e

ν
r + pθe

μ
θ e

ν
θ + pϕe

μ
ϕ e

ν
φ, (20)

where (ε, pr , pθ , pϕ) are the energy density and the pressure
components of the first SET, along with a second orthonor-
mal, but unusual, basis, b̄ = (ēt , ēr , ēθ , ēϕ),

ēμ
t =

(
1

N
, 0, 0,

ω

N

)
, ēμ

ϕ =
(

0, 0, 0,
1

r K sin θ

)
,

ēμ
r =

(
0,

r − B

r
,−

√
B

r3/2K
, 0

)
,

ēμ
θ =

(
0,

√
B(r − B)

r
,

√
r − B

r3/2K
, 0

)
, (21)

in terms of which we expand the second anisotropic SET:
T̄μν

T̄μν = ε̄ēμ
t ē

ν
t + p̄r ē

μ
r ē

ν
r + p̄θ ē

μ
θ ē

ν
θ + p̄ϕ ē

μ
ϕ ē

ν
ϕ, (22)

where (ε̄, p̄r , p̄θ , p̄ϕ) are the energy density and the pressure
components of the second SET.

The basis b̄ has been constructed so that T̄rθ �= 0. The
nonvanishing components of Tμν and T̄μν are

Ttt = N 2ε − ω2gϕϕ pϕ, Trr = rpr
r − B

,

Tθθ = r2K 2 pθ , Ttϕ = gtϕ[N 2(2ε + pϕ) − ω2gϕϕ pϕ]
gtt

,

Tϕϕ = 4N 2g2
tϕε − gϕϕ(N 2 − ω2gϕϕ)2 pϕ

g2
t t

, (23)

T̄t t = N 2ε̄ − ω2gϕϕ p̄ϕ, T̄rθ = √
r BK ( p̄θ − p̄r ),
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T̄rr = p̄r + B p̄θ

r − B
, T̄θθ = r K 2[(r − B) p̄θ + B p̄r ],

T̄tϕ = −gtϕ p̄ϕ, T̄ϕϕ = −gϕϕ p̄ϕ. (24)

We divide the field equations into two groups,

G1 : Gtt = 8π(Ttt + T̄t t ), Gtϕ = 8π(Ttϕ + T̄tϕ),

Gϕϕ = 8π(Tϕϕ + T̄ϕϕ), (25)

for the four unknowns (ε, pϕ, ε̄, p̄ϕ) and

G2 : Grr = 8π(Trr + T̄rr ), Grθ = 8π T̄rθ ,

Gθθ = 8π(Tθθ + T̄θθ ), (26)

for the four unknowns (pr , pθ , p̄r , p̄θ ). Since in each group
the number of unknowns exceeds the number of equations
we can fix some unknowns and solve for the others.

Choosing ε of the form

ε = q2

8π(r K )4 , (27)

which corresponds to an electromagnetic energy density,
does not lead to any consistent (nonrotating or rotating) solu-
tion. Rather, we choose (ε, pr ) of the form

ε = − c2
1

64π(r K )3 , pr = − c2
2

64π(r K )3 ,

with 3 < c2
1 < 7 and 8 < c2

2 < 12, (28)

which corresponds to an exotic matter. On substituting these
values into G1 and G2 we derive the expressions of the
unique remaining unknowns. Since their expressions, and
the expressions of their series expansions in a2, are sizable
we will not provide them here. Their series are of the form

pθ = 12 − c2
2

64πr3 + O(a2), pϕ = c2
1 − 3

64πr3 + O(a2),

ε̄ = c2
1

64πr3 + O(a2), p̄r = c2
2 − 8

64πr3 + O(a2), (29)

p̄θ = c2
2 − 8

64πr3 + O(a2), p̄ϕ = 7 − c2
1

64πr3 + O(a2).

For instance, up to O(a4) the expression of pϕ reads

pϕ = c2
1 − 3

64πr3 + 9 − 3[3 + 4(6 + c2
1)r

3 − 24r4] cos2 θ

16πr7 a2

+O(a4).

Thus, we have shown that Teo’s rotating wormhole could
be interpreted as a solution generated by two anisotropic flu-
ids one of which, Tμν , is exotic and the other one, T̄μν ,
corresponds to ordinary matter. The corresponding nonro-
tating wormhole is also generated by two anisotropic fluids,

given by

exotic: Tμν
s = diag

(
−c2

1

64πr3 ,
−c2

2

64πr3 ,
12 − c2

2

64πr3 ,
c2

1 − 3

64πr3

)
,

ordinary: T̄μν
s = diag

(
c2

1

64πr3 ,
c2

2 − 8

64πr3 ,
c2

2 − 8

64πr3 ,
7 − c2

1

64πr3

)
,

with a vanishing total energy density,2 a total radial pres-
sure of −1/(8πr3), and a total transverse pressure of
−1/(16πr3).

Based on different choices than (28), other reinterpreta-
tions of Teo’s wormhole remain possible due to the nonlin-
earity of the field equations; that is, the same metric may be
sourced by different SETs.

In the following section we will construct a new rotating
wormhole solution that is generated by an ordinary electro-
magnetic fluid and an exotic one, which are both anisotropic.
A simple expression for its electromagnetic energy density
would be given by (27).

5 Rotating wormhole with an electromagnetic charge

We keep using the basis (19), the expansion (20) of the first
SET and its nonvanishing components (23), and we introduce
a new basis, b̃ = (ẽt , ẽr , ẽθ , ẽϕ), defined by

ẽμ
t =

( 1

N
, 0, 0,

ω

N

)
, ẽμ

r =
(

0,

√
r − B√
r

, 0, 0
)

ẽμ
θ =

(
0, 0,

1

r K
, 0

)
, ẽμ

ϕ =
(

0, 0, 0,
1

r K sin θ

)
, (30)

and we define a new SET T̃μν ,

T̃μν = ε̃ẽμ
t ẽ

ν
t + p̃r ẽ

μ
r ẽ

ν
r + p̃θ ẽ

μ
θ ẽ

ν
θ + p̃ϕ ẽ

μ
ϕ ẽ

ν
ϕ, (31)

with

T̃t t = N 2ε̃ − ω2gϕϕ p̃ϕ, T̃rr = r p̃r
r − B

,

T̃θθ = r2K 2 p̃θ , T̃tϕ = −gtϕ p̃ϕ, T̃ϕϕ = −gϕϕ p̃ϕ. (32)

The aim of this section is to derive an exact rotating worm-
hole solution sourced by an ordinary electromagnetic SET
and sustained by an exotic matter. For that end, we first seek to

2 The bases b and b̄ as well as the basis b̃ introduced in Sect. 5 all coin-
cide if rotation is suppressed. Hence, one can add, say, energy densities
to find the total nonrotating density.
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impose the physical constraint Grθ ≡ 0. The general expres-
sion of Grθ corresponding to (7) reads

− 2r(r − B)K 2N 2

sin θ
Grθ = 2r(r − B)N 2K,θK

′

+ r3(r − B)K 4ω,θω
′ sin2 θ

+ r K N {2(r − B)N,θ K
′ + N [B,θK

′ − 2(r − B)K ′
,θ ]}

+ K 2N {N B,θ +2(r−B)N,θ +r [B,θ N
′ − 2(r−B)N ′

,θ ]}.
(33)

It is not easy to handle analytically the nonlinear differen-
tial equation Grθ ≡ 0, so from now on we restrict ourselves
to simple solutions where (N , B, ω) depend only on r ,

N ≡ N (r), B ≡ B(r), ω ≡ aW (r). (34)

This will help us to construct exact analytic solutions in
closed forms with nice expressions for the components of the
SET. Exact solutions in closed forms are very useful for astro-
physical applications [13] and computer simulations [25].
As we shall see in Sect. 6, where we deal with the gen-
eral case, the simplification ansatz (34) will not help any-
more getting exact solutions in closed forms [to the differ-
ential equation (67)]. Another advantage in employing the
ansatz (34) is to ensure regularity everywhere of the cur-
vature and Kretschmann scalars, as stated in the paragraph
following (16), since in this case B is independent of θ . The
ansatz (34) too ensures regularity on the axis of rotation.

It is easy to see that the constraints (34) reduce Grθ ≡ 0 to
K,θK ′−KK ′

,θ = 0 or, equivalently, to K (r, θ) ≡ F(r)H(θ).
But asymptotic flatness (10) requires H(θ) ≡ 1, leaving K
as a function of r only, which we may take of the form

K = 1 + a2 f (r) ( f → 0 as r → ∞). (35)

This is conform to the symmetry requirement (5).
We start with the case where N is constant. Asymptotic

flatness (10) requires

N ≡ 1. (36)

We divide the field equations into two groups,

G3 : Gtt = 8π(Ttt + T̃t t ), Gtϕ = 8π(Ttϕ + T̃tϕ),

Gϕϕ = 8π(Tϕϕ + T̃ϕϕ), (37)

for the four unknowns (ε, pϕ, ε̃, p̃ϕ) and

G4 : Grr = 8π(Trr + T̃rr ), Gθθ = 8π(Tθθ + T̃θθ ), (38)

for the unknowns (pr + p̃r , pθ + p̃θ ).
Since in each group the number of unknowns exceeds the

number of equations we can fix some unknowns and solve

for the others. We make the choice (27) for ε

ε = q2

8π(r K )4 , (39)

where q is an electric or a magnetic charge and r K is the
radial proper distance. For a massless solution, a correspond-
ing simple expression for B(r) is

B = q2

r
. (40)

We first solve G3 (37) for (ε̃, p̃ϕ, pϕ). The expansions of
(ε̃, p̃ϕ, pϕ) in powers of a2 are the following:

ε̃ = − q2

4πr4 + O(a2), (41)

p̃ϕ = r [r(q2−r2)W ′′+(3q2−4r2)W ′]+8q2W

32πr4W
+ O(a2),

pϕ = −r [r(q2−r2)W ′′+(3q2−4r2)W ′]+4q2W

32πr4W
+O(a2),

where the terms independent of a (the leading terms) are the
static values. We require that the leading terms of the SETs
be independent of the choice of W (r) by setting

r [r(q2 − r2)W ′′ + (3q2 − 4r2)W ′] + 8q2W = 0. (42)

This requirement sets to 0 the leading term of p̃ϕ , which
may correspond to dust. Using (42) in (41), we see that the
leading term of pϕ , q2/(4πr4), is also independent of W
as required by our hypothesis that the SET Tμν is that of
an ordinary electromagnetic source. We will establish below
that the leading terms of (pr , pθ ) are also independent of W
and correspond to an ordinary electromagnetic source.

The function ω = aW is subject to the requirement that
asymptotically it approach the angular velocity of a star, usu-
ally taken as 2a/r3 [compare with (18)],

ω → 2a/r3 as r → ∞. (43)

The differential equation (42) along with the boundary con-
dition W → 2/r3 as r → ∞ leads to the unique solution

W = 3e−√
7arccot (

√
X2−1)

[√
X2−1+√

7−(
√
X2−1−√

7)e2
√

7arccot (
√
X2−1)

]

8
√

7|q3|X
× (X ≡ r/|q| ≥ 1), (44)

where y = arccot x is the inverse function of y = cot x
and 0 < x < π . In the expression of W one may
replace arccot (

√
X2 − 1) by arctan(1/

√
X2 − 1) where y =

arctan x is the inverse function of y = tan x and−π/2 < x <

π/2.
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The sign of W is that of the expression inside the square
brackets in (44), which we rewrite in terms of Y ≡ √

X2 − 1

S(Y ) = Y + √
7 − (Y − √

7)e2
√

7arccotY ,

where Y ≡
√
X2 − 1 ≥ 0. (45)

Since S(0) > 0 (arccot 0 = π/2), limY→∞ S → 0+ [S =
16

√
7/(3Y 2)+O(1/Y 3)], and S,YY = 32

√
7e2

√
7arccotY /(Y 2

+ 1)2 > 0, we conclude that S(Y ) is always positive, and so
is the function W . The latter may be written in the form

W = 3[√7 cosh(
√

7arccot Y ) − Y sinh(
√

7arccot Y )]
4
√

7|q3|√Y 2 + 1
,

with Y ≥ 0. (46)

With f (r) �= 0 (35), the expressions of the SETs are still
sizable. If f (r) = 0, the rotating wormhole and its corre-
sponding nonrotating one read, respectively,

ds2 = dt2− dr2

1− q2

r2

−r2[dθ2+sin2 θ(dϕ−aWdt)2], (47)

ds2
s = dt2 − dr2

1 − q2

r2

− r2(dθ2 + sin2 θdϕ2). (48)

The resolution of the G4 (38) provides the expressions of
pr + p̃r and pθ + p̃θ ; then it is matter of comparison (with the
nonrotating case) and identification to extract the expressions
of (pr , pθ ) which correspond to an ordinary electromagnetic
SET.3 Finally, the energy densities and the pressures of the
two fluids for the rotating wormhole are given by

ε = −pr = pθ = q2

8πr4 , (49)

pϕ = q2(1 − 5a2r2W 2 sin2 θ + 2a4r4W 4 sin4 θ)

8πr4(1 + a2r2W 2 sin2 θ)
,

ε̃ = − q2

4πr4 − a2q2r2W 2 sin2 θ

πr4(1 + a2r2W 2 sin2 θ)

+ a2(q2 − r2)W ′ 2 sin2 θ

32π
,

p̃θ = − p̃r = a2(q2 − r2)W ′ 2 sin2 θ

32π
,

p̃ϕ = −a2[8q2W 2 − 3r2(q2 − r2)W ′ 2] sin2 θ

32πr2 , (50)

where we have used the differential equation (42) to eliminate
W ′′ from the expressions of (pϕ, ε̃, p̃ϕ). The static values are
obtained setting a = 0:

3 It is also a matter of choice: we could modify both (pr , p̃r ) without
modifying their sum and we could do the same for (pθ , p̃θ ). Only the
total values of the pressures pr + p̃r and pθ + p̃θ are determined ana-
lytically and the partial pressures are determined, say, by the wormhole
“assembler” (from an advanced civilization).

εs = −pr s = pθ s = pϕ s = q2

8πr4 ,

ε̃s = − q2

4πr4 , p̃r s = p̃θ s = p̃ϕ s = 0. (51)

This shows that the nonrotating and rotating wormholes are
generated by the SET of an ordinary electromagnetic field
and by that of an exotic dust. Due to rotation, the two SETs
become anisotropic.

The decomposition of the total SET of a nonrotating
wormhole into an ordinary electromagnetic (a source-free
radial electric or magnetic) part and an exotic one (51) was
considered in Refs. [6–8,26]. The static solution is just the
so-called Ellis wormhole [11,12] as this can be seen perform-
ing the radial coordinate change r2 = u2 + q2, which is the
same as u = |q|Y , yielding

ds2 = dt2 − du2 − (u2 + q2)[dθ2 + sin2 θ(dϕ − aWdt)2],
(52)

ds2
s = dt2 − du2 − (u2 + q2)(dθ2 + sin2 θdϕ2). (53)

The axially symmetric solution given by Eqs. (41), (46),
and (47) of Ref. [26], which is sourced by two rotating flu-
ids, one of which is electromagnetic and the other one is
exotic, has been interpreted as a rotating wormhole with no
dragging effects (ω ≡ 0). One could interpret it as a non-
rotating wormhole sourced by two rotating fluids, in which
case this would generalize the Bronnikov–Ellis wormhole.
The sought rotating wormhole with dragging effects, a coun-
terpart of the Bronnikov–Ellis wormhole, is the one given
in (52). This seems to be the simplest rotating Bronnikov–
Ellis wormhole; other rotating Bronnikov–Ellis wormholes
are possible in general relativity as well as in generalized
theories of gravity [27].

6 The general case

In this section we treat the general case of a rotating worm-
hole where (N , B, ω) are any functions of r , as in (34), with
the energy density of one of the two fluids,T μν , being electro-
magnetic given by (39). Without loss of generality, we take
K ≡ 1 as in the nonrotating solution. We then specialize
to the case of a massive wormhole with an electromagnetic
charge.

6.1 The nonrotating wormhole

The field equations governing the nonrotating wormhole with
metric

ds2 = N 2dt2 − dr2

1 − B
r

− r2(dθ2 + sin2 θdϕ2) (54)
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read

B ′ = 8πr2(εs + ε̃s),

2(ln N )′ = 8πr3(pr s + p̃r s) + B

r(r − B)
,

2(pt s + p̃t s) = 2(pr s + p̃r s) + r(pr s + p̃r s)
′

+ r(pr s + p̃r s + εs + ε̃s)(ln N )′,

with εs = −pr s = q2

8πr4 , (55)

where the subscript “t” denotes a transverse pressure: pt s =
pθ s = pϕ s and p̃t s = p̃θ s = p̃ϕ s. εs, pr s have the same
expressions as in (51).

In the case of a massive wormhole we have limr→∞ B =
2M with M being the mass. As we saw in Sect. 5, the case
of N being constant (N ≡ 1) could be supported by a dust
SET T̃μν if the mass of the solution is null without setting
constraints on the values of the other parameters. If M �= 0,
assuming T̃μν to be the SET of a dust, the case N ≡ 1
would lead to restriction(s) on the parameters’ values. For
instance, taking p̃r s = 0, the second line (55) evaluated at
the throat r0 [r0 = B(r0)] implies 8πr3

0 pr s(r0)+ B(r0) = 0
or, equivalently,q2 = r2

0 . In the remaining part of this section,
we will neither restrict ourselves to the case N ≡ 1, nor to
the case where T̃μν is the SET of a dust. We will, however,
impose the asymptotic behavior (10)

N ∼ 1 − N∞
rα

as r → ∞ (α > 0). (56)

For any physical wormhole solution, the SET vanishes
at spatial infinity. For a nonrotating solution we may write
asymptotically

Pr s ∼ P∞
rβ

as r → ∞ (β > 0), (57)

where Pr s = pr s + p̃r s is the total radial pressure. In order
to observe the flatness condition (56) the second line (55)
implies β > 2. If, further, β > 3 then α = 1 and N∞ = M .

Based on their asymptotic behavior, nonrotating worm-
holes have been classified into three types [13]. If the total
energy density Es = εs + ε̃s behaves as

Es ∼ E∞
rγ

as → ∞ (γ > 0), (58)

the classification yields [13]

type I: β − γ > 1 (β > 3, γ > 3);
type II: 0 < β − γ ≤ 1 (β > 3, γ > 3);
type III: β ≤ γ (β > 3, γ > 3).

Type I (respectively, type III) wormholes violate the least
(respectively, the most) the LECs.

Among the nonrotating type I wormholes derived in
Ref. [13], we select the solution having a positive total energy
density Es = ε0r4

0 /r4 given by

B = 2M − (2M − r0)r0

r

(r0

2
< M < r0

)
,

N 2 = exp

(
−

n−3∑
i=1

Si
i yi

)
< 1 [n (integer) ≥ 6], (59)

εs = q2

8πr4 , ε̃s = ε0r4
0

r4 − q2

8πr4 ,

pr s = −pt s = − q2

8πr4 ,

p̃r s = − (y − 1)Sn−2 + 1

8πr2
0 y

n+1
+ q2

8πr4 ,

p̃t s = 2[(n − 2)y + 1 − n]Sn−2 + 2(n − 1)

32πr2
0 y

n+1

+
[xyn−3 − (y − 1)Sn−2 − 1]

(∑n−3
i=1

Si
yi

)

32πr2
0 y

n+1
− q2

8πr4 ,

(60)

where ε0 > 0 is the total energy density Es(r0) at the throat
r0 and M is the mass of the wormhole

2M = r0 + 8πr3
0ε0. (61)

The constraint r0/2 < M results from the positiveness of the
total energy density [13] and the constraint M < r0 results
from B ′(r0) < 1 [13]. In (59) and (60), (x, y, Sk) are defined
as follows:

x ≡ (2M − r0)/r0 (0 < x < 1),

y ≡ r/r0,

Sk ≡
k∑

i=0

xi = 1 − xk+1

1 − x
. (62)

Since 0 �= p̃r s �= p̃t s �= 0 (60), the exotic SET T̃μν does
not correspond to dust; rather, it corresponds to an anisotropic
fluid.

Notice that in (55) and (60), the expressions of (pr s +
p̃r s, pt s + p̃t s) could be arranged as follows:

pr s + p̃r s = 2r(r − B)N ′ − BN

8πr3N
, (63)
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pt s + p̃t s = B[N − r(N ′ + 2r N ′′)]
16πr3N

− B ′N − r [(2 − B ′)N ′ + 2r N ′′]
16πr2N

. (64)

6.2 The rotating wormhole

While the expressions of (N , B) have been fixed in (59), the
following treatment is valid for any functions (N , B, ω) of r
as in (34).

This time we first solve G4 (38) for (pr + p̃r , pθ + p̃θ ).
Their expansions in powers of a2 are

pr + p̃r = rhs of (63) + O(a2),

pθ + p̃θ = rhs of (64) + O(a2). (65)

Notice that the leading terms of (pr + p̃r , pθ + p̃θ ) do not
depend on any choice of W .

Now, we solve G3 (37) for (ε̃, p̃ϕ, pϕ). The expansion of
ε̃ in powers of a2 is

ε̃ = −q2 − r2B ′

8πr4 + O(a2), (66)

the leading term of which is also independent of any choice of
W : this is precisely ε̃s (60). The leading terms of the expan-
sions of (pϕ, p̃ϕ) in powers of a2 do, however, depend on the
choice of W . If the latter is chosen to satisfy the differential
equation

2r3(r−B)NW ′′−r2{[7B−r(8−B ′)]N + 2r(r − B)N ′}W ′

−16q2NW = 0, (67)

then the leading terms of the expansions of (pϕ, p̃ϕ) in powers
of a2 no longer depend on W and take the forms

pϕ = q2

8πr4 + O(a2),

p̃ϕ = rhs of (64) − q2

8πr4 + O(a2), (68)

which are precisely pt s and p̃t s (60), respectively.
We have checked that the case K �= 1 is no loss of gener-

ality; for instance, the leading term of ε̃ remains also inde-
pendent of any choice of W , as in (66), but it depends on
(K , K ′, K ′′) as the differential equation governing the behav-
ior of W does in this case too.

Finally, the energy densities and the pressures of the two
fluids for the rotating wormhole are given by

ε = −pr = pθ = q2

8πr4 , (69)

pϕ = q2(N 4 − 5a2r2N 2W 2 sin2 θ + 2a4r4W 4 sin4 θ)

8πr4N 2(N 2 + a2r2W 2 sin2 θ)
,

ε̃ = B ′

8πr2 − q2(N 2 + 9a2r2W 2 sin2 θ)

8πr4(N 2 + a2r2W 2 sin2 θ)

−a2r(r − B)W ′2 sin2 θ

32πN 2 , (70)

p̃r = rhs of (63) + q2

8πr4 + a2r(r − B)W ′2 sin2 θ

32πN 2 ,

p̃θ = rhs of (64) − q2

8πr4 − a2r(r − B)W ′2 sin2 θ

32πN 2 ,

p̃ϕ = rhs of (64) − q2

8πr4 − a2q2W 2 sin2 θ

4πr2N 2

− 3a2r(r − B)W ′2 sin2 θ

32πN 2 ,

where we have used the differential equation (67) to eliminate
W ′′ from the expressions of (pϕ, ε̃, p̃ϕ). Since only the total
values of the pressures pr + p̃r and pθ + p̃θ are determined
analytically, here again, as was the case treated in (49), we
fix (pr , pθ ) to their static values.

There is no way to solve (67) in the general case where
(N , B) are any functions as in the case where (N , B) are
given by (59). Searching for a power series solution in 1/r
satisfying the boundary condition (43), the expansion takes
the form

W = 2

r3 + c4

r4 + c5

r5
+ c6

r6 + O(1/r7). (71)

The case in which one is mostly interested is the one with
β > 3 (57), which results in N∞ = M as we saw earlier (56).
This constraint on β yields

c4 = 0. (72)

Because of this, the dragging effects of these rotating worm-
holes mimic to some extent those of rotating stars.4 The dis-
tinction is rendered possible only in the regions surrounding
the throat.

The values of the other constants, ci and i ≥ 5, depend
on the particular nonrotating wormhole (B, N ). If the latter
is given by (59), taking n = 6 the function W for the cor-
responding rotating wormhole is approximated by the series

W = 2

r3 + 16q2 − 3(2M − r0)r0

10r5

(
1 + 10M

9r

)
+ O(1/r7).

(73)

4 The solution given in (44) is also endowed with such a property. Its
series expansion has only odd terms:

W = 2

r3 + 11q2

5r5
+ 253q4

140r7 + O(1/r9).
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If we impose the constraint on the still-free parameters
(M, q, r0)

16q2 = 3(2M − r0)r0, (74)

this yields c5 = c6 = 0. An observer falling into the geom-
etry of these rotating wormholes will almost not be able to
distinguish their dragging effects from those of rotating, non-
flattened, stars except very near the throat. The solution reads

W = 2

r3 + 3
(2M − r0)

4 + 4Mr0(M − r0)
2 + 4M3r0

28r7

+O(1/r8), (75)

where c7, the coefficient of 1/r7, is manifestly positive. The
constraint (74) may be realized by the wormhole “assembler”
in different ways on observing the inequalities on M (59).

7 The energy conditions

7.1 The null energy condition

The NEC is the constraint

INEC ≡ (Tμν + T̃μν)k
μkν ≥ 0 (physical NEC), (76)

expressing the positiveness of the local energy as seen by any
null vector kμ. Using the basis b̃ (30), this is given by

kμ = ẽμ
t + s1ẽ

μ
r + s2ẽ

μ
θ + s3ẽ

μ
ϕ (s2

1 + s2
2 + s2

3 = 1). (77)

Using the SET expressions (23) and (32), and the basis b̃ (30)
along with the general rotating metric (7) (taking K ≡ 1),
we find

INEC = ε+ε̃+s2
1 (pr + p̃r )+s2

2 (pθ + p̃θ ) + s2
3 (pϕ + p̃ϕ)

− 4ar NW sin θ

g2
t t

[
ar NW (1 + s3)

2 sin θ

+ (N − arW sin θ)2s3

]
(ε + pϕ), (78)

which reduces to the nonrotating value if a = 0.
It is easy to show that the NEC is violated by making

special choices of (s1, s2, s3). We will reach that conclusion
below, but our main purpose is to show that there are some
paths whose tangent is kμ along which no negative energy
densities are noticed. Let us apply (78) to conical light paths,
that is, to paths moving on the cone of equation θ = constant
(s2 ≡ 0) from spatial infinity to the throat (s1 < 0) and
revolving in the same or opposite direction as the rotating
wormhole (s3 > 0 or s3 < 0, respectively, with |s3| < 1).

For such paths, kμ takes the following form where s3 is kept

arbitrary and s1 = −
√

1 − s2
3 ,

kμ =
⎛
⎝ 1

N
,−

√
1 − s2

3

√
r − B

√
r

, 0,
aW

N
+ s3

r sin θ

⎞
⎠ . (79)

In our first application we consider the rotating wormhole
given by N = 1, (44), (49), and(50). We find

8πr4 INEC = [2q2 − a2r4(r2 − q2)W ′2 sin2 θ ]s2
3

+(8aq2rW sin θ)s3 − 2q2. (80)

Note that at the throat r0 = |q| we have limr→|q|(r2 −
q2)W ′2 = [36/(7q6)] sinh2(

√
7π/2) �= 0. The rhs of (80)

may have both signs for arbitrary a. However, the rotation
parameter a is subject to the constraint that the linear veloc-
ity at the throat, in the plane θ = π/2, is much smaller than
unity:

ar0W (r0) � 1. (81)

This is the slow rotation limit [28,29], ensuring that the linear
velocities of dragged objects do not exceed the speed of light
to ensure safe traversability. This implies arW (r) � 1 since
rW (r) is a decreasing function of r . In this limit, the rhs
of (80) has two roots, s3− < −1 and 0 < s3+ < 1, the
desired root being given by

s3+ = 1 − 2arW (r) sin θ + O(a2). (82)

Thus, the physical NEC, (Tμν+T̃μν)kμkν ≥ 0, is not violated
along such conical light paths satisfying 1 > s3 ≥ s3+ and

s1 = −
√

1 − s2
3 . In the case of no rotation, the rhs of (80)

becomes −2q2s2
1 , which is always negative unless we take

s1 ≡ 0 corresponding to circular paths on the cone never
reaching the throat. If there is no rotation, the physical NEC
is not violated on conical circular paths and violated on any
path that might cross the throat.

There is no ergosphere in the slow rotation limit (81), since
in this case gtt = 1 − a2r2W 2 sin2 θ > 0.

Now, consider the rotating wormhole given by (59), (62),
(69), and (70). Equation (78) reduces to

16πr3N 2 INEC = {N [N (3B − r B ′) + 2r2N ′′(r − B)

+ N ′(3r B − 2r2 − r2B ′)] − 2a2r4W ′2(r − B) sin2 θ}s2
3

+ 16aq2NW sin θs3+2N [N (r B ′−B) + 2r N ′(r − B)].

Fixing n = 6, this reads

16πr3 INEC = (A1 − 2a2A2)s
2
3 + aCs3 + D1, (83)
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where D1 = 16πr3(Es + Pr s), A1 = 16πr3(Pt s − Pr s)

(Pt s ≡ pt s + p̃t s is the total transverse pressure of the non-
rotating wormhole), A2, and C are given by

A1 = r0xS2
1 (1 + x2)2

2y7 − r0S1(1 + x2)(1 + x4)

2y6 − r0S6

2y5

+ r0xS1

2y2 − r0S1[1 + x(14 + x)(1 + x2)]
2y4

+ r0
12 + x{13 + x[13 + x(13 + 12x)]}

2y3 ,

A2 = r4W ′2(r − B) sin2 θ

N 2 > 0, C = 16q2W sin θ

N
> 0,

D1 = r0
2S1(x + x3) − 2S4y + 2xy3

y4 , (84)

with r − B = r0(y − 1)(y − x)/y.
Numerically, we have checked that the term A1 is always

positive for all possible values of x (62); D1 is positive for
all x and y > y1 > 1 and negative for all x and 1 ≤ y < y1

where y1 is the unique real root of D1 = 0 as was established
in [13]. Thus, in the slow rotation limit (81) the physical NEC
is not violated along the conical light paths (79) if either
y ≥ y1 (s3 arbitrary) or 1 ≤ y < y1 and −1 < s3 ≤ s3− or
1 > s3 ≥ s3+ where (s3−, s3+) are given by

s3± = ±
√

−D1

A1
− aC

2A1
+ O(a2) (1 ≤ y < y1). (85)

The expression inside the square root is smaller than 1 for
all possible values of x if 1 ≤ y < y1. In the case of no
rotation, the conclusion remains valid with (s3−, s3+) still
given by (85) taking a ≡ 0.

For the nonrotating wormhole (59), (62) (taking n = 6) as
well as for its rotating counterpart derived in this work, we
conclude that if it were possible to direct light paths along
the r -depend null vector (79), no violation of the NEC at any
event on these paths would be observed.

7.2 The weak energy condition

The WEC is the constraint

IWEC ≡ (Tμν + T̃μν)u
μuν ≥ 0 (physical WEC), (86)

expressing the positiveness of the local energy as seen by any
timelike vector uμ (uμuμ = 1). Using the basis b̃ (30), this
is given by

uμ = U (ẽμ
t + s1ẽ

μ
r + s2ẽ

μ
θ + s3ẽ

μ
ϕ )

with

⎛
⎝U = 1√

1 − s2
1 − s2

2 − s2
3

⎞
⎠ . (87)

Here s1, s2, and s3 are independent of each other but bounded
by −1 and 1. Using the SET expressions (23) and (32), and
the basis b̃ (30) along with the general rotating metric (7)
(taking K ≡ 1), we find

IWEC = U 2 × [rhs of (78)]. (88)

We intend to apply (88) to conical timelike paths moving
on the cone of equation θ = constant (s2 ≡ 0) from spatial
infinity to the throat (−1 < s1 < 0) or conversely (1 >

s1 > 0) and spiraling in the same or opposite direction as
the rotating wormhole (s3 > 0 or s3 < 0, respectively, with
|s3| < 1). For such paths, uμ takes the form

uμ = U

(
1

N
,
s1

√
r − B√
r

, 0,
aW

N
+ s3

r sin θ

)
. (89)

Consider the rotating wormhole given by (59), (62), (69),
and (70). Equation (88) reduces to

32πr3N 2 IWEC/U 2 = {N [2N (B − r B ′) + 4r2N ′′(r − B)

− 2N ′(r B − 2r2 + r2B ′)] − 3a2r4W ′2(r − B) sin2 θ}s2
3

+ 32aq2NW sin θs3 + 4r N 2B ′ − a2r4W ′2(r−B) sin2 θ

+ {4N [2r(r−B)N ′ − BN ]+a2r4W ′2(r−B) sin2 θ}s2
1 .

Fixing n = 6, this reads

32πr3 IWEC/U 2 = (2A3 − 3a2A2)s
2
3 + 2aCs3

+(32πr3Pr s + a2A2)s
2
1 + 32πr3Es − a2A2, (90)

where A3 = 16πr3Pt s, 8πr3Pr s, and 8πr3Es are given by

A3 = r0
(4y − 5)S4 + 5

y4

+ r0

[xy3 − (y − 1)S4 − 1]
(∑3

i=1
Si
yi

)

2y4 > 0, (91)

8πr3Pr s = −r0
(y − 1)S4 + 1

y4 < 0, 8πr3Es = r0x

y
> 0.

In Ref. [13], it was shown that Pt s > 0, yielding A3 > 0. In
the slow rotation limit (81), Eq. (91) simplifies to

16πr3 IWEC/U 2 = A3s
2
3 + aCs3 + D2, (92)

where

D2 = 16πr3(Pr ss
2
1 + Es),

= D1 + 16πr3 Pr s(s
2
1 − 1)︸ ︷︷ ︸

>0

> D1. (93)

The fact that D2 > D1 shows that for any root y1 to D1 = 0
there corresponds a root y2 < y1 to D2 = 0. Since A3 > 0
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and C > 0, we conclude that, for any given s1 (0 < s2
1 < 1),

the physical WEC is not violated along the conical timelike
paths (89) for all possible values x if 1) y ≥ y2 (s3 arbitrary)
or 2) 1 ≤ y < y2 and −1 < s3 ≤ s3− or 1 > s3 ≥ s3+ where
(s3−, s3+) are given by

s3± = ±
√

−D2

A3
− aC

2A3
+ O(a2) (1 ≤ y < y2). (94)

If y2 < 1 it is case 1) that applies since y ≥ 1. Note that
if 1 ≤ y < y2 the expression inside the square root in (94)
is smaller than 1 for all 0 < s2

1 < 1. In the case of no
rotation, the conclusion remains valid with (s3−, s3+) still
given by (94) taking a ≡ 0.

In the above discussion, the timelike vector uμ does not
have to be geodesic. It is, however, straightforward to show
that if the latter is geodesic, that is, if uμ

;νu
ν = 0, the above

conclusions remain valid. The geodesic equation uμ

;νu
ν = 0

with uμ given by (89) is a set of four equations where uθ
;νu

ν

is identically 0. Solving ut;νu
ν = 0 and uϕ

;νu
ν = 0 we obtain

U = d1 − d2aW

N
, s3 = d2N

r(d1 − d2aW )
,

s2
1 = 1 − N 2

(d1 − d2aW )2

(
1 + d2

2

r2

)
, (95)

where (d1, d2) are real constants. The fact that U ≥ 1 and
(N → 1,W → 0) as r → ∞ implies

d1 ≥ 1. (96)

The constant d2 is not arbitrary, but rather subject to −1 <

s3 < 1. The equation ur;νu
ν = 0 is automatically satisfied.

Now, restricting ourselves to the nonrotating case a = 0,
the rhs of (92) becomes

Ā3s
2
3 + D̄2 (97)

with

Ā3 = A3 + 16πr3(−Pr s) > A3,

D̄2 = D1 + 16πr3(−Pr s)
N 2

d2
1

> D1. (98)

Since, by (59) and (96), N 2/d2
1 ≤ 1 and Ā3 > A3, the

conclusions drawn in the paragraph following (93) and in
the first paragraph following (94) remain valid on replacing
y2 by ȳ2, which is a root to D̄2 = 0.

8 Conclusion

We have shown that Teo’s wormhole [9] could be sourced by
two anisotropic fluids. Applying the same procedure we con-

structed a redshift-free (N ≡ 1) rotating wormhole sourced
by two anisotropic rotating fluids, one of which is exotic and
the other is a source-free electric or magnetic field. We have
shown that the NEC is violated along any path crossing the
throat in the nonrotating case but not in the rotating one.

Nonrotating wormholes with positive total energy density
are classified into three types. Using a nonrotating massive
type I wormhole [13] we constructed its rotating counterpart
which both are sourced by two anisotropic fluids – an exotic
one and a source-free electromagnetic one. The shift and the
shape functions of these rotating wormholes depend only on
the mass, while their angular velocity depends on the mass
and the charge. We have shown the existence of a mass–
charge constraint yielding almost no more dragging effects
than ordinary stars.

We have proven the importance of nonrotating and rotat-
ing type I wormholes by showing the existence of conical
spirals along which the physical NEC and WEC are not vio-
lated. Observers, particularly those crossing the throat, will
not be able to measure negative amounts of energy densi-
ties in their frames if their journey borrows the conical spiral
paths defined in this work and probably along other paths too.

The analytical method developed in this work can easily
be extended to account for the superposition of three fluids.
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