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Abstract Lack of a consistent metric for generating rotat-
ing wormholes motivates us to present a new one endowed
with interesting physical and geometrical properties. When
combined with the generalized method of superposition of
fields, which consists in attaching a form of matter to each
moving frame, it generates massive and charged (charge
without charge) two-fluid-sourced, massive and two-charged
three-fluid-sourced, rotating as well as new static wormholes
which, otherwise, can hardly be derived by integration. If
the lapse function of the static wormhole is bounded from
above, no closed timelike curves occur in the rotating coun-
terpart. For positive energy densities dying out faster than
1/r , the angular velocity includes in its expansion a cor-
rection term, to the leading one that corresponds to ordinary
stars, proportional to ln r/r4. Such a term is not present in the
corresponding expansion for the Kerr–Newman black hole.
Based on this observation and our previous work, the drag-
ging effects of falling neutral objects may constitute a sub-
stitute for other known techniques used for testing the nature
of the rotating black hole candidates that are harbored in the
center of galaxies. We discuss the possibility of generating
(n + 1)-fluid-sourced, n-charged, rotating as well as static
wormholes.

1 Introduction

In order to elucidate the nature of the black hole candidates
at the center of galaxies workers use different theoretical
approaches and techniques [1–6] among which we find imag-
ing, that is, the observation of the shadow of the hole in the
sky. We have shown that imaging, applied to nonrotating
solutions, remains inconclusive to whether the black hole
candidate, located at Sagittarius A� (Sgr A�), is a supermas-
sive black hole or a supermassive type I wormhole [6]. Recall
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that type I wormholes are the solutions that violate the least
the local energy conditions.

Some other tests apply exclusively to rotating solu-
tions [7]. The only rotating black hole solutions to the field
equations of general relativity are the Kerr and the Kerr–
Newman black holes. Rotating wormhole solutions to the
same field equations exist, among which the one derived
in [8], which has been shown to be sourced by two unphysical
fluids [9], and the charged solutions derived in [9]. All solu-
tions derived in Refs. [8,9] suffer from the strong assumption
neglecting flattening due to rotation and they may remain
valid only in the slow rotation limit.

Among tests that apply exclusively to rotating solutions is
the dragging of neutral objects. The dragging effects of the
rotating wormhole derived in Ref. [8] are, by construction,
those of ordinary stars. The angular velocity of the massive
and charged rotating wormhole derived in Ref. [9] has a series
expansion depending on both the mass M and the charge Q
but, unlike the Kerr–Newman black hole, it does not include
the term 1/r4 for all values of (M, Q). Moreover, there exists
a mass–charge constraint yielding almost no more dragging
effects than ordinary stars. From these results, we see how
the dragging effect can be used as a substitute test for eluci-
dating the nature of the black hole candidates at the center of
galaxies. This conclusion will be confirmed in this work.

In this work we intend to drop the non-flattening con-
straint in the hope to obtain more realistic solutions. We
introduce a simple definition of the flattening condition and
observe it throughout the paper. Since there is a growing
interest in obtaining analytical rotating wormhole solutions
for their use in astrophysics, we focus in this work on rotating
and nonrotating (static) wormholes. Based on our previous
work [10,11], we derive from our formula developed therein,
which is intended to generate all types of rotating solutions,
a Kerr-like metric for generating rotating wormholes from
their known nonrotating counterparts. As a bonus, the for-
mula works the other way around and it allows one to con-
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struct new static wormholes as being the limit a → 0 of their
rotating counterparts, where a is the rotation parameter.

A couple of other exact, numerical, as well as slowly,
rotating wormhole solutions were also derived [12–19]. In
this work, we rather derive families of one-, two-, and three-
fluid-sourced rotating and new static wormholes. In order to
achieve that in a systematic approach, in Sects. 2 and 3 we
review the geometries of nonrotating wormholes and rotat-
ing stars where we focus more on rotating wormholes. The
generic rotating metric depending on two unknown functions
(A, b) and on a is derived in Sect. 3.3. Here (A, b) is the met-
ric of the static wormhole in Schwarzschild coordinates in
the notation of Morris and Thorne [20]. The geometrical and
physical properties of the rotating wormhole metric along
with a definition of the flattening constraint are discussed in
Sect. 4.

Sections 5–7 are, respectively, devoted to the deriva-
tions and analytical discussions of the properties of the
families of massive one-fluid-sourced, massive and charged
two-fluid-sourced, and massive and two-charged three-fluid-
sourced rotating, and their static counterpart, wormholes. The
charge referred to in this work, being either electric or mag-
netic, is attached to a source-free electromagnetic field. This
is the well-known Misner–Wheeler effect “charge without
charge” [21]. In Sect. 8 we address the question of the local
energy conditions. In Sect. 9 we generalize the approach of
the superposition of fields to lead to (n + 1)-fluid-sourced,
n-charged (massless and massive), rotating and static worm-
holes and we conclude in Sect. 10.

2 Geometry of the spacetime of a nonrotating wormhole

The geometry of the spacetime of a nonrotating wormhole is
well described by the Morris and Thorne metric [20],

ds2 = A(r)dt2 − dr2

1 − b(r)/r
− r2d�2, (1)

in Schwarzschild coordinates where A is the lapse function
and b is the shape one. The throat is the sphere of equation
r = r0 = b(r0). For simplicity, we assume symmetry of the
two asymptotically flat regions, which particularly implies
that if the mass of the wormhole is finite then it is the same
as seen from both spatial infinities. The functions A and b
are constrained by [20,22]

lim
r→∞ A = finite = 1,

b < r if r > r0 and b(r0) = r0,

lim
r→∞(b/r) = 0,

rb′ < b (near the throat),

b′(r0) ≤ 1. (2)

In this paper a prime notation f ′(r, θ, . . .) denotes the partial
derivative of f with respect to (w.r.t.) r , and derivation w.r.t.
to other variables is shown using the index notation, as in
f,θ ≡ ∂ f/∂θ . The value of the limit in the first line of (2) is
set to 1 by rescaling A and redefining t . If the mass of the
wormhole is finite, we have the further constraint

lim
r→∞ b ≡ b∞ = 2GM = 2M. (3)

The SET is usually taken anisotropic of the form [20]
Tμ

ν = diag(ε(r),−pr (r),−pt (r),−pt (r)), ε being the
energy density and pr and pt are the radial and transverse
pressures. The field equations Gt

t = 8πT t
t , Gr

r = 8πT r
r ,

and the identity Tμ
r;μ ≡ 0 yield, respectively,

b′ = 8πr2ε,

(ln A)′ = 8πr3 pr + b

r(r − b)
,

4pt = 4pr + 2rpr
′ + r(pr + ε)(ln A)′. (4)

3 Rotating geometries

3.1 The standard metric of a rotating star

The standard metric of a circular, stationary, and axisymmet-
ric spacetime, admitting two commuting Killing vectors ∂t
and ∂φ , may be brought into the following form in quasi-
isotropic coordinates [23,24] (see [25] for more details):

ds2 = N 2dt2−D2
1(dR2+R2dθ2)−D2

2 R
2 sin2 θ(dφ−ωdt)2.

(5)

Note that there is no restriction in having

gθθ /gRR = R2, (6)

as in (5); rather, this reflects the fact that all two-dimensional
metrics are related by a conformal factor. Here (N 2, D2

1, D2
2,

ω) are positive functions depending on (R, θ ).
The form (5) is not convenient for constructing wormhole

or black hole solutions [9]. Introducing a new radial coordi-
nate r

R ≡ R(r), (7)

we bring it to the form

ds2 = N 2dt2 −eμdr2 −r2K 2[dθ2 +F2 sin2 θ(dφ−ωdt)2],
(8)
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where

eμ(r,θ) =
(
D1

dR

dr

)2

, r2K 2(r, θ) = D2
1 R

2,

F2(r, θ) = D2
2

D2
1

.

The property (6) is lost in (8) but the ratio

gθθ /grr = (d ln R/dr)−2 (9)

is still independent of θ .
If the star rotates slowly its shape is not flattened by the

centrifugal forces, so it retains its spherical symmetry result-
ing in gφφ = gθθ sin2 θ [25], that is, in F2 = 1. Rotating
wormholes satisfying the no-flattening condition F2 ≡ 1
were derived in [8,9]. For fluid-sourced stars where the angu-
lar velocity is differential vanishing at spatial infinity as the
inverse cubic power of the radial distance, a natural flattening
condition would be

F2 ≥ 1, (10)

where the saturation is attained on the axis of rotation (θ = 0
or θ = π ) and at spatial infinity where the centrifugal forces
tend to vanish.

3.2 The standard metric of a rotating wormhole

If intended for the derivation of rotating wormholes, the met-
ric coefficient −grr (8) is preferably brought to the Morris
and Thorne form

eμ(r,θ) ≡ 1

1 − B(r, θ)/r
, (11)

where we use B(r, θ) for rotating wormholes and b(r) for
nonrotating ones. The surface of the throat is defined by

B(r0, θ0) = r0. (12)

This, in general, provides r0 as a function of θ0; that is, for a
given value of θ0 we solve (12) for r0 and we keep its largest
value.

The metric (8) is not free from singularities unless it ful-
fills some conditions. In the no-flattening case F2 ≡ 1, the
curvature and Kretschmann scalars contain the expression
r − B in their denominators. Assuming B ′|(r0,θ0) �= 1, it was
shown that the first three partial derivatives of B w.r.t. to θ

must vanish on the throat [8,9,26]

B,θ |(r0,θ0) = 0, B,θθ |(r0,θ0) = 0, B,θθθ |(r0,θ0) = 0, (13)

for the two scalar invariants to have well-defined values on the
throat and off it [9]. This conclusion extends to the flattening
case (10).

If F2 �= 1, the curvature scalar R has, besides the denom-
inator r − B, the denominator

F2. (14)

In a more general physical configuration, not obeying (10),
where F2 is allowed to vanish on the throat or off it, other
constraints than (13) must be imposed to ensure regularity of
the two scalar invariants. We will not pursue this discussion
here for it does not concern us for the remaining parts of this
work.

3.3 A Kerr-like metric for rotating wormholes

We intend to use a metric that guarantees in its generality
the regularity of the above-mentioned scalar invariants with
no constraints and retains the flattening condition (10). The
metric has been used in Ref. [11] to generate rotating regular
black holes, in Ref. [10] to generate fluid wormholes with
and without electric or magnetic field, and in Ref. [27] to
generate regular cores. It has the following Kerr-like form:

ds2 =
(

1 − 2 f

ρ2

)
dt2 − ρ2A

�

dr2

1 − b/r

+ 4a f sin2 θ

ρ2 dtdφ − ρ2dθ2 − 
 sin2 θ

ρ2 dφ2,

ρ2 ≡ r2 + a2 cos2 θ, 2 f (r) ≡ r2(1 − A)

�(r) ≡ r2A + a2, 
 ≡ (r2 + a2)2 − a2� sin2 θ, (15)

which reduces to (1) in the limit of no rotation. The met-
ric (15) is derived upon first transforming the static metric (1)
into a form where gtt = 1/gr̄r̄ . This is achieved using the new
radial coordinate r̄ defined by dr̄2 = Adr2/(1 − b/r). Upon
omitting the factor1 �/ρ2, Eqs. (16) and (18) of Ref. [11]
yield the same metric, (15), with the second term replaced
by

−ρ2

�
dr̄2,

and the functions (ρ2, f,�,
) are expressed as in (15) with
r2 := r2(r̄). Changing back to r , we obtain (15).

1 The factor �/ρ2, used in Refs. [10,11,27], is to ensure that the rotat-
ing metric is sourced by one fluid. In this work we will set other condi-
tions, constraining A and b, to derive one-, two-, and three-fluid-sourced
rotating solutions.
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The metric (15) is cast into three other equivalent forms:

ds2 = �

ρ2 (dt − a sin2 θdφ)2 − ρ2A

�

dr2

1 − b/r
− ρ2dθ2

− sin2 θ

ρ2 [(r2 + a2)dφ − adt]2, (16)

ds̄2 = ρ2�



dt2 − ρ2A

�

dr2

1 − b/r
− ρ2dθ2

− 
 sin2 θ

ρ2 (dφ − ωdt)2
(
ω ≡ 2a f




)

= ρ2�



dt2 − ρ2A

�

dr2

1 − b/r
− ρ2dθ2

− sin2 θ

ρ2

(
dφ − 2a f dt)2, (17)

ds̃2 = 1

ρ2�θ

(�θ dt + 2a f sin2 θdφ)2 − ρ2A

�

dr2

1 − b/r

− ρ2dθ2 − ρ2� sin2 θ

�θ

dφ2,

�θ ≡ r2A + a2 cos2 θ. (18)

The new function �θ is related to �, ρ2, and f by: �θ =
� − a2 sin2 θ = ρ2 − 2 f .

This way of casting a given rotating metric constitutes,
as we shall see in the subsequent sections, our method for
constructing one-, two-, and three-fluid-sourced (wormhole
or other) solutions.

4 Geometrical and physical properties of the rotating
wormhole

The best way to justify the metric (15) is through its physical
and geometrical properties. In its full generality (no con-
straint, however, that may be on A and b), the metric (15) is
promising as it satisfies nice physical properties and obeys
the following desired requirements.

• From (17) we see that the ratio gθθ /grr is independent
of θ as in (9). This implies that the metric (17), which
is a special case of (8), fulfills the required symmetry
properties of a stationary and axisymmetric spacetime
that is circular (admitting the existence of two commuting
Killing vectors ∂t and ∂φ).

• Since gθθ = −ρ2 and gφφ/ sin2 θ = −
/ρ2 are equal on
the axis of rotation (θ = 0 or θ = π ) [25], the metric (15)
has no conical singularity on it.

• The metric function −grr , if brought to the Morris–
Thorne form as in (11), defines the shape function B(r, θ)

of the rotating wormhole (15) by

1 − B(r, θ)/r = �

ρ2A
(1 − b/r). (19)

Recall that the surface of the throat is defined by the
equation B(r0, θ0) = r0, which in general provides r0 as
a function of θ0. The lhs of (19) vanishes on the throat,
but since �(r0) �= 0, this implies b(r0) = r0. Thus, the
throat is the nonspherical surface of revolution whose
points are located at a fixed value of the radial coordinate
r = r0 that is independent of the value of θ . The shape
of the throat is determined by the function ρ2, which
measures the square of the proper radial distance. On the
throat, this function increases from r2

0 , on the equatorial
plane, to r2

0 + a2, on the axis of rotation.
• From (19), it is easy to establish that the nth derivative of

the shape function B w.r.t. θ is proportional to 1 − b/r ;
thus, all partial derivatives of B w.r.t. θ vanish at the
throat. This guarantees that the curvature scalarR is finite
everywhere. Direct derivations show that

R = PC/(rρ6A2), (20)

where PC is a polynomial in A(r) and its first and second
derivatives, b(r) and its first derivative, r2, cos2 θ , and a2.
Equation (20) shows that the denominator (14) is not a
pole of R if the geometry is described by the metric (15).
Since gφφ ∝ F2, this means that it is possible for gφφ to
have both signs and for the metric to have closed timelike
curves (CTCs) without harming the finiteness of R.

• The Kretschmann scalar is also finite everywhere

RαβμνR
αβμν = PK /(r2ρ12A4),

where PK is a polynomial in the same functions, vari-
ables, and parameters on which PC is dependent.

• The only nonvanishing components of the Einstein tensor
corresponding to (15) are Gtt , Grr , Gθθ , Gtφ , and Gφφ .
Its other components are identically zero.

• The flare-out condition is derived taking the derivative
of (19) w.r.t. r :

B − r B ′

r2 = �

ρ2A

b − rb′

r2 +
(

�

ρ2A

)′
(1 − b/r). (21)

Near the throat the second term approaches zero. Since
�/(ρ2A) > 0, the fourth line of (2) implies

r B ′ < B (near the throat), (22)

which is the same as the flare-out condition for a nonro-
tating wormhole [fourth line of (2)]. Using the fifth line
of (2) along with B(r0, θ0) = r0 and b(r0) = r0 in (21),
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we obtain

B ′(r0, θ0) ≤ 1. (23)

• The asymptotical flatness of the nonrotating wormhole,
as defined in the first and third lines of (2), ensures that
of the rotating wormhole (15):

lim
r→∞ gtt = 1 and lim

r→∞ B/r = 0. (24)

• If the mass of the nonrotating wormhole is finite, Eq. (3)
holds. The latter along with limr→∞ A = 1 yields

lim
r→∞ B = 2M, (25)

which we take as twice the mass of the rotating wormhole.
• As in the case of the Kerr solution, it is straightfor-

ward to show that the zero-angular-momentum observers
(ZAMOs) possess an angular velocity equal to that of the
rotating wormhole ω (17).

• Since the nonrotating wormhole (1) has no horizon, A is
never 0: A > 0. This implies that gtt = �θ/ρ

2 > 0 (18);
thus, the rotating wormhole (15) does not develop an
ergosphere region around the throat.

• The flattening coefficient F2, 
, and gφφ are all propor-
tional to r4 + a4 cos2 θ + a2r2(2 − A sin2 θ). If A > 2,
gφφ may turn negative for some value(s) (r1, θ1) of (r, θ ).
Since A has to approach 1 at spatial infinity (2), this
change in the sign of gφφ may occur only near the throat.
If this is the case (i.e. if r1 > r0), the rotating wormhole
develops CTCs near the throat, for φ becomes a timelike
coordinate. From now on we only consider nonrotating
wormholes with

A(r) ≤ 2 for all r, (26)

so that their rotating counterparts do not develop CTCs.
• With the restriction (26), the flattening coefficient F2 =


/ρ4 is always greater than, or equal to, 1; we have

F2 − 1 = (2 − A)r2 + a2 cos2 θ

(r2 + a2 cos2 θ)2 a2 sin2 θ ≥ 0. (27)

In the following sections we shall use the metric (15) to
generate one-, two-, and three-fluid-sourced rotating worm-
holes along with their nonrotating counterparts. Given any
static wormhole solution (A, b) (1) to the field equations
Gμν = 8πTμν of general relativity or to the equations
Gμν = 8πTμν

eff of any generalized theory of gravitation (Teff

being the effective SET), it suffices to inject it in (15) to get
its rotating counterpart. However, the purpose of this work
is to focus on, and derive, fluid-sourced wormholes; that is,
solutions generated by anisotropic fluids in motion. We seek

solutions endowed with interesting physical and geometri-
cal properties, which will result in imposing in each case a
formula constraining A and b.

5 One-fluid-sourced rotating wormholes

We choose a reference frame (et , er , eθ , eφ) dual to the
1-forms defined in (16), ωt ≡ √

�/ρ2(dt − a sin2 θdφ),
ωr ≡ −√

ρ2/�
√
r A/(r − b)dr , ωθ ≡ −√

ρ2dθ , ωφ ≡
(sin θ/

√
ρ2)[adt − (r2 + a2)dφ]:

eμ
t = (r2 + a2, 0, 0, a)√

ρ2�
, eμ

r =
√

�

ρ2

√
r − b

r A
(0, 1, 0, 0),

eμ
θ = (0, 0, 1, 0)√

ρ2
, eμ

φ = (a sin2 θ, 0, 0, 1)√
ρ2 sin θ

. (28)

The source term in the field equations is taken as an
anisotropic fluid whose SET is of the form

Tμν = εeμ
t e

ν
t + pr e

μ
r e

ν
r + pθe

μ
θ e

ν
θ + pφe

μ
φ e

ν
φ, (29)

where we use the same notation (ε, pr ) as for the nonrotating
wormhole (4) but the values of (ε, pr ) are generally different
from their nonrotating counterparts. The transverse pressure
is not isotropic in the rotating case and splits into two com-
ponents (pθ , pφ). The SET can be brought to the standard
form in arbitrary coordinates

Tμν = (ε + p)uμuν − pgμν + �μν, (30)

where uμ is the four-velocity vector of the fluid and ε =
uμuνTμν

uμ = eμ
t +U1e

μ
r +U2e

μ
θ +U3e

μ
φ√

1 −U 2
1 −U 2

2 −U 2
3

. (31)

�μν is the traceless anisotropic pressure tensor and p is the
average isotropic pressure defined in terms of the orthogonal
projector hμ

ν = δμ
ν − uμuν on uμ by

�μν = �(sμsν + 1
3hμν), p = −hμνTμν

3
, (32)

where sμ is a unit spacelike 4-vector orthogonal to uμ:
uμsμ = 0. sμ is proportional to S1e

μ
t + eμ

r + S2e
μ
θ + S3e

μ
φ

but, without loss of generality, we can take S2 = S3 = 0
leaving sμ of the form

sμ = U1e
μ
t + eμ

r√
1 −U 2

1

. (33)
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If ps = sμsνTμν denotes the pressure along sμ then

� = 3
2 (ps − p) = ps − pt , (34)

where pt is the average isotropic transverse pressure defined
in terms of tμ (a unit spacelike 4-vector orthogonal to uμ and
sμ) by pt = tμtνTμν .

Another useful expression for Tμν is [28]

Tμν = (ε + pt )uμuν − pt gμν + (ps − pt )sμsν . (35)

In the case of (29), if we assume uμ along eμ
t , we obtain

uμ = eμ
t , sμ = eμ

r , ps = pr , p = (pr + pθ + pφ)/3, and
pt = (pθ + pφ)/2. Assuming uμ = eμ

t we infer that the
fluid elements rotate with the differential angular velocity
� = dφ/dt = a/(r2 + a2) (28) that is different from that
of the rotating wormhole ω (17). The fluid elements do not
follow geodesic motion.

The nonvanishing components of the SET (29) are given
by the matrix

Tμ
ν =

⎡
⎢⎢⎢⎢⎣

r2ε+a2(ε+pφ sin2 θ)

ρ2 0 0 − a(a2+r2)(ε+pφ) sin2 θ

ρ2

0 −pr 0 0
0 0 −pθ 0

a(ε+pφ)

ρ2 0 0 − r2 pφ+a2(pφ+ε sin2 θ)

ρ2

⎤
⎥⎥⎥⎥⎦ .

(36)

The separate resolutions of the field equations Gr
r = 8πT r

r

and Gθ
θ = 8πT θ

θ provide the expressions of (pr , pθ ) in
terms of (A, b, r, θ, a). Similarly, the resolution of the system
{Gt

t = 8πT t
t ,Gφ

φ = 8πT φ
φ} provides expressions for

(ε, pφ) which satisfy the field equation Gtφ = 8πTtφ only if
we constrain (A, b) by

r(r − b)A′ + [b − r(2 − b′)]A + 2r A2 = 0. (37)

Since A cannot be zero on the throat r0 = b(r0), Eq. (37)
implies

A(r0) = 1 − b′(r0)

2
. (38)

Solving (37) with the initial condition (38) we obtain

A = r(r − b)

r2 − r2
0

or b = r − (r2 − r2
0 )

A

r
. (39)

It is easy to show that (A, b) as given by (38) and (39) satisfy
all the requirements (2) of a nonrotating wormhole. This will
be shown soon later.

The final expression of the SET is given by

ε = r2b′

8πρ4 + a2r2
0 [(3A − 1) cos2 θ − 2]

8πρ6 ,

pr = −ε − r2
0 �

4πρ6 , (40)

pθ = 2A2 + (r A′ − 2)A + (r − b)(3A′ + r A′′)
16πρ2A

− pr ,

pφ = pθ + a2r2
0 sin2 θ

4πρ6 , (41)

where (37) and (39) were used to reduce the expression of
the SET. The expression of ε manifestly generalizes the first
line of (4) to the rotating case. The expressions of pr and
pθ + pφ could be arranged in the following forms:

(ln A)′ = 8πρ6 pr + r(ρ2 + a2 cos2 θ)b

r2ρ2(r − b)

+ a2 cos2 θ

rρ2A
− (2 − A)a2 cos2 θ

ρ2(r − b)
,

pθ + pφ = [� + ρ2A]pr
�

+ ρ2 pr ′

r
+ rρ2(ε + pr )A′

2�

− a2(1 − A cos2 θ)ε

�
,

which manifestly generalize the second and third lines of (4).
Next, we show that (A, b) as given by (38) and (39) satisfy

all the requirements (2) of a nonrotating wormhole. Equa-
tion (39) implies b(r0) = r0. Using (39) in the second line
of (2) we obtain (r2 − r2

0 )A ≥ 0, which is always satisfied
(A > 0). Equation (38) implies b′(r0) = 1 − 2A(r0) < 1.
The derivative of b (39) reduces to

rb′ = r(1 − A) − r2
0

r
A − (r2 − r2

0 )A′

= b − 2r2
0

r
A − (r2 − r2

0 )A′. (42)

Near the throat, the term (r2−r2
0 )A′ is neglected with respect

to the other terms, yielding rb′ � b− (2r2
0 /r)A < b [fourth

line of (2)]. Finally, for the nonrotating wormhole given
by (39), it is straightforward to see that the line 1 of (2)
(limr→∞ A = 1) implies its line 3 (limr→∞ b/r = 0) and
conversely.

Now, let us see under which condition the rotating coun-
terparts of the family of static solutions (39) do not develop
CTCs (26) near the throat. Using (38), the constraint A(r0) <

2 yields

b′(r0) > −3, (43)

while the constraint A(r) < 2 for r > r0 implies

r(r + b) − 2r2
0 ≥ 0 (r > r0).
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To ensure positiveness of the lhs for all r > r0, its derivative
must be positive yielding the further constraint on the value
of b′(r)

2r + b + rb′ > 0 (r ≥ r0), (44)

which holds for r = r0 too (43). Similarly, the constraint
A < 1 is satisfied if

b + rb′ > 0 (r ≥ r0). (45)

From now on, we only consider massive nonrotating
wormholes having positive energy densities ε = b′/(8πr2)

≥ 0. We choose this type of wormholes because they vio-
late the least the local energy conditions. Since b′(r) ≥ 0
for all r , the constraints (43) and (44) are satisfied and thus
no closed timelike curve exists near the throat of the corre-
sponding rotating wormholes. Moreover, since (45) is also
satisfied, A remains smaller than unity.

Instances of such nonrotating wormholes are the massive
solutions with mass M given by

b = 2M, A = 1 − 2M

r + 2M
, 2M = r0, (46)

b = 2M − (2M − r0)r0

r
, A = 1 − 2M

r + r0
, M < r0. (47)

In both instances A is an increasing function of r and bounded
from above by 1. In (47), the constraint M < r0 is to have
b′(r0) < 1 (2) and A(r0) > 0 ensuring positiveness of A
for all r . The corresponding SETs are derived from Eqs. (40)
and (41) on setting a2 = 0.

It is straightforward to generalize the above expressions
of (A, b). In terms of the dimensionless variables

y ≡ r/r0, m ≡ M/r0, (48)

we obtain the general solution

b

r0
= 2m − (2m − 1)

yβ
, β > 0, 1

2 < m <
1+β
2β

, (49)

A = y1−β

(
y1+β − 1

y2 − 1
− 2m

yβ − 1

y2 − 1

)
. (50)

Here again the constraint m < (1 + β)/(2β) is to have
b′(r0) < 1 and b < r for r > r0 (2), and to ensure pos-
itiveness of A for all r ≥ r0. Notice that the constraint
m < (1+β)/(2β) not only ensures b′(r0) < 1 but b′(r) < 1
for all r ≥ r0 as well.

Nonrotating wormholes with ε = b′/(8πr2) ≥ 0 have
the property that m ≥ 1/2 [6]. In the special case of the
solutions (49), this reduces to m > 1/2. The corresponding
SET is derived from Eqs. (40) and (41) on setting a2 = 0.

The dragging effects of the rotating wormholes given by
Eqs. (15), (49), (50), and Eqs. (40) and (41) are more pro-
nounced for β < 1 than for β > 1. At spatial infinity, this
becomes obvious if we expand the angular velocity ω (17)
in powers of 1/r

r2
0 ω =

⎧⎨
⎩
a
(

2m
y3 − 2m−1

y3+β − 1
y4 + · · ·

)
, 0 < β ≤ 1;

a
(

2m
y3 − 1

y4 + · · ·
)

, β > 1,
(51)

where the leading term of ω, 2aM/r3, is that of an ordinary
star. This is different from the corresponding expression for
the Kerr metric where the term in 1/r4 is absent. The mea-
surements of the dragging effects, far away from the sources,
allow one to distinguish these rotating wormholes from the
Kerr black hole.

Since ω is an increasing function of sin2 θ , the dragging
effects do depend on θ . For a fixed value of the radial coordi-
nate, the dragging effects are more accentuated in the equa-
torial plane than elsewhere. This property is not specific to
the rotating wormholes given by Eqs. (15), (49), (50), and
Eqs. (40) and (41); rather, it applies to all rotating worm-
holes given by Eq. (15) since the only dependence on sin2 θ

occurs in 
 (15) which has the same shape for all solutions.
For these one-fluid-sourced massive rotating wormholes

(with positive energy density at least in the nonrotating case)
we see that there is no way to reduce the scope of the dragging
effects to that of ordinary stars ω ∼ 2aM/r3; the two-fluid-
sourced rotating wormholes, derived by the superposition of
fields [9], have offered such possibilities.

To the form (17) of the rotating metric are associated
the set of 1-forms ω̄t ≡ √

ρ2�/
dt , ω̄r ≡ ωr =
−√

ρ2/�
√
r A/(r − b)dr , ω̄θ ≡ ωθ = −√

ρ2dθ , ω̄φ ≡√

/ρ2 sin θ(ωdt − dφ) and the corresponding frame

ēμ
t =

(√



ρ2�
, 0, 0,

2a f√
ρ2�


)
, ēμ

r = eμ
r ,

ēμ
θ = eμ

θ , ēμ
φ =

(
0, 0, 0,

√
ρ2

√

 sin θ

)
. (52)

Similarly, to the form (18) of the rotating metric are associ-
ated the set of 1-forms ω̃t ≡ (�θdt+2a f sin2 θdφ)/

√
ρ2�θ ,

ω̃r ≡ ωr , ω̃θ ≡ ωθ , ω̃φ ≡ −√
ρ2�/�θ sin θdφ and the cor-

responding frame

ẽμ
t =

⎛
⎝
√

ρ2

�θ

, 0, 0, 0

⎞
⎠ , ẽμ

r = eμ
r ,

ẽμ
θ = eμ

θ , ẽμ
φ =

(
−2a f sin θ√

ρ2��θ

, 0, 0,

√
�θ√

ρ2� sin θ

)
. (53)
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The rotating wormholes derived in this section [Eqs. (15),
(49), (50), and Eqs. (40) and (41)] have been determined
using the frame (28) to expand the SET. Had we used either
the frame (52) or (53) we would have found other rotat-
ing wormhole solutions. However, if we restrict ourselves to
solutions where b is given by (49) (without the constraint
m > 1/2) and we use either the frame (52) or (53), we can
show that the only existing solution is the Schwarzschild
wormhole

b = 2M = r0, A = 1 − 2M

r
(m = 1/2), (54)

so that the corresponding rotating solution is the “Kerr worm-
hole”.

6 Two-fluid-sourced rotating wormholes

We intend to determine two-fluid-sourced rotating worm-
holes by the method of superposition of fields [9,10,29–31].
This will allow us to construct rotating wormholes endowed
with interesting physical properties. Applied to derive static
solution, the method consists in splitting the SET into a sum
of sub-SETs [29–31]. This way of splitting still applies to
rotating solutions [10]; however, in this case it is possible to
generalize the method, as we did in [9], by attaching to each
selected moving (here rotating) frame a form of matter, that
is, a sub-SET Tμν .

In the case of two-fluid-sourced rotating wormholes, the
generalized method consists in splitting the total SET as
Tμν + T̄μν , Tμν + T̃μν , or T̄μν + T̃μν where each com-
ponent Tμν , T̄μν , and T̃μν is expanded, as in (29), using the
frame (28), (52), and (53), respectively, with

T̄μν = ε̄ēμ
t ē

ν
t + p̄r ē

μ
r ē

ν
r + p̄θ ē

μ
θ ē

ν
θ + p̄φ ē

μ
φ ē

ν
φ, (55)

T̃μν = ε̃ẽμ
t ẽ

ν
t + p̃r ẽ

μ
r ẽ

ν
r + p̃θ ẽ

μ
θ ẽ

ν
θ + p̃φ ẽ

μ
φ ẽ

ν
φ. (56)

We start with the case where the SET is Tμν + T̄μν . Here
Tμν is given by (36) and T̄μν (55) reads

T̄μ
ν =

⎡
⎢⎢⎣

ε̄ 0 0 0
0 − p̄r 0 0
0 0 − p̄θ 0

2a f (ε̄+ p̄φ)



0 0 − p̄φ

⎤
⎥⎥⎦ . (57)

Notice that the number of unknowns (the eight components
of Tμν and T̄μν and A and b) exceeds the number of field
equations [Gμν = 8π(Tμν + T̄μν)], which is five. This is the
advantage of the method of superposition of fields, for this
will allow us to fix the values of some unknowns to well-
defined physical entities and will yield interesting physical
rotating wormholes. For instance, we assume that the SET
T̄μν is of an electromagnetic nature. Taking into account the

nature of the field equations, which are split into two inde-
pendent sets

S1: Gr
r = 8π(T r

r + T̄ r
r ), Gθ

θ = 8π(T θ
θ + T̄ θ

θ ), (58)

S2: Gt
t = 8π(T t

t + T̄ t
t ), Gφ

φ = 8π(T φ
φ + T̄ φ

φ),

Gtφ = 8π(Ttφ + T̄tφ), (59)

we may fix the values of (ε̄, p̄r , p̄θ ) to

ε̄ = − p̄r = p̄θ ≡ Q2

8πρ4 , (60)

as in the Kerr solution, but not the value of p̄φ , which is deter-
mined upon solving the set S2. The resolution of the latter
provides unique values for (ε, pφ, p̄φ). These expressions are
sizable but could be simplified noticing that the limit of p̄φ

as a2 → 0, which is given by

lim
a2→0

p̄φ = r2(r − b)A′ + r [b − r(2 − b′)]A + 2(r2 − Q2)A2

16πr4A2 ,

(61)

should reduce to the static value Q2/(8πr4). This yields the
following relation between A and b:

r2(r −b)A′ +r [b−r(2−b′)]A+2(r2 −2Q2)A2 = 0. (62)

This generalizes (37), which applies to the case T̄μν ≡ 0, to
solutions where Q �= 0. Since A > 0, Eq. (62) yields

A(r0) =

⎧⎪⎪⎨
⎪⎪⎩

r2
0 [1 − b′(r0)]
2(r2

0 − 2Q2)
, r2

0 > 2Q2 and b′(r0) < 1;

−r0b′′(r0)

4
, r2

0 = 2Q2 and b′(r0) = 1.

(63)

By the fourth line of (2), 1 − b′(r0) cannot be negative, so
is the term r2

0 − 2Q2 in the first case (63) [otherwise, A(r0)

would be negative]. This sets an upper limit for the value of
the charge for these nonrotating wormholes, and their rotating
counterparts,

q2 ≤ 1/2 (q ≡ Q/r0). (64)

Equation (62) can be solved for either A or b yielding

A = r(r − b)

r2 − r2
0 − 4Q2 ln(r/r0)

, (65)

b = r − (r2 − r2
0 )

A

r
+ 4Q2A ln(r/r0)

r
, (66)

where we have imposed the condition b(r0) = r0 to fix the
constant of integration. We see that the constraint (64) (r ≥
r0) ensures that the denominator in (65) is monotonically
increasing function of r keeping A > 0 for all r .
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By a similar discussion to the one given in the paragraph
containing (42) one can show that (A, b) as given by (65)
and (66) satisfy all the requirements (2) of a nonrotating
wormhole. For instance, rb′ takes the form

rb′ = b − 2
r2

0 − 2Q2 + 4Q2 ln(r/r0)

r
A

−[r2 − r2
0 − 4Q2 ln(r/r0)]A′. (67)

implying rb′ < b near the throat.
It is easy to establish that the rotating counterparts of the

family of static solutions (65) do not develop CTCs (26) near
the throat if

q2 <
b′(r0) + 3

8
<

1

2
, b′(r0) < 1,

r0b
′′(r0) > −5 − 3b′(r0), or, (68)

q2 = 1

2
, b′(r0) = 1, r0b

′′(r0) > −8. (69)

These provide stronger constraints than (64).
From (65) we see that 1/(r − b) and Ar/(r − b) are

functions of (A, Q2, r0) only. Thus, the nonrotating (1) and
rotating (15) wormholes are expressed explicitly in terms of
(A, Q2, r0) only, and any dependence on the mass M is incor-
porated in A. The rotating wormhole takes the final expres-
sion

ds2 =
(

1 − 2 f

ρ2

)
dt2 − r2ρ2dr2

�[r2 − r2
0 − 4Q2 ln(r/r0)]

+ 4a f sin2 θ

ρ2 dtdφ − ρ2dθ2 − 
 sin2 θ

ρ2 dφ2,

ρ2 ≡ r2 + a2 cos2 θ, 2 f (r) ≡ r2(1 − A)

�(r) ≡ r2A + a2, 
 ≡ (r2 + a2)2 − a2� sin2 θ. (70)

The nonrotating metric is derived setting a2 = 0. If Q2 ≡ 0,
we again obtain the nonrotating and rotating metrics derived
in the previous section, which were not written explicitly
[they are special cases of (70)]. Equation (70) constitutes a
family of rotating and nonrotating solutions where A and b
are related by (63), (65), and (66). If Q2 ≡ 0, the family of
solutions is sourced by an exotic fluid given by Eqs. (38)–
(41). If Q2 �= 0, the family of solutions is sourced by two
fluids, one of which, T̄μν , is electromagnetic given by (60)
and2

2 The rhs of (71) is

Q2[r4 + 3a2r2 + 2a2(a2 cos2 θ − r2A sin2 θ)]
8πr2(r2 + a2)ρ4 ,

which reduces to the static value Q2/(8πr4) if rotation is suppressed
setting a2 = 0.

p̄φ = Q2[2
 − r2(r2 + a2)]
8πr2(r2 + a2)ρ4 . (71)

The other fluid, Tμν , is exotic; it is given by

pr = r

8πρ6A

{[2a2r cos2 θ − (ρ2 + a2 cos2 θ)b]A

− a2r A2 cos2 θ + (r − b)(rρ2A′ − a2 cos2 θ)
} + Q2

8πρ4 ,

(72)

pθ = 1

16πr2ρ2A

{
2(r2 − 2Q2)A2 + r [(r2 − 2Q2)A′ − 2r ]A

+ r2(r − b)(3A′ + r A′′)
} − pr , (73)

pφ = pθ + a2r2
0 sin2 θ

4πρ6 − Q2

8πρ4

+ Q2

8πr2ρ6

{
a2r2[8 ln(r/r0) sin2 θ − (2 + cos2 θ)]

− (r4 + 2a4 cos2 θ)
}
, (74)

ε = 1

8πρ6

{[2r2(Q2 − r2) + a2(2Q2 + r2) cos2 θ ]A

− r(r2 − 2a2 cos2 θ)b
} + a2r(2 + cos2 θ)(r − b)

8πρ6A

− r2(r − b)A′
8πρ4A

+ Q2(2a2 − r2) + 2r2(r2 − a2)

8πρ6

+ a2[Q2(2a2 − r2) − 2r4] cos2 θ

8πr2ρ6 + Q2�

4πr2(a2 + r2)ρ2 ,

(75)

where (62) has been used to eliminate b′ from the expressions
of (ε, pθ , pφ) and (66) has been used to eliminate b from the
expression of pφ .

We keep working with b of the form (49) yielding

A = y1−β

(
y1+β − 1

y2 − 1 − 4q2 ln y
− 2m

yβ − 1

y2 − 1 − 4q2 ln y

)
,

(76)

where q2 is constrained by (68) or (69) if no CTCs develop
near the throat, otherwise q2 ≤ 1/2 (64). This new expres-
sion of A affects the expansion (51) of the angular velocity
ω, which now reads

r2
0 ω=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a
( 2m
y3 − 2m−1

y3+β − 4q2 ln y
y4 − 1

y4 + · · · ), 0<β <1;
a
( 2m
y3 − 4q2 ln y

y4 − 2m
y4 + · · · ), β = 1;

a
( 2m
y3 − 4q2 ln y

y4 − 1
y4 + · · · ), β > 1.

(77)

This is very different from the corresponding expression for
the Kerr–Newman metric where the term in ln r/r4 is absent.
For β ≥ 1, we see that the deviation of ω from the corre-
sponding value for ordinary stars, 2aM/r3, increases with
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q2 while for 0 < β < 1 the effects of the charge take place
for much lower values of the radial distance.

The expression of b (49) is the simplest form including a
finite mass term and yielding a positive energy density. Other
expressions, as

b

r0
= 2m − c

yβ
− 2m − 1 − c

yγ
,

where β > 0, γ > 0, 2m − 1 > c > 0, are possible
but the conclusions drawn in the previous paragraph remain
unchanged.

In this section we have treated the case where the SET is
the sum Tμν + T̄μν . In the next section we shall treat the
case where SET = Tμν + T̄μν + T̃μν and we shall see that
the cases SET = Tμν + T̄μν and SET = Tμν + T̃μν are
special cases of it. This is why we will skip the case

SET = Tμν + T̃μν (78)

in this section.
There remains the case where the SET is the sum T̄μν +

T̃μν . This is more involved than the other cases considered
in this work, for the equation constraining A and b [compare
with (62)] contains the second derivative of A, which makes
it impossible to find a closed formula relating A to b as in (65)
and (66).

7 Three-fluid-sourced rotating wormholes

We intend to determine three-fluid-sourced rotating worm-
holes by the method of superposition of fields. The SET is
now the sum of three sub-SETs

Tμν + T̄μν + T̃μν

where Tμν and T̄μν are given by (36) and (57) and T̃μν (56)
reads

T̃μ
ν =

⎡
⎢⎢⎢⎣

ε̃ 0 0 2a f (ε̃+ p̃φ) sin2 θ

�θ

0 − p̃r 0 0
0 0 − p̃θ 0
0 0 0 − p̃φ

⎤
⎥⎥⎥⎦ . (79)

The field equations are again split into two independent
sets S1 and S2 as in (58) and (59) where now the rhs T + T̄
are replaced by the sums T + T̄ + T̃ . Applying step-by-step
the procedure of the previous section, we first fix the values
of (ε̄, p̄r , p̄θ ) and (ε̃, p̃r , p̃θ , p̃φ) to

ε̄ = − p̄r = p̄θ ≡ Q2
1

8πρ4 , (80)

ε̃ = − p̃r = p̃θ = p̃φ ≡ Q2
2

8πρ4 , (81)

which correspond to two electromagnetic SETs. The SET
Tμν is certainly exotic. The values of (pr , pθ ) are deter-
mined upon solving the set S1 and those of (ε, pφ, p̄φ) are
determined upon solving the set S2. In order that lima2→0 p̄φ

reduces to the static value Q2
1/(8πr4), we constrain A and b

by

r2(r − b)A′ + {r [b − r(2 − b′)] − 4Q2
2}A

+2(r2 − 2Q2
1)A

2 = 0. (82)

which generalizes (62) and reduces to it if the SET T̃μν van-
ishes (Q2 = 0). In terms of the dimensionless parameters
q1 ≡ Q1/r0 and q2 ≡ Q2/r0, A(r0) reads

A(r0) = 1 − b′(r0) + 4q2
2

2(1 − 2q2
1 )

, (0 < q2
1 < 1/2). (83)

Since 1−b′(r0) ≥ 0 by (2), this implies that the numerator in
the expression of A(r0) is positive and so is the denominator.
Thus, the chargeq2

1 is bounded from above by 1/2. With A(r0)

andb′(r0)being always finite, the caseq2
1 = 1/2 yields a non-

wormhole solution, for in this case Eq. (82) implies A(r0) =
0. The fact that A(r0) is always finite sets an upper limit
for q2

2 too. For instance, if we restrict ourselves to rotating
wormholes with no CTCs (at least near the throat) (26), the
necessary constraint A(r0) ≤ 2 yields on substituting in (83)

4q2
2 ≤ 3 + b′(r0) − 8q2

1 ⇒ 0 < 2q2
1 + q2

2 ≤ 1

⇒ 0 < q2
1 < 1/2 and 0 < q2

2 < 1, (84)

where we have used b′(r0) ≤ 1 (2). Similarly, if we restrict
ourselves to rotating wormholes with A(r) increasing and
A(r) < 1, a necessary condition for that is A(r0) < 1 yield-
ing

0 < q2
1 + q2

2 ≤ 1
2 ⇒ 0 < q2

1 < 1
2 and 0 < q2

2 < 1
2 . (85)

Equation (82) can be solved formally for either A or b.
The expression of the latter reads

b = r − (r2 −r2
0 )

A

r
+ 4Q2

1A ln(r/r0)

r
+ 4Q2

2A

r

∫ r

r0

du

uA(u)
,

(86)

generalizing (66). Using this, the expression of p̄φ simpli-
fies greatly and generalizes the one given in the previous
section (71)

p̄φ = Q2
1[2
 − r2(r2 + a2)]
8πr2(r2 + a2)ρ4 + a2Q2

2
 cos2 θ

4πr2(r2 + a2)A�θρ4 .

(87)
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It is clear that in the limit a2 → 0 we recover the static value
Q2

1/(8πr4). The rotating wormhole takes the final expression

ds2 =
(

1 − 2 f

ρ2

)
dt2 − r2ρ2dr2

�[r2 − r2
0 − 4Q2

1 ln( r
r0

) − 4Q2
2

∫ r
r0

du
uA ]

+ 4a f sin2 θ

ρ2 dtdφ − ρ2dθ2 − 
 sin2 θ

ρ2 dφ2, (88)

ρ2 ≡ r2 + a2 cos2 θ, 2 f (r) ≡ r2(1 − A)

�(r) ≡ r2A + a2, 
 ≡ (r2 + a2)2 − a2� sin2 θ.

The nonrotating metric is derived setting a2 = 0. If Q2
2 ≡ 0

and Q2
1 ≡ Q2, we again obtain the nonrotating and rotat-

ing wormholes derived in the previous section (70). Equa-
tion (88) constitutes a family of rotating and nonrotating
solutions where A and b are related by (83) and (86). If
Q2

1 ≡ 0 and Q2
2 ≡ 0, the family of solutions is sourced by an

exotic fluid given by Eqs. (38)–(41). If Q2
1 �= 0 Q2

2 = 0, the
family of solutions is sourced by two fluids, one of which,
T̄μν , is electromagnetic. If Q2

1 = 0 and Q2
2 �= 0, the fam-

ily of solutions is again sourced by two fluids, one of which,
T̃μν , is electromagnetic and the other one, Tμν , is exotic. This
is the case (78) we skipped in the previous section. Now, if
Q2

1 �= 0 and Q2
2 �= 0, the family of solutions is sourced by

three fluids, two of which are electromagnetic (T̄μν, T̃μν) and
one is exotic (Tμν).

The integral in (88) could be evaluated closely for a wide
choices of A(r). The simplest examples of two-(electrically,
magnetically, or both)-charged solutions are as follows: (1)
The massless wormhole

ds2 = dt2 − r2ρ2dr2

�
[
r2 − r2

0 − 4(Q2
1 + Q2

2) ln
(

r
r0

)]

− ρ2dθ2 − 
 sin2 θ

ρ2 dφ2,

A ≡ 1. (89)

This could be interpreted as a static, nonrotating, wormhole
generated by the three fluids (Tμν, T̄μν, T̃μν), in stationary
motion, or as a rotating wormhole with no dragging effects
generated by the same three fluids. (2) The massive rotating
wormhole with mass M < r0/2 and metric

ds2 =
(

1 − 2 f

ρ2

)
dt2 − ρ2dθ2

+ 4a f sin2 θ

ρ2 dtdφ − 
 sin2 θ

ρ2 dφ2

− r2ρ2dr2

�
[
r2 − r2

0 − 4Q2
1 ln( r

r0
) − 4Q2

2 ln
(
r−2M
r0−2M

)] ,

A ≡ 1 − 2M

r
, b = 2M + Ah(r) > 2M, (M < r0/2),

rh(r) ≡ r2
0 + 4Q2

1 ln

(
r

r0

)
+ 4Q2

2 ln

(
r − 2M

r0 − 2M

)
, (90)

generated by the three fluids (Tμν, T̄μν, T̃μν). Both rotating
wormholes (89) and (90) do not develop CTCs near the throat.

Now, back to solutions where b is given by (49). Equa-
tion (86) being not reversible analytically we cannot express
ω in terms of A. It is, however, easy to show that the asymp-
totic behavior of the dragging effects (77) remains valid at
least up to ln y/y4. For that purpose we consider the simplest
solution (49): b = 2M = r0 (m = 1/2 and β = ∞), then
we asymptotically solve (82) for A to find

A = 1 − 1

y
+ 4(q2

1 + q2
2 ) ln y

y2 + c

y2 − 4(q2
1 + q2

2 ) ln y

y3

− c + 4q2
2

y3 + s2 ln2 y + s1 ln y + s0

y4 ,

s0 = c2 + 2cq2
2 + 2q2

2 (1 + 2q2
1 + 2q2

2 ),

s1 = 8(c + q2
2 )(q2

1 + q2
2 ), s2 = 16(q2

1 + q2
2 )2. (91)

Here c is a function of q2
2 such that limq2

2 →0 c = 1. The first

four terms (up to 1/y2) are enough to yield

r2
0 ω = a

(
1

y3 − 4(q2
1 + q2

2 ) ln y

y4 − c

y4 + · · ·
)

, (92)

as in (77). Thus, the charges contribute additively to the drag-
ging effects: the more charges one adds to the solution the
lower the dragging effects on falling neutral objects become.
The Kerr–Newman black hole is not endowed with such a
property: the contribution of the charges is also additive but
the ln r factor, diverging at spatial infinity, is missing. Its
angular velocity is given by

ωK-N = a
(2M

r3 − Q2

r4 + · · ·
)
.

In (92), while the charges are bounded from above, their
number may be augmented at will. Moreover, their contri-
bution is proportional to ln y/y4. The observation of falling
neutral objects may constitute a good substitute for known
techniques used for distinguishing rotating black holes from
rotating wormholes that are harbored in the center of galax-
ies.

Instead of (80) and (81) we could make the following
choice:

ε̄ = − p̄r = p̄θ = p̄φ ≡ Q2
1

8πρ4 ,

ε̃ = − p̃r = p̃θ ≡ Q2
2

8πρ4 ,
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then determine p̃φ upon solving S2. This would lead to the
same constraint (82) and the same metric solution (88) but
the expression of p̃φ would be different from the rhs of (87).

We could also make the following choice:

− p̄r = p̄θ = p̄φ ≡ Q2
1

8πρ4 ,

ε̃ = − p̃r = p̃θ = p̃φ ≡ Q2
2

8πρ4 ,

then solve for ε̄.

8 The weak energy condition

In Ref. [9] we have shown that the null energy condition and
the weak energy condition (WEC) are always satisfied on
paths, through the throat, located on cones of equations θ =
constant. We have also shown that along these conical paths,
the WEC remains satisfied whether the motion on the paths
is undergone in the direction of rotation of the wormhole, in
the opposite one, or in both directions in a zigzag pattern.

The aim of this section is to reach similar conclusions
for any generic three-fluid-sourced rotating wormhole [more
generic than (88); that is, without constraining A and b as
in (82), which is the same as (86)]. There are, however, two
main differences: the problem at hands is more involved than
the one treated in Ref. [9] because of (1) the presence of
three fluids and (2) the non-reversibility of (86). It is not
possible to first choose an expression for b [preferably of the
form (49)], as we did in Ref. [9], such that its derivative b′
and the total energy density (4) of the nonrotating counterpart
wormhole are positive for all r ≥ r0, then determine A. In this
work, the non-reversibility of (86) forces us to first choose
an expression for A then determine that of b. But this does
not always yield a function b with the desired properties, as
this is the case with the solution (90) where b′ and the energy
density (4) of the nonrotating wormhole have both signs.
We may expect to encounter violations of the WEC, in the
geometry of the rotating wormhole (90), even on the above-
mentioned conical paths as their nonrotating counterparts do
violate the WEC.

In the most generic case of a three-fluid-sourced rotating
wormhole, the physical WEC is the constraint

W ≡ (Tμν + T̄μν + T̃μν)u
μuν ≥ 0, (93)

expressing the positiveness of the local energy as seen by any
timelike vector uμ (uμuμ = 1). Using the basis (28), this is
of the form (31)

uμ = U (eμ
t + s1e

μ
r + s2e

μ
θ + s3e

μ
φ ),

U = 1√
1 − s2

1 − s2
2 − s2

3

,

− 1 < si < 1 and
3∑

i=1

s2
i < 1 (i : 1 → 3). (94)

Recall that in the nonrotating case (Pθ = Pφ = Pt ), the
WEC is expressed as

WNR = E + S2
1 Pr + S2

2 Pt ≥ 0 (95)

(S2
1 = s2

1 < 1 and S2
2 = s2

2 +s2
3 < 1), where Pr = pr + p̄r +

p̃r and Pt = pθ + p̄θ + p̃θ are the total radial and transverse
pressures and E = ε+ ε̄+ ε̃ is the total energy density. Since
S1 and S2 are arbitrary, this results in

E ≥ 0, E + Pr ≥ 0, E + Pt ≥ 0. (96)

In the rotating case, upon using (36), (57), (79) and (94)
we express the WEC (93) in its general form as

W = Wt + s2
1Wr + s2

2Wθ + s2
3Wφ + s3Wtφ ≥ 0,

Wt = ε + (a2 + r2)2ε̄ + a2� p̄φ sin2 θ



+ �ε̃ + a2 p̃φ sin2 θ

�θ
,

Wr = pr + p̄r + p̃r , Wθ = pθ + p̄θ + p̃θ ,

Wφ = pφ + a2�ε̄ sin2 θ + (a2 + r2)2 p̄φ



+ a2ε̃ sin2 θ + � p̃φ

�θ
,

Wtφ = 2a
√

�

(
(a2 + r2)(ε̄ + p̄φ)



+ ε̃ + p̃φ

�θ

)
sin θ, (97)

regardless of the particular three-fluid rotating wormhole.
This applies too to the one- and two-fluid-sourced rotating
wormholes derived in this work. Now, since (s1, s2, s3), as
defined in (94), are arbitrary, this results in

Wt ≥ 0, Wt + Wr ≥ 0, Wt + Wθ ≥ 0,

Wt + Wφ + Wtφ ≥ 0, Wt + Wφ − Wtφ ≥ 0. (98)

Both (97) and (98) reduce to (95) and (96) if rotation is
suppressed (a ≡ 0). The signs of the W ’s are not constant on
the whole range of (r, θ, a2). Depending on the sign of Wtφ ,
the last two conditions (98) imply each other in the one or
the other way.

We see that each W (97) is the sum of three terms, the
first of which is due to exotic matter (Tμν) and the two others
are due to ordinary matters (T̄μν , T̃μν). The second and third
terms in each expressionW can be made positive by judicious
choices of the SETs T̄μν and T̃μν , as we did in the previous
section where (ε̄, p̄φ) and (ε̃, p̃φ) were taken positive. The
contribution of these two SETs, if judiciously chosen, is to
confine the effects of the exotic matter, generated by Tμν ,
and alleviate the violation of the WEC.
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Table 1 Existence of conical paths where the physical WEC is satis-
fied. Note that in the cases 1b, 1c and 2a the motion on the paths may be
in the direction of rotation of the wormhole, in the opposite one, or in

both directions in a zigzag pattern since s3 may have both signs, while
for the case 2b the motion is undergone in the one or the other direction.
S satisfied, V violated

Cases α − γ
α

− γ
α

− 1 WEC For all

1a − − − V −1 < s3 < 1

1b − + − S −1 < s3− < s3 < s3+ < 1

1c − + + S −1 < s3 < 1

2a + − − S −1 < s3 < 1

2b + + − S −1 < s3 < s3− or s3+ < s3 < 1

2c + + + V −1 < s3 < 1

The expressions of Wt and Wφ may be arranged as

Wt = ε + ε̄ + ε̃ + a2�(ε̄ + p̄φ) sin2 θ



+ a2(ε̃ + p̃φ) sin2 θ

�θ

,

Wφ = pφ + p̄φ + p̃φ + same terms. (99)

Here the sums ε + ε̄ + ε̃ and pφ + p̄φ + p̃φ are not the purely
nonrotating contributions, for the components of the three
SETs depend on a2. However, in the limit of slow rotation,
these sums approach their nonrotating values and the addi-
tional terms in (99), proportional to sin2 θ , serve to alleviate
the violation of the WEC of the nonrotating case if ε̄ + p̄φ

and ε̃ + p̃φ are positive. These constraints are weaker than
those discussed in the previous paragraph.

As we mentioned earlier, for a generic three-fluid-sourced
rotating wormhole we expect to see the WEC violated, so we
will not examine the conditions of its fulfillment (98); rather,
we will seek conical paths (s2 ≡ 0) through the throat along
which the WEC (97) is satisfied. To be more specific, we
will determine the necessary conditions for such paths to
exist; that is, we mostly focus on the region near the throat.
The determination of the necessary and sufficient conditions
is analytically involved problem and could only be solved
numerically.

We too restrict ourselves to the slow rotation limit

r0ω(r0) = 2ar0 f (r0)


(r0)
= ar3

0 [1 − A(r0)]

(r0)

� 1, (100)

which states that the linear velocities of dragged objects
approaching the throat are much smaller than the speed
of light. This ensures safe traversability. This limit implies
rω(r) � 1 since rω(r) is a decreasing function of r . Setting
s2 = 0, the condition (97) reads in the slow rotation limit

W/U 2 = αs2
3 + aβs3 + γ ≥ 0, (101)

where (α, β, γ ) do not depend on a and γ depends on s2
1 .

When the roots of αs2
3 + aβs3 + γ = 0 are real, they are

given by

s3± = ±
√

−γ

α
− aβ

2α
+ O(a2).

Table 1 shows the generic cases where the conical paths
s2 ≡ 0, along which the WEC is satisfied, exist. Some of
these cases may not be realizable, depending on the specific
three-fluid rotating wormhole. For instance, it can be shown
that the case 1a (α < 0 and −γ /α < 0) is not realizable if the
solution is the three-fluid-sourced rotating wormhole (90).

The conical paths along which the WEC is satisfied may
exist for different cases (cases 1b–2b, as shown in Table 1)
constraining (α, γ ). When expressed in terms of the charges
(m, q1, . . . ) and s1, each case splits into sub-cases where each
sub-case appears to be a set of inequalities and equalities
constraining (m, q1, . . . , s1).

9 Generating (n+ 1n+ 1n+ 1)-fluid-sourced, nnn-charged, rotating
wormholes

In the previous section we dealt with the problem where the
SET of the total matter content is the sum Tμν + T̄μν + T̃μν

of three sub-SETs with Tμν being that of an exotic mat-
ter and the other two correspond to electromagnetic matter
contents. There are two other possibilities: we could work
out the problem where T̄μν (resp. T̃μν) is taken as exotic.
However, our experience with the two-fluid-sourced rotating
wormholes, treated in Sect. 6, prevents us from doing so, for
these configurations might be much involved to be treated
analytically.

To each frame e (28), ē (52), and ẽ (53) we associated
a sub-SET. Continuing this way we may be able to con-
struct (n + 1)-fluid-sourced, n-charged, rotating wormholes
by choosing n + 1 frames.

The frames e, ē, and ẽ have been constructed based on the
following decomposition of the tφ part of the metric:

ds2
tφ =

(
1 − 2 f

ρ2

)
dt2 + 4a f sin2 θ

ρ2 dtdφ − 
 sin2 θ

ρ2 dφ2

= ( f1dt + f2dφ)2 − ( f3dt + f4dφ)2, (102)
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where ( f1 > 0, f2, f3, f4 > 0) are functions of (r, θ ), which
provide the corresponding 1-forms. Inspection of (16)–(18)
reveals the expressions of ( f1, f2, f3, f4) for the frames e, ē,
and ẽ, respectively.

To construct new frames one needs to find new sets ( f1 >

0, f2, f3, f4 > 0), which are solutions to

f 2
1 − f 2

3 =
(

1 − 2 f

ρ2

)
,

f1 f2 − f3 f4 = 2a f sin2 θ

ρ2 ,

f 2
4 − f 2

2 = 
 sin2 θ

ρ2 . (103)

One can fix an expression, say, for fi then determine the rest
of the functions f j ( j �= i) upon solving (103). One can
also fix an expression for some ratio fi/ f j that brings the
number of equations equal to that of the unknown functions
( f1, f2, f3, f4). For those functions ( f1 > 0, f2, f3, f4 > 0)
that remain defined on the whole range of (r, θ ), a new frame
ê is associated to the set of one 1-forms: ω̂t ≡ ( f1dt+ f2dφ),
ω̂r ≡ ωr , ω̂θ ≡ ωθ , ω̂φ ≡ −( f3dt + f4dφ). The 1-forms
(ωr , ωθ ) are defined in the first paragraph of Sect. 5.

The total matter content is now the sum T μν+T̄μν+T̃μν+
T̂μν with T̂μν = ε̂êμ

t ê
ν
t + p̂r ê

μ
r êν

r + p̂θ ê
μ
θ ê

ν
θ + p̂φ ê

μ
φ ê

ν
φ . The

resolution of the sets of field equations S1 and S2 proceeds as
before: Tμν is exotic and (T̄μν, T̃μν, T̂μν) are electromag-
netic with, say,

ε̄ = − p̄r = p̄θ ≡ Q2
1

8πρ4 , (104)

ε̃ = − p̃r = p̃θ = p̃φ ≡ Q2
2

8πρ4 , (105)

ε̂ = − p̂r = p̂θ = p̂φ ≡ Q2
3

8πρ4 . (106)

The values of (pr , pθ ) are determined upon solving the set
S1 and those of (ε, pφ, p̄φ) are determined upon solving the
set S2. In order that lima2→0 p̄φ reduces to the static value
Q2

1/(8πr4), we may need to constrain A and b as we did
in (82), and so on.

10 Conclusion

We have shown in Ref. [9] and in this work that two types of
massive, charged, rotating wormholes can be derived from
the general metric (8). For the wormholes derived in Ref. [9]
it was shown that there exists a mass–charge constraint yield-
ing almost no more dragging effects than ordinary stars. The
dragging effects of the wormholes derived in this work, which
by no means can mimic those of ordinary stars, differ appre-

ciably from those of the Kerr–Newman black hole by the
presence of a logarithmic term that diverges at spatial infin-
ity. These effects could be used as potential mean in astro-
physical observations meant to investigate the nature of the
supermassive black hole candidates that some galactic cen-
ters, as the Sgr A�, harbor.

The three frames used in this work are the most common
ones. To each frame one can attach a form of matter. Given
n+1 frames one can in principle construct rotating and non-
rotating wormholes; their SET is the sum of n+1 sub-SETs,
n of which are electromagnetic and the one left is exotic.

The static wormholes obtained in this work were not
derived by direct integration; rather, they were derived as
the limit a → 0 of their rotating counterparts. They can
hardly be derived analytically. This shows that the method
introduced here, which consists in selecting different mov-
ing (here rotating) frames and attach to each frame a form of
matter, a SET Tμν , constitutes a new approach of integration
for both rotating and static solutions.
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