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ABSTRACT

PERFORMANCE EVALUATION OF THOROUGHLY ADAPTIVE PARTICLE
FILTER (TAPF) FOR 3D RADAR TRACKING APPLICATIONS
Kadir Gökberk YAPICI

Başkent University Institute of Science and Technology

The Department of Electrical and Electronics Engineering

Building 3-D Radar tracking system generally comes with issues of non-linearity on

both state and motion model. In this study, several common tracking algorithms are

compared performance-wise under noisy environment, mismatched model and

unsteady non-linear motions considering application areas such as ground based

missile guidance. A radar front end and a space-time adaptive radar data cube is

processed in order to achieve realistic observations from target motion which is

described as discrete time inputs for tracking algorithms.

After an analogical approach between kalman-based filters, the study focuses on

particle filter, which is chosen from mentioned algorithms to be enhanced based on

track performance and wealth of the field of study. A thoroughly adaptive particle

filter (TAPF) is proposed in order to acquire optimal filtering when the trade-off

between degeneracy and impoverishment problems and inverse proportion

between over-fitting and divergence, under highly non-linear and noisy

environments, are considered. An important sampling proposal with kalman

resemblance, which is able to keep track of multiple prior data as a quantization

factor, is derived by extending the Bayes theorem on state estimations with

processing dependant joint Gaussian noise. Considering the need of regressive

information, an effective re-sampling scheme is designed that works in a harmony

with both sampling and adaptive particle distribution process based on data

likelihood. The ultimate aim of the proposed method is to be able to handle and

refine the “intractable”.

Keywords: 3-D Radar Tracking Algorithms, Unscented Kalman Filter, Adaptive

Particle Filter, Kalman Resemblance, Maximum a Posteriori Estimation

Supervisor: Asst. Prof. Dr. Selda GÜNEY, Başkent University
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ÖZ

3D RADAR TAKİP UYGULAMALARINDA TÜMÜYLE UYARLI PARÇACIK
FİLTRESİ’NİN (TAPF) PERFORMANS ANALİZİ
Kadir Gökberk YAPICI

Başkent Üniversitesi Fen Bilimleri Enstitüsü

Elektrik & Elektronik Mühendisliği Anabilim Dalı

3-D Radar takip sistemi kurmak, beraberinde sistem durum ve hedef hareket

modellerinde doğrusal olmayan sorunlar yaratır. Bu çalışmada güdümlü füze

sistemleri gibi, gürültülü ortamlarda, eşleniksiz model altında doğrusal olmayan

haraketli hedefler üzerinde, çeşitli takip algoritmaları kullanılarak performans analizi

yapılmıştır. Takip birimlerine gerçek zamanlı hedef radar gözlem girdileri atamak

için gerçekçi radar ön uç tasarlanmış ve uzay-zaman adaptif radar veri kübü

işlenmiştir.

Kalman bazlı filtreler ile yapılan karşılaştırmanın ardından, çalışma alanındaki

zenginliğe ve takip performansına bağlı olarak parçacık filtresi üzerinde çalışılmaya

karar kılınmıştır. Buna bağlı, tümüyle uyarlı parçacık filtresi (TAPF) önerilmiş,

doğrusal olmayan dönüşümlü ve gürültülü ortamlarda, dejenerasyon, fakirleşme,

sapma ve aşırı uyum sorunlarının çözümü hedeflenmiştir. Durum tahminleri için

Bayes teoremi, bağıl Gauss gürültüler işlenerek türetilmiş, buna bağlı olarak

kalman benzerliğine sahip önem örnekleme önergesi geliştirilmiştir. Bu önem

önergesi bir nicemleme faktörü ile geçmiş verilerin getirilerini güncel tutar. Geriye

dönük bilgiye duyulan ihtiyaçtan dolayı, örnekleme ve uyumlu parçacık dağıtım

işlemi ile uyum içinde çalışan bir yeniden örnekleme planı tasarlanmıştır. Önerilen

metodun nihai amacı, işlenmesi ve idare edilmesi zor takip fonksiyonunu, kavrayıp

düzenleyebilmektir.

Anahtar Kelimeler: 3-D Radar Tracking Algorithms, Unscented Kalman Filter,

Adaptive Particle Filter, Kalman Resemblance, Maximum a Posteriori Estimation

Danışman: Dr. Öğr. Üyesi Selda GÜNEY, Başkent Üniversitesi, Elektrik-Elektronik
Mühendisliği Bölümü
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1. INTRODUCTION

Radar is a system which is used for the purpose of detection and parameter

estimation of targets with the help of electromagnetic waves that is emitted,

reflected from target directly and received as an echo by radar receiver. 3-D radar

systems usually form information about range, azimuth, elevation and Doppler

velocity of targets [1]. However, localization success depends on prediction of

future values from previous ones. So, one needs a compatible tracking process in

order to achieve better results based on the historical discrete time data and

estimations that provides a deterministic target trajectory. Target tracking radar

systems call upon tracking algorithms, which initiate a near-continuous time track,

are required in order to update and estimate true position of a target and derive

future position with sufficient precision and accuracy [2].

1.1 Problem Statement and Objective

A target tracking radar provides refinement on predicted expectations and future

gating of the target which results with adjusted and corrected trajectory based on

performance and purpose of the track processor. Missile guidance for military

systems is a suitable motivation source for non-linear, noisy, 3-D Radar system

approach as it is mandatory to manage a proper high-quality tracking for it. It is not

easy to acquire perfect trajectory due to possible disturbances, natural clutter or

electronic counter-measures from the target [3]. By utilizing mentioned motivation

source, one can assume sensor sensitivity decays with distance or unwanted

system delays which leads to the ideology that implies the significance of enhanced

tracking with highly noisy poor measurement data which has known error

characteristics. Blair, Richards and Long [4] elaborates on these errors such as

system constraints, multipath, calibration errors and various recognized

interference and characterize their effect with accuracy and precision. This study

focuses on handling the precision of a tracker and improving short-term accuracy

mean errors since long-term accuracy errors are considered as systematic which is

manageable on system levels. Precision scope is defined as standard deviation

(S.t.d.).
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For a short range single target tracking radar system, tracking issues include

non-linear functions’ accurate coordinate conversions, highly non-linear

manoeuvring motions, model mismatches and poor measurement precision and

accuracy with an expected Gaussian error distribution based on upcoming data

with impulse response variation. The objective is to estimate future states of a

system based on given noisy sensor outputs and model of dynamics with

uncertainties. Chung, Chou, Chen and Chuo [5] uses multiple sensor readings in

order to increase accuracy and reliability of non linear-functions with non-linear

manoeuvre motions. Multiple sensors provide data association for better coordinate

conversions. That being said, most target tracking applications lack the opportunity

and have to handle noisy non-precise measurement errors on non-linear functions

and dynamics. Widely-known non-linear filters and their algorithms are considered

for location correction and estimation such as extended kalman filter (EKF),

unscented kalman filter (UKF) and particle filter (PF) according to Konatewski,

Kaniewski and Matuszewski [6]. This study focuses on comparison of these filters

corresponding to their minimization of process and measurement noises,

manoeuvre performance, success on handling with non linear function variables

and their moments. Based on error distribution and information obtained, the study

majors on developing a new method that satisfy the objectives with enhanced

accuracy and precision with minimal divergence and over-fitting on measurements.

1.2 Literature Review

Numerous studies struggle with non-linear tracking filters by enhancing their

performance, mutilating the methods for algorithm designs partially or completely

or fusing different Monte Carlo and Bayesian tracking techniques in order to

optimize posterior predictions of a tracking radar system. Most tracking applications

make use of EKF even though it has high linearization errors while dealing with

non-linear problems. Mittermaier, Siart, Eibert and Bonerz [7] addresses this

problem by creating a multi-sensor environment for short range radars that

considers Doppler velocity which makes the localization a non-linear problem.

Estimation accuracy is covered with precise models and their stochastic process

and measurement properties. Another issue is that EKF’s consistency depends on
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initialization. Precision of estimations is provided with the help of maximum

likelihood and data fitting. Results contain 3-D movement characteristics.

Another challenge of EKF is adaptation to manoeuvring targets as distant

linearization brings up excessive uncertainties that causes reduced performance,

even divergence. Liberato, Pizzingrilli and Longhi [8] introduces model switching

via interactive multiple model with EKF banks which has advanced model design

and depictions for missile guidance. Quijano [9] suggests a different alternative to

EKF and compares it with PF considering smoothness under model mismatch and

noisy measurements. The results indicate that EKF’s performance is limited with

the smoothness of the non-linear function as EKF linearizes it around a single point.

Although PF lacks designing of a passable noise model, on sharp edges it has

better performance as it estimates second moments of observation errors instead

of only first moments. Rigatos [10] approaches the comparison between PF and

EKF from noise distribution. PF does not make any Gaussian assumptions on this

distribution while dealing with state estimation. It is shown that PF has better

performance and wider application choices when sensor fusion is available for

measurement gathering. However, it is stated that the developments are in return

for computational costs.

One gripping proposal, is to use fast genetic algorithm in order to solve all error

problems of EKF with intelligence, is suggested by Hasan and Grachev [11].

Kalman estimations depends highly on state and measurement model co-variance

matrices. The study presents a genetic algorithm method to optimize and reduce

the variance of tracking error models on manoeuvre of the target in order to acquire

real time-tracking.

As EKF has various problems that needs to be solved considering model

designations, Obolensky [12] suggests to combine two kalman filtering techniques,

EKF and UKF, proposed by Julier and Uhlman, in order to describe Gaussian

random error with chosen set of sigma points. The combined filter works with an

adaptive varying model that deals with non-linearity of the dynamics while UKF is

improving the estimated error to its expectancy. It is represented that UKF has

similar working principles with EKF and yields enhanced results under the same
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adaptations and improved conditions. Roth, Hendeby and Gustafsson [13] test this

noise sensitivity on non-linear functions by implementing coordinated turn models

for tracking manoeuvring as adaptations to non-linear filters EKF and UKF. Results

show that, performance with respect to the mentioned noise sensitivity and

parameters, is better in case of Cartesian velocity usage in coordinated turn model

for UKF rather that polar velocity. Schubert, Richter and Wanielik [14] take it to

another level by implementing more curvilinear models to the UKF system and

performing a tracking task that compares the performance of models. This

interactive system increases the robustness of the expectations which results with

better estimations. This advanced motion models are suggested for applications

areas such as two dimensional vehicle tracking.

In 3-D tracking it is more challenging to cover every aspects of motion dynamics

with low dimensional models. So, 3-D non-linear tracking filters possess model

mismatches. UKF has the ability of precise model-free error estimation. Zhou,

Huang, Zhao, Zhao and Yin [15] proposes an adaptive UKF that prevents

divergence and over-fitting caused by faulty sensor measurements and model

mismatches, resulting in estimation precision. The proposed method originates and

adjusts the co-variance matrices of process and measurements noise errors in real

time in an adaptive manner. Ge, Zhang, Jiang, Li and Butt [16] designs a similar

adaptability by working on time varying uncertain noise co-variances on UKF for

target tracking. The method involves deduction of real time measurement noise

from the redundant previous measurement residuals based on process noise. It is

shown that noise adaptation improves the tracking stability compared to standard

naive UKF. Wan and Merwe [17 acquaints machine learning algorithms for dual

estimation. It can be depicted as expectation maximization for the Gaussian

random variable from system co-variance dynamics for process and measurement

errors.

UKF is an optimized filter for non-linear function that almost approaches the

performance of an optimal linear system Kalman Filter (KF). Though, it is mostly

completed, in other words process and measurement noise optimization is the only

working field for improvement. Jwo, Chen and Tseng [18] fuses interactive multiple

model estimation with adaptive UKF when there is reliable measurements due to
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sensor fusion. The results show that the improvement by using interactive multiple

model is minimal and the only problem that effects the performance of UKF has

been achieved and comes to a saturation point. PF has wider working fields and

application areas if certain computational constraints are met with. Chatzi and

Smyth [19] suggests and evaluates PF as a comparison for UKF based on

efficiency for highly non-linear problems. The method concludes with results that

Gaussian mixture PF has more robustness and accuracy compared to UKF for

heterogeneous displacement and acceleration sensors.

PF has computational constraints as multiple hypothesis are evaluated at the same

time. Lately, these constraints are overcame and PF is getting explored in many

application areas. Shu and Zheng [20] presents a performance based comparison

between PF and Kalman based filters. The study accepts that PF has superior

performance for non-linear and non-Gaussian Bayesian tracking under the

assumption of low signal to noise ratio and data rate and its outcome, poor

measurement inputs. Mean square error results indicate that the trade-off between

performance and computational cost can be minimized by improving the filtering

method without any significant computational load. These improvements are

implemented by working on known PF problems. Wang, Li, Sun and Corchado [21]

mentions about these problems and indicates remaining challenges for PF.

Mentioned topics include degeneracy, impoverishment, importance proposal

design, computational efficiency and intractable uncertainty caused by poor data

defined as measurement to tack challenges. The study implies that uncertain

tracking scenarios and complications of analyzing track estimations for future ones,

leaves non-solved challenges behind.

PF has many working areas that can be challenged. One of them is to solve

degeneracy and impoverishment by controlling the re-sampling procedure.

Ignatious, Mageswari and Lincon [22] proposes a variance reduction technique that

control particle distribution by interfering particle weights and modifying via a fading

factor. This factor can be adapted to re-sampling intervals of the system and

manages particle distribution variance. Another way to control information loss is to

study on importance proposal. Abbeel [23] lectures on importance sampling and

re-sampling methods such as optimal expectations of sequential proposal. The
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lecture also suggests adapting particle numbers for sampling of particles in order to

prevent particle deprivation. Halimeh, Huemmer, Brendel and Kellermann [24] take

one step further and combine sequential importance sampling and re-sampling

techniques for an evolutionary set of particles selected. The study provides

long-term memory on re-sampling stage instead of sampling in order to reduce the

effects of degeneracy and impoverishment with computing efficiency. The

experiments represents the accuracy and robustness of proposed method

compared to standard PF.

Unlike kalman-based filters, prediction and correction stages are applied to multiple

hypothesis which compose a grip on complete posterior distribution for estimations.

Importance sampling proposals and weighting methods are suggested in order to

maximize the performance. Naive PF uses maximum likelihood method as generic

for state estimations. Martino, Elvira and Camps-Valls [25] presents group

importance sampling with sequential importance re-sampling that jointly employs

parallel PF systems. By grouping different schemes, various re-sampling intervals

and trajectories are created with independent acceptance probabilities. Though,

system complexity increases which is a constraint for PF algorithms. Fu, Wang, Liu,

Liang, Zhang and Rehman [26] uses sensor fusion for target localization and calls

upon PF and uses sum of Gaussian mixtures of two independent measurements

and prior estimation as importance sampling proposal in order to determine

posteriori density function. Combined weights of radar and laser sensor

measurements decreases the uncertainty based on variance of the particle

distribution significantly. Wei, Gao, Zhong, Gu and Hu [27] proposes a different

method, unscented particle filtering that adjusts the model noise from predicted

residual values. The systems fights with particle degeneracy without losing

information on previous estimations by tuning an adaptive factor that uses

unscented transformation (UT) to keep system and measurement disturbances

minimal. Results claim that usage of UT on PF presents an enhanced performance

for navigation systems.

As PF is a rich and practical filter, various study fields are yielded. Data assimilation

and kalman techniques have specific weaknesses. On the other hand, PF has a

reach on intractable model assignments. Leeuwen [28] benefits from freedom and
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convenience of importance sampling proposal density to overcome curse of

dimensionality, which decreases the efficiency of particles exponentially. The study

manages to satisfy high dimensional Lorenz models with low amount of hypothesis

for geosciences. In case of tracking variables and their higher moments, state

clustering is suggested by Lee and Majda [29]. Instead of standard and localized

PF with independent state variables, study benefits from clustering of state

variables for particle adjustment that stabilize the distribution of particles. The

method presents no divergence and robust results under poor observation

gathering regimes. Li, Sun, Sattar and Corchado [30] resorts to artificial intelligence

algorithms in order to drawback main problems; degeneracy and impoverishment.

effective re-sampling intervals and optimization of particle distribution is suggested

with intelligence approach such as swarm or ant colony optimization or genetic

algorithm for man-shifting. Filtering in real-life is the main problem of PF combined

with intelligent emphasis as more computational cost that multiples for each

hypothesis occurs.

Inspiration of this study comes from problems that is encountered, instead of

solving techniques. He, Zhang, Hu, Sun [31] touches on one of these problems

while working on an adaptive UKF algorithm with adjusted estimations based on

maximum a posteriori (MAP) solution. The emphasized problem is determining the

balance recursively between co-variance matrices for state and observation

models. Usage of maximum likelihood for achieving MAP provides more stable

convergence of estimations. Wang, Wang, Li, Wang and Liu [32] presents an

adaptive PF method for target tracking estimations. The study focuses on solving

deterministic sampling and process noise variance problems with the help of a

regression analysis. An auto-regressive model has been designed based on

histograms that identify target motion which makes the deterministic iterations

stochastic. It is shown that tracking efficiency and robustness is increased via the

adaptive model changes. Thus, a new method is derived in this study in order to

overcome the challenges with different rustic techniques.
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1.3 Methodology

The study includes determination of noisy measurements with varying reliability.

Digital signal processing part is featured in order to acquire realistic measurement

inputs such as range accuracy and precision by matched filter response for

tracking based on radar specifications. Due to the non-linear relation between

desired Cartesian output model and spherical observation input model, various

non-linear target track estimators are evaluated. These estimators consists of naive

formations of extended kalman filter, unscented kalman filter and particle filter.

Particle filter is deemed worthy to be worked on depending on its recent prosperous

spot in target tracking family and its susceptibility for further performance

improvements due to various fields of study on filter’s working principle. Particle

filter is fixed upon as the focus of the study through kalman based filters for further

adaptations.

This thesis contributes with an all-rounded stochastic Gaussian based adaptive

particle filter after the consideration of objectives wished to be extended and former

literature and studies. The mentioned adaptive methods are linked in harmony via

Bayes filtering modifications. Instead of non-Gauss model free PF modifications,

kalman resemblance is administered in order to be able to analyze importance

proposal outcome and fuse it with re-sampling algorithms. Since there is no

co-variance matrix implementations in PF, process noise corresponds to

uncertainty added through re-sampling as particle diversion rate. According to

these, a combined adaptive importance sampling, state process noise and

re-sampling filter is proposed that aims to overcome degeneracy, impoverishment,

divergence and over-fitting problems under non-linear/Gaussian noise dynamics

based on a well analyzed and handled importance sampling proposal with respect

to a standard naive particle filter.

The proposed method is defined as Thoroughly Adaptive Particle Filter (TAPF)

since it is designed in a stochastic manner. PF could be designed as model free,

but TAPF needs sufficiently accurate state model description in order to acquire

reliable expectations based on a MAP similar method and system stability and

robustness. As literature review points out, nowadays model constraints could
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easily be solved for target tracking by covering motion dynamics and their

moments.

1.4 Outline

The outline summary of this thesis study is as follows:

Section 2 is the radio frequency (RF) front end design part in which radar

fundamentals and working principles are mentioned. Radar parameter

specifications are discussed which has effects on significant expressions, that will

be taken into considerations for further sections, such as range and Doppler

resolution, range and function ambiguity.

Section 3 is the digital signal processing and computing part where Space Time

Adaptive Processing (STAP) methods, that is indicated in Figure 1.1, are discussed.

The formation and usage of radar data cube is explained with methods such as

pulse compression and Doppler processing. Two target scenarios with different

motion models are generated in this section corresponding to previous RF front

end specifications, signal processing and possible target tracking models.

Figure 1.1 Signal processing block diagram

Section 4 consists of analogic evaluation of strengths and weaknesses of tracking

techniques which includes the proposed TAPF method. Then, the techniques are

compared according to their performance with root mean square error (RMSE) and

visual evaluation on critical point estimations. The success of convergence to true

mean values without divergence or over-fitting based on the non-linearity of the
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function or the dynamics when the measurements are noisy and not viable, is

represented via the proposed method.

The thesis concludes with foreseeable success of TAPF upon objectives based on

comparison between tracking algorithms in Section 5. In case of adapting it to a

real time and life application and the challenges of doing it, further improvements

are suggested based on attainments acquired during the study.
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2. RADAR MODEL

2.1 Radar Fundamentals

Radio detection and ranging, as the term implies, calculate the range of a target

from the delayed time between a transmitted pulse and its backscattered energy

from the target based on the propagation medium. Designation of RF front end is in

charge with waveform generation, amplification, transmission and receiving and

filtering of a signal. Signal propagation concept is simply represented in Figure 2.1.

Figure 2.1 Radar concept

Skolnik [33] explains that General Radar formula represents the free space path

losses and other target, antenna and radar specifications that clarifies the

maximum range which a target can be detectable based on an acceptable

signal-to-noise ratio (SNR) over minimum detectable signal. Waveform generation,

antenna design and radar parameters are selected according to the desired

purpose and performance.
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Radar Range equation is as below;

4/1
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2.2 Front End Design Parameters

The designation purpose of the radar detection system focused on this study, is to

work as a short range radar that is capable of gathering radial velocity due to

Doppler shift, azimuth and elevation information from a single target. Phased Array

antenna systems are able to steer its received pattern digitally for that purpose

(Figure 1.3). Uniform Linear array antenna with proper gap between array elements,

which can cover SNR with focused directivity, is feasible in common radar systems.

Number of antenna elements are proportional to directivity and accuracy of bearing

information. S-band as operating frequency encloses surveillance radar

requirements.

Figure 2.2 Phased array antenna beam directivity [34]

Maximum Range of a radar system is based on both required received power and

pulse repetition interval (PRI) which is the inverse of pulse repetition frequency

(PRF). Pulse width and PRI of a waveform determine the unambiguous minimum

and maximum range respectively. Another issue with waveform design is range

resolution as the pulse length increases, the scope it sweeps increases as well

resulting with reduced range resolution coverage. The Doppler resolution, which

will be mentioned later, is also dependant on PRF value. There is trade-off between

all the terms distinguished and should be designed carefully according to the

purpose of the system, short range tracking.
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Figure 2.3 indicates ambiguous range by representing it in time domain.

Unambiguous maximum range equation, where c stands for speed of light and τ

stands for pulse width is as follows;

 
2max




PRIcR (2.2)

Figure 2.3 Pulse repetition frequency [33]

One wants to detect far objects with better resolution, in other words shortened

pulses with more energy. Linear frequency modulated or so called, Chirp waveform

satisfies this requirement as modulation of frequency, increases time bandwidth

product of the transmitted pulse. This process is called pulse compression (Figure

2.4) and will be mentioned how it is implemented via the matched filter digitally

further in the study.

Equation (2.3) represents range resolution for given pulse width while Figure 2.4

explains the bandwidth and pulse width product, where B equals to bandwidth that

covers the modulated frequency interval between frequency values F1 and F2.

2
cR res  (2.3)
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Figure 2.4 Chirp Compression
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3. RADAR DIGITAL SIGNAL PROCESSING

Digital signal processing (DSP) is the process where signal are plugged away at

and filtered corresponding to various operations that gather information from the

message signal. In radar applications Analog to Digital Converters are used to

modulate the signal in a way to be ready for digitally processed. High sampling rate

is needed in order to acquire near perfect construction of the signal while

converting to digital discrete time signal. [34]

The modulated signal is then beamformed, matched to transmitted signal and

compressed, shifted in frequency with Fourier transform. Space Time Adaptive

Processing can handle these operation and is able to detect targets that is

otherwise hard to detect due to background clutter and complications of operations

mentioned.

STAP bonds spatial and temporary data and acquires information for real-time

processing without any significant latency with the help of a high-dimensional radar

data cube (RDC). RDC consists of sampled signal segments, array antenna

element bins, storage of multiple consequent pulses that can be processed

coherently and a retroactive temporal dimension. Joint storage of mentioned

dimensions provides capability of processing signal processing operations along

with each other simultaneously.

STAP is used in many airborne radar systems and 3-D ground surveillance of

airborne targets as a necessity. However, it has high computational cost that cause

latency on the overall system. These constraints of signal processing should be

considered as well.

3.1 Generating Radar Data Cube

As mentioned, composing a radar data cube is necessary in order to acquire

real-time processing in space-time continuity. It is a convenient way to create

storage of data by implementing the signal information in a multidimensional

database for further signal processing. The data cube organizes the extraction and
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gathering of range, velocity and bearing information. In addition to that, accessibility

of multiple signal information in the course of space-time continuum provides the

capability of decision making during digital processing.

First dimension of a radar data cube consists of range gates which validates a

target at a specific range with the designated range resolution due to the travel time

of message signal in nature. The derivation of range gates are based on the

sampling rate of received signals. Numerous intervals are gathered sample by

sample from the reflection of a single pulse which is dependant to PRF. These

sampling intervals are binned to successive range values so as to pinpoint the

distance of the target. This dimension that includes range bins are referred as fast

time dimension in literature due to much higher sampling frequency rather then

PRF of the system.

Another dimension is generated which works as an indicator of azimuth and

elevation angles. It consists of the collection of a single target reflection in multiple

received elements corresponding to array antenna structure. Each antenna

element is tied to a specific channel with successively generates a phase

difference in collections. This sampling is then used in order to gather accurate

bearing information from the target on further STAP processors.

Third significant dimension of the radar data cube is where multiple sequential

pulses with the rate of PRF are collected and processed concurrently. The

correlation between the coherent received pulses and range gates indicates

whether there is truly a target or not and plays a great role on decision-making and

initiation of a track. More to the point, the mentioned collection, which is called

coherent processing interval (CPI), facilitates the determination of a phenomenon

called Doppler effect or Doppler shift. Processing of this shift rate in frequency

during the propagation assists on calculation of speed of the target, in this case

radial velocity according to radar. This dimension is called the slow time dimension

since it is much slower than sampling of PRF and instead composed of multiple

pulses. Figure 3.1 represents the dimensions of RDC.
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Before working on information of target returns such as range, bearing and velocity

with various processing techniques, a threshold must be determined for

identification that implies if there is a target or not. When a data exceeds the

threshold, a covariance matrix, that is formed by CPI and array antenna element

inputs with the help of neighboring range gates, is analyzed in order to get rid of

undesired signals’ noise and false alarms. [34]

Figure 3.1 Radar Data Cube [34]

In this study, digital beamforming of array elements which includes phase shifts

and digital beam steering is considered. Then, pulse compression and Doppler

processing techniques are implemented. Direction of arrival estimation is not

applied since the focus of the study is track performance and tracking problems of

bearing inputs could be assumed realistically. Covariance matrix estimation that

shows the correlation between RDC dimensions and Constant false alarm rate

(CFAR) algorithms are not implemented in the radar front end and STAP process

either, since the focus of the tracking problems does not cover characterization of

clutter and reduction of undesired signals by data association and convergence of

measurements. This step is assumed as irrelevant since it occurs outside the field

of this study. The clutter rejection part is ignored as the study focuses on varying

noisy environments. Background clutter and interference is assumed to be settled

during the tracking system and algorithms.
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3.2 Digital Beam Forming

For an active radar, It is desired to lock up to an area where the possible target is in

order to narrow the regarding cut of range gates and reduce the chance of missing

the target. In array antenna systems, steering, phase shifting and processing of

these are not detached as antenna processing. Considered array’s pattern itself

can be aimed at the target with phase rotation. Beam steering occurs in azimuth

and elevation dimensions. By that way, antenna system ensures only the raw data

and beamforming happens digitally by STAP processors.

The digital beamforming module is responsible for determining the directions of the

target by creating digital beams. The module runs finite impulse response(FIR) filter

with longitude that equals to number of array antenna elements. Each of these FIR

elements are pre-allocated to allow formation of a beam on specific special

direction. This spatial beamforming allows signals to be amplified only on chosen

direction intervals when the signal fall into it. All other directions are suppressed. By

that way, mentioned FIR elements are plugged into certain directions without

mechanical rotation of hypothetical antenna but with phase shift. The beamforming

process is visualized in Figure 3.2.

Figure 3.2 Block diagram of digital beamforming [35]
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Another advantage of this filtering is that the beamforming process increases the

directivity of concerned antenna elements significantly. Increase in directivity

effects overall gain and SNR of the system directly by amplifying the received

channel outputs.

3.3 Pulse Compression

Pulse compression is a technique that achieves collection of the power during the

pulse on a single absolute point as a peak. This process is done by a time domain

convolution between received signal from the target and complex conjugate of

transmitted message signal. In other words, the process increase the SNR ratio via

the matched filter. Transmitted signals from radar system are used as only

coefficients for FIR input. By this way, phase of the transmitted signal is ignored

and only the target’s phase stay online. Peaks are generated on the spots that

correlation occurs between these signals.

Simply, the usage of chirp waveform allows the system to use matched filter as a

convolution between echo signals and anti-chirp which leads to a compressed

near-impulse response as an output in theory. Pulse compression provides better

range resolution without trading it off with speed resolution. The idea is to acquire

range resolution property of a much shorter pulse by modulating a longer pulse

without increasing its function ambiguity for both cases of range and velocity.

An issue of impulse response function is the integrated side-lobes. High side-lobe

clutter levels damage the radar sensitivity as it may effect further data. The system

should be acquainted with side-lobe suppression in order to obtain better and trusty

range resolution. However clutter rejections are out of field and omitted in this study

as various assumptions on noise level will be represented. Side-lobe clutters could

be easily attenuated with directional selectivity of the array antenna pattern [36].

Range bins are evaluated at this stage so as to determine range of the target based

on the time delay. Then, Doppler processing technique is applied on concerned

range gates that includes the targets echo. The joint pulse compression and

Doppler process is expressed in Figure 3.3.
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Figure 3.3 Matched filtering of pulse Doppler radar [36]

3.4 Doppler Processing

Working principle of a radar is to perceive and interpret the delay of signals

transmitted and received. RDC creates an opportunity of processing multiple fast

time data, which has already extracted as gates that the target is within,

simultaneously with the help of coherent processing. This coherent processing

interval is called slow time and its length via the sampling rate determines the radial

velocity resolution.

Fast Fourier Transform is applied to discrete slow time dimension in order to

transfer signals from time dimension to frequency dimension. The frequency shift

between received echoes of sequential transmitted pulses manifests the velocity

relative to the stationary radar which comes up as radial velocity as an inverse

function. Figure 3.4 presents Doppler processing along slow time dimension N

based on maximum value of fast dimension L.

2
d

r
fv  (3.1)

In equation (3.1), vr is radial velocity, fd is doppler frequency and λ is wavelength of

the message signal.
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Figure 3.4 Doppler processing along max range bin [34]

As beat frequencies are generated due to Doppler frequency, the velocity

resolution and unambiguous velocity range of a target based on velocity bins is

directly proportional to PRF that leads to the trade-off between range and speed

resolution for certain operating frequency. Increased time intervals based on low

PRF between coherent processing elements also limits the ability of detection of a

target under clutter since coherent processing also comes in handy for removing

stationary or low speed background clutter for an airborne target. So, waveform

specifications should be selected carefully based on all design concerns.

Equation (3.2) implies the importance of PRF selection as it determines range of

Doppler frequency that can be estimated;

minmax
1

dd ff
PRF


 (3.2)

3.5 Scenario Design

Design environments are used during the study on both RF front end and DSP

simulations, and evaluation of tracking algorithms. All simulations, designations

and tracking algorithms are produced and tested in these environments starting

with design of the scenario. Radar system and signal processing parameters are

selected based on desired designated general purpose of the system. The concept

is to model tracking algorithms and optimize them for a realistic 3-D short range
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single target search and track radar system which deals with unwanted noise

signals during tracking process.

Following radar and waveform specifications are assessed in Table 3.1 in order to

achieve almost real-time simulations, observations and detection errors that feeds

the calibration and performance evaluation of studied tracking algorithms;

Table 3.1: Radar design specifications

Operating Frequency 2e9 Hz

PRF 10e3 Hz

 1e-5 s

Sampling Rate 10e6 Hz

Number of array elements 100

Element Spacing 0.225 m

Total Antenna Gain 75

CPI 300

Minimum acceptable SNR 15 dB

Constant Turn Rate and Velocity (CTRV) model will be commonly used and

discussed during the study in Section 4.2. The model characterizes the yaw

movement of possible target onto a simple constant velocity motion model. Model

is widely used in two dimensional systems and acceleration moments of the model

are considered as the independent process noise. When the model is adapted to

three dimensional systems, pitch movement of the target remains as uncertainty.

Two target scenarios has been modeled in order to cover the area of model

mismatches and uncertainty degree of tracking state models. First target starts with

a 43 seconds of constant velocity motion along a single line with almost irrelevant

elevation. Then it makes a severe turn briefly and starts manoeuvring at mild

variable rates for 90 seconds. Lastly, it starts accelerating at a constant rate until it

falls out of the maximum radar range for 25 seconds (Figure 3.5). Second target

makes a helix-wise motion which is jointly centred on both dimensions. It basically
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tumble mildly laterally (Figure 3.6). The targets become online at maximum

unambiguous range 13.5 kilometers.

x (m)
y (m)

z(m)

Target 1

Initial Range:
13.5km

Figure 3.5 Designed motion model of Target 1

Target 2

x(m)y(m)

z(m)

Figure 3.6 Designed motion model of Target 2
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DSP affords an opportunity so as to measures for radar outputs, target

environment and simulations. The results are yielded in Figure 3.7 for a single

pulse.

Figure 3.7 Beamforming, matched filtering and Doppler processing outputs for a

single pulse

After these steps, interpretation of the outputs of each radar process delivers the

desired outputs which includes range resolution that is calculated based on the

time gaps between range gates that is 15 meters. A better estimate is derived

based on the half power of the output impulse response of compression that gives

a theoretical distribution for measurements with a certain variance. On low SNR

this value could be deteriorated and become much higher.

Table 3.2 Relevant resulting terms of radar system

Unambiguous Maximum Range 13.5 km

Unambiguous Doppler Range 375 m/s

S.t.d of measurements 50 m

Radial Velocity Resolution 2.5 m/s
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Although programming environment is used to create the environment and the

simulations of radar system that generates measurements and track initiation,

these simulations could be adopted to real time signal processing. In order to

satisfy computational load, constraints and requirements of a real-time processing

of the mentioned STAP system consists of correlation and white noise generation,

Özgür [37] suggests that field programmable gate array (FPGA) could be

suggested with its parallelism feature since it consists of only hardware. It can

handle programming of multiple arithmetic and computational operators. However,

graphic processing unit platforms are preferred due to the ease of processing

floating points.
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4. TARGET TRACKING ALGORITHMS

A relevant question on tracking radar systems is why one needs a tracking

algorithm instead of just initializing and focusing on a detected target. The reason is

that tracking radar systems measure the significant parameters which the system

then keeps track of by predicting the future values. This predicted state of the

relative parameters is corrected based on the recursive process of the concerned

tracking algorithm. These attributes are mandatory considering application areas

such as airborne localization, active homing, robotics, storm tracking. This study

conceives a ground-based flight guidance for calibration of interested tracking

algorithms.

The performance of tracking algorithms depends on the validity and precision of

generated tracking gate for posterior that the algorithm creates recursively from

prior information. An optimal tracker should be able to follow the true motion of an

object without diverging from it completely or over-fitting the estimations on input

measurements which is given as inexact and noisy observations. RMSE

estimations and visual resources on critical stages represents the performance of

compared algorithms in this study. Algorithms have a step time of T=1 second for

measurement updates.

Methods of tracking involves linear quadratic estimations, linearization of non-linear

systems for that matter and sequential Monte Carlo practices. Recursive Bayesian

approach is used one way or another in order to gather information on probability of

predicted density using existent data. Kalman filter theory, extended and unscented

kalman applications of it for the non-linear system, particle filtering and a proposed

thoroughly adaptive particle filter which resembles kalman in theory are suggested

in this section.
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4.1 Kalman Filter

KF is a linear quadratic estimation theorem that can predicts and corrects the

posterior estimations of the state at each iteration. What makes kalman filter so

special is that it has knowledge on how much predictions and measurements are

flawed and incorrect. The linear stochastic system is as follows;

)()()()1( kvkxkFkx  ),0()( kQNkv  (4.1)

)()()()( kekxkHky  ),0()( kRNke  (4.2)

where x and y are state and observations at time step k respectively. F(k) and H(k)

represents state and observation functions that controls the dynamics of the model.

v(k) and e(k) represents process noise and measurement noise respectively in the

dynamic system. Qk and Rk are their Gaussian covariance matrices that is defined

as additive white noises to system.

State space model of a kalman filter consists of a state process, its independent

process noise and a joint observation model with an independent measurement

noise. Kalman filter predicts and corrects based on a kalman gain which is derived

from the gaussian distribution of prior estimation and independently from the state

estimation by corresponding co-variance matrices. The mean values and their

distributions based on these error estimations anticipate the distribution of a

posterior estimate which leads to searching of the best solution at each iterative

step.
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Figure 4.1 Kalman filter sequel [38]

Figure 4.1 is formed of Riccati equation derivations that corresponds to prediction

and correction stages of kalman filter. Kk is the kalman gain that tunes and

minimizes the error co-variances for future estimations where k indicates the

current track step. The representations of variables that is explained in Figure 4.1 is

as follows:

k-1 previous time step, state estimates xk and xk-1, state transition function A,

Control function B with control input uk, error co-variance matrix P, observation

function H, process and measurement noise co-variances Q and R respectively. In

correction phase posterior state estimate is updated based on prior state estimate

that is determined during prediction phase, kalman gain and innovation residual

(zk-H*xk) where zk is actual measurements

KF is almost flawless and optimal for cases that obtain linear functions and

gaussian distributions around it. However most tracking radar systems consist of

non-linear functions due to spherical measurements while one needs cartesian

mapping instead of curvilinear outputs. So, kalman filter is well out of the field as
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one needs to make better assumptions on error estimations since the mean and

variance of the function outputs are no longer gaussian.

4.2 Extended Kalman Filter

Kalman filter is unable to calculate the mean and variance values of possible

distribution of a non linear function, in this case different observation and state

coordinate models. Linear approximation is required in order to estimate utilizable

gaussian approach which is achieved from the first order derivative of Taylor series

applied on estimations. This process is referred as extended kalman filter (EKF) as

it offers an extension by linearization to formulation and calculation of kalman state,

observation function and corresponding covariance matrices.

Figure 4.2 mentions about linearization errors of EKF when the function grows

apart from the mean. p(x) and p(y) is probability density functions, before and after

non-linear transformation respectively while g(x) is the approximated

transformation function. Right-hand histogram implies on the increased mean

divergence error that is caused by poor transformation.

Figure 4.2 Gaussian approximation of EKF linearization [39]
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As the measurements consists of azimuth, elevation, range and its first moment,

they need to be transformed into “x-y-z” positions and their higher moments for

state estimations. Since linear approximation is not accurate, one needs a proper

state transition model matrix in order to specify significant motion parameters.

CTRV comes in handy as it extends Cartesian position and velocity model with a

yaw measurement that is predicted and merged inside the state transition function.

CTRV is a consistent model in two dimensional systems. It can be applied in 3-D

motion model due to its effectiveness for manoeuvre with fairly low dimensions,

with model mismatch that can be handled. It is known that, usage of Cartesian

velocity instead of polar velocity in state transition function results with better

approximations. [40]

State Vector and Transition Matrix:

]',,,,,,[ zyxzyxX  (4.3)

For equation (4.3), (4.4), (4.5), (4.6), state variables x, y, z are Cartesian positions.

x , y , z are respective velocities and  is independent turn rate. T is time step

interval that is designed as 1.
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Tracking algorithms in this study are based on CTRV model for precise comparison

between their performance under certain circumstances. Augmentation of a turn

rate provides tracking of highly non-linear dynamic target model without increasing

the state dimensions excessively.

Figure 4.3 EKF Formulation [38]

Figure 4.3 shows that EKF differs from KF based on computation of jacobian

matrices Hk based on f and h function derivatives. that is derived from the

coordinate transformation between cartesian and spherical. Jacobian matrix is the

computation derived from the Taylor series that deals with the linear approximation.

Jacobian computations are responsible for transformation of noise covariance

matrices in order to relate them. Prior predictions are mapped to spherical

coordinates, which is called the innovation residual part, and posterior estimations

are gathered with linearization between state transition and observation functions.

As the residual mapping is not one to one, Kalman gain does not control a portion

of the system and divergences are expected when the model probability

decreases.
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Measurement mapping vector and derived Jacobian matrix for CTRV respectively:
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In equation (4.5), ρ is range, θ is elevation, Φ is azimuth,  is radial velocity.

Although EKF is widely used for non-linear systems, it is not close to being an

optimal estimator for target tracking unlike KF. Approximations are inaccurate due

to capturing only the first moment of the terms as linearization happens on a single

point. Therefore, the system prones to diverge under bad design parameters,

mismatched model or poor quality observations. One of the possible solutions is to

use a bank of EKFs with varying state models and uncertainties based on process

noise with a likelihood estimation between them using an interactive multiple model

that covers all the possible dynamic changes of a motion model. Based on

miscalculated means, initial estimations should be close to true values or else they

should be adapted by optimization techniques.
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4.3 Unscented Kalman Filter

UKF is designed simply to obtain better performance on non-linear functions by

approximating almost a true gaussian around the mean of estimations by dealing

with a bunch of points instead of transforming around a single point. Since Taylor

series expansion terms increase exponentially, third order approximation from its

derivatives give nearly perfect essential results. UKF manages that without any

linearization process delay for predictions and their covariances.

UKF attempts to structure an optimal KF for non-linear functions. It benefits from

sigma points in order to handle approximation of Gaussian plantation with UT

instead of sub-optimal first order linear EKF approximation. Sigma points are the

towering individuals that represents whole distribution. Certain points are taken into

consideration at state coordinate system which manages initial source Gaussian

error. Weights are assigned to these points around the mean. Then, these points

are propagated mapped through measurement function and a new Gaussian is

composed from weighted sigma points. New attributes of the transformed

Gaussian are approximated such as mean and variance [41].

Number of sigma points, that scale the dimensions of state estimate, is derived as

2n+1 considering “n” denotes the number of state model dimensions. “X” is the

sigma point matrix in this case.
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wi represents weights of corresponding sigma points,  is scaling factor, x is

priori mean and P is priori co-variance matrix for equations (4.7), (4.8) and (4.9).

These sigma points are propagated through non-linear function separately.

Scaling factors for sigma points, α and β represents the spread intervals and

distribution specifications of the sigma points respectively. β=2 is designed as

optimal for Gaussian distribution. Sum of weights of the sigma points are equal to 1

and calculated as;
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Then, new mean and co-variance should be estimated by multiplication of weights

and projected sigma points based on CTRV for corresponding dimensions. Then,

the outcome is relocated to measurement space from state. State and

measurement functions that is implemented for these calculations are same

functions that are mentioned in previous EKF section.

Figure 4.4 indicates the near-perfect approximated error co-variance P throughout

the non-linear function g(x) with better results than linearization and less hypothesis

is used called sigma points.
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Figure 4.4 Unscented transformation covariance accuracy [42]

Instead of Jacobi computations and linearization, UKF calculates the prediction

error via the cross-correlation between the locations of sigma points around the

mean in state space and measurement space. The resulting computation kalman

gain is similar to the one in EKF. “T” represents the cross-correlation instead of

linearization and “Q” represents measurement noise in the following Figure 4.5.
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Figure 4.5 UKF correction compared to EKF [38]

UKF has optimal Gaussian approximation for non-linear functions. Computational

cost is no more than EKF with better performance. Unreasonable model mismatch

can theoretically be handled by uncertainty characteristics. Adaptive process noise

estimation based on state circumstances can be implemented in order to get better

stability, convergence, smoothness. Matching degree of process noise distribution

based on prior information or uncertainty co-variance matrix estimation at present

time are examples of study topics that has been implemented in literature as

adaptive UKFs.

Although UKF supplements the desired purpose which is tracking, Han Song and

He [41] mentions that UKF has a narrow working field for improvement on any

aspects. Selected inputs that completes UKF to a closed system are sigma variates;

α, β, process and measurement noises; Qv, Re, and initial estimates; x0, P0. Initial

estimations converges with the increasing number of recurrence, UT parameters

have negligible effects on estimation accuracy and precision since they are related

to higher order terms of derivation and could be calibrated optimally beforehand. Qv

is the only parameter which can be profitable on further performance measures as

Re is stochastic and depends on known measurement error or clutter patterns. If

priori or deterministic knowledge of noise exceeds the limits and mismatches with
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the respective dimensions in state space, the system suffers from degradation

caused by lost stability. Otherwise, noise is added the system which causes

over-fitting on faulty measurements. This performance issue is the one of the few

field that may be improved by mentioned parameters.

4.4 Particle Filter

Particle Filter are based on Monte Carlo sampling method on Bayesian network in

order to achieve better approximations on complex dynamic systems. Nowadays

computational and physical restrictions are costly but manageable with parallel

computing on hardware architectures such as FPGA which brings the particle filter

applications back for high dimensional systems.

Multiple particle are systematized instead of a single hypothesis in particle filter. It

can deal with non-Gaussian noise output directly, as multiple hypothesis represent

the posteriori joint error probability distribution by shaping it. Range of source

Gaussian is maximized by the repeated reproduction of particles. In this study,

CTRV is suggested to particle filter as a transition model. Model works with 1000

samples which is assessed as enough for a non-clustered dynamic model with 7

dimensions.

This section of the study stresses on naive particle filter theory and a simple

implementation of particle filter. PF is known to be distressed by particle

degeneracy and impoverishment. Degeneracy is caused by likely particles getting

bigger weights and bad assumptions diminishing. The loss of control group is

solved with re-sampling which causes impoverishment caused by lost information

on particle states. Design details and upcoming problems are discussed at next

section.
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Figure 4.6 Naive particle filter steps [43]

First, state motion model is applied to initial equally weighted and distributed

particles. Correction segment of particle filter includes important sampling proposal

which evaluates every particle due to their probabilistic occurrence likelihood and

weights them. Sub-optimal maximum likelihood and a Gaussian framing are

imposed as the sampling proposal that leads to state estimation which is the

weighted mean of the distribution outcome of weighted particles. Lastly, a

sequential importance re-sampling process is applied on weighted particles in

order to obtain new unbiased particle distribution with normalized weights based on

process noise. The cycle continues with motion model drift again (Figure 4.6).
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Figure 4.7 Simple particle filter algorithm [44]

Figure 4.7 shows the iteration of standard particle filter. N is number of particles, k

is time step as initial estimates for each particle xki are propagated through model.

Then, a weighting process of particle probabilities occur solely on maximum

likelihood of predictions based on measurements, p(zk|xki ). Weights are normalized

to a sum of 1 and re-sampled based on specified scheme in order to keep particle

amounts alive.

Although particle filter obtains good results based even with a sub-optimal

designation, its real-time tracking ability without latency is poor due to the number

of hypothesis. However, it is ripe for development as it has the ability to produce

probabilistic approximation of whole posterior density function and observe it

analytically for further improvements and lots of deterministic design parameters

that could be adapted jointly.



40

4.5 Proposed Method: Thoroughly Adaptive Particle Filter

Sequential Monte Carlo algorithms provides complete information on posterior

density function for a Bayesian framework. The context gives opportunity to make

statistical inferences from the predicted output. Importance sampling proposal of

TAPF algorithm resembles kalman-based filtering and keeps track of prior tractable

predictions in order to refine posterior estimations and converge them to true mean

using Gaussian framing. Particle filtering has the option to represent full posteriori

density function with multiple hypothesis and handle intractable Bayes filter

equations. Kalman resemblance creates an opportunity to analyze and benefit from

created posterior density characteristics that is applied with Gaussian laws and

statistics. Mutual relationship of sampling and re-sampling processes are defined

with an error margin factor. This factor that arbitrate the regression ratio of the

system, is derived from Gaussian posterior estimation laws and statistics,

One purpose of improved importance sampling method is to prevent divergence

when the particles are strict due to determined low additive noise. Other purpose is

to forestall overfitting, which is convergence to uncertain measurements due to low

trust on suggested model. Adaptive re-sampling, process noise computation,

marginalization of correlation between joint Gaussian are implemented as a MAP

design with an interconnection between mentioned methods in order to achieve

expectation maximization.

The proposed TAPF method contemplates a system environment in which the

algorithm manages to handle the quantization step, which is a coefficient factor for

importance proposal, based on retrospective re-weighting. The main problem that

comes up with the multiple hypothesis computation is that particle degeneracy.

High probability particles keep getting heavier with reliable measurements as low

probability particles diminish which disturbs the clarity of posterior distributions.

Re-sampling step occurs in particle filters in order to distribute the particles again.

However information is lost with the abandoned particles and distribution pattern

based on impoverishment of changing particle span and weight at conventional

importance re-sampling methods. In order to reduce the dependency of inverse
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ratio from trade-off between degeneracy and impoverishment, local search

importance re-sampling (LSIR) is applied. The output distribution is handled with

adaptive process noise that takes the noise of nearby previous measurements as

basis.

4.5.1 Importance Sampling Proposal

Importance sampling proposal is a variance reduction method that determines the

hypothesis that has more impact than others. KF is successful at handling process

and measurement noise dependency that is derived from design of discrete time

model. The additive Gaussian noise sequences are assumed as independent

themselves. However, there is dependency between steps of them. PF is unable to

relate this dependency as a general solution. [45] So, importance sampling

proposal function is optimized with Gaussian mixture based on the chosen

dependency type that is shown in the following Figure 4.8.

Figure 4.8 Noise dependency of recursive system [45]

State and observation functions consist of CTRV model transformations is given

as;

11)(   kkkk vxfx (4.10)
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kkkk exhy  )(
(4.11)

The state space equations xk (4.10) and yk (4.11) indicates the state and

observation that determines the posterior distribution. During the segment k-1 and

k represents previous and current time steps respectively that associates the

additive process and measurement noise dependency vk-1 and ek. fk and hk consists

of non-linear state and observation functions of CTRV model.

Structure of the dependency is as follows where the probability function gives the

density shaped with multiple hypothesis variables X and Y:

)(),( 111   kkkkk xxpYXxp
(4.12)

),(),( 11   kkkkkk xxypYXyp
(4.13)

Equations (4.12) and (4.13) gives conditional probabilities for the mentioned state

and observation functions based on the noise dependency. It is shown that

measurement likelihood is dependent to both prior and current predictions in

equation (4.13).

If we characterize the probabilities of information on previous and present

estimations with present measurement with respective additive Gaussian noises, it

allows the decomposition (4.14) from (4.12) and (4.13).

)()(),( 111   kkkkk vpvepevp
(4.14)

Based on this decomposition of the mentioned state and measurement noise

dependency, the relation between iteration steps is derived as:



43

),()(),( 111   kkkkkkkk xxypxxpxyxp
(4.15)

As Gaussian resemblance is established, corresponding Bayesian theorems (4.16),

(4.17), (4.18) are practicable.
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xk-1 condition that represents the priori data is collaborative for each element for the

decomposition equation derived from noise dependency (4.15). The condition is

simply met by propagating prior samples through the state model. Using mentioned

Bayesian theorems on p(xk,yk|xk-1), considering A and B incidents correspond to xk
and yk functions respectively, one can achieve equation (4.19) where n is added in

order to represent the samples that shapes the probability density function that they

are within and k is time step.
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In equation (4.19), p(xk|xnk-1,ynk) is the proposal density function that is quantized

with prior density functions (4.20) which gives the weights to each sample based on

their importance determined by the equation. p(yk|xnk,xnk-1) is maximum likelihood of

samples based on measurements. p(xk|xnk-1) is predicted state based on priori

estimation. p(yk|xnk-1) is quantization factor that indicates data likelihood that

determines the reliability of measurement yk at time step k.

Since the observation model is multi-dimensional and kalman resemblance is

desired, a multivariate Gaussian model is implemented as for maximum likelihood

framing. Weights of samples that shapes maximum likelihood p(yk|xnk,xnk-1) is

represented as wnlikelihood in a Gaussian window. R is measurement noise

covariance, y-nk is samples that is propagate and transformed throughout the model

in equation (4.21).
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Quantization factor in random process is meant to be a coefficient factor for

probability functions. In case of particle filters with multiple hypothesis, quantization

shapes the posterior density and determine the balance between state estimations

and measurements.

A standard PF with sequential importance re-sampling and sub-optimal sampling

has performance flaws and mismatches due to weighting based on maximum

likelihood of an uncertain measurement. Since unbiased re-sampling resets the

information on prior state estimation weights for each hypothesis, PF tends to lose

grip with each particle distribution. Figure 4.9 implies loss of information on prior

estimations with each iteration based on particle effectiveness.
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Figure 4.9 Sub-optimal importance sampling

Sub-optimal quantization as a denominator that cancels prior probabilities that

leaves maximum likelihood, p(yk|xkn ) as solo importance parameter in standard

particle filter is given below:

)()( 11
n
kkkk xxpxxq  

(4.22)

Figure 4.10 Bayesian estimation for importance sampling

Optimal posterior information is shown in Figure 4.10 with Gaussian windowing.

Mean correction estimations are deduced based on these probability weightings.

However particle filter lacks the prior information as particles are reshaped and
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weighted with each re-sampling iteration that is needed to control degeneracy. For

that matter LSIR method is fused with proposed importance sampling.

4.5.2 Importance Re-Sampling

Benefits of LSIR is visualized in Figure 4.11. Relativity between sampling and

re-sampling is covered with LSIR as prior inputs for sampling proposal has known

and biased distribution that is established to adjust over high probability regions

with a desired distribution. Weights are dismissed in order to adjust a new mean.

This method is known to acquire more effective sample size that leads to better

results when the model dynamics are designed appropriately. [46]

Figure 4.11 Local search importance re-sampling

Another idea behind the administered LSIR method is to keep track of the prior

functions based on a statistics threshold that determines particle degeneracy

exceeds a limit. The limit is determined by the ratio of the decay between effective

sample size and posterior density function variance as both is expected to decay

with the same logarithmic ratio as variance breeds from multiplication of two

Gaussian. This approach allows the system to re-sample prematurely when
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unexpected dynamic divergence occurs. This re-sampling trigger will be detailed in

Segment 4.5.4 which is defined as error margin factorization.

4.5.3 Adaptive Particle Distribution

Importance weights of particles, n
kw~ , that is determined by the proposal function, is

presented in Equation (4.23) After passing all the particles through whole proposal

calculations, the weights are normalized whose sum is equal to 1 in Equation (4.24)

where N represents total amount of particles. Weighted means for each state

variable, ii
k is spotted as the new estimation whose probability density becomes

future prediction for the next step if re-sampling does not occur. ii denotes state

dimension.
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If re-sampling occurs a new adaptive process noise, that determines the respective

distribution after local search for weighted samples, needs to be determined in

order to prevent the increase in data association ambiguity caused by ascending

distribution. Process noise co-variance can be tuned up so as to compensate for

the uncertainties in motion model dynamics for 3-D manoeuvre and acceleration in

CTRV case. However validation gates that is formed by particle distribution getting

bigger. This phenomenon is controlled by real time adaptive noise co-variances by

UKF. In case of particle filter it causes degeneration and impoverishment instead of

divergence as the process noise is the weight spread ratio.
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Maggio and Cavallaro [47] suggests an adaptive particle distribution with a

transition model free system. As system does not propagate particles, the study

focuses on portraying uncertainty and covering it with particle distribution. Though,

this system is ineffective, it gives an inspiration for adjusting particle distributions

based on mapping the difference between measurements and estimations at same

time step while a couple previous steps are taken into account. Qi represents

adaptive process noise in observation coordinates as i is the dimension size of

observation transition function. Future estimations, k are transformed to

spherical coordinates as well.
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4.5.4 Error Margin Factorization

As we have perfect Gaussian approximation of estimations, the statistics for

probability density frame becomes tractable with distribution statistics [48].

Effective sample size, Neff is contemplated in Equation (4.27), described as the

distinction between weight impact of particles.
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In this study, measurement noise co-variance, R is designed to be stable as no

clutter involved in the design of the system. Adaptive R could be established based

on kalman like residual calculations in case of a non-stable R.

Equation (4.28) computes the mixed Gaussian noise variance 2
k at time step k.

the value s denotes the time steps in which last re-sampling occurs.



49

R
sk

Q ki

k 





2
1

2

1
1





(4.28)

Confidence interval 2/z defines the effective interval of a Gaussian distribution.

It is chosen to be 95% of sample space which corresponds to 2 S.t.d. margin.

Equation (4.29) and (4.30) determines the error margin and its threshold

respectively on each iteration of algorithm.

eff

k

N
zErr

22
2/2 )( 

(4.29)

2/
)( 2

2/2

N
RzErrT 

(4.30)

When Err > ErrT re-sampling occurs.

As the denominator of the proposal computes data likelihood based on each

particle’s hypothesis in a Gaussian window, quantization changes the histograms

and refine them based on specified number of prior steps k-s instead of being a

mere coefficient factor. That being said, coefficiency attribute of quantization

regulates the weighting spread and allows for higher runs without re-sampling

when dynamics are estimated with success. The cases that re-sampling occurs is

as below:

Re-sampling occurs when effective sample size are low with respect to adaptive

particle distribution, based on data likelihood determined by change in

measurement co-variance. This allows the algorithm to keep track on mean even

though the measurement are poor until the expected motion loses its validation and

can’t be met by effective sample size under assigned variance.
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If the algorithm converges and stabilize at a weighted mean estimation too fast,

system re-samples as error margin exceeds the threshold due to distinction

between weighted samples grows sharply. Threshold is exceeded based on high

search interval for particles defined as mixed Gaussian variance. This prevents

non-precise, diverged track under high measurement noise. In other words, as

error prediction is dependant on both weighting and distribution sampling volatility,

system invokes re-sampling when the estimations converge to expectation too fast

which may not be accurate or the predicted posterior estimation mean diverges too

much. These specifications increases the accuracy of desired deterministic

re-sampling intervals which also provides accurate quantizations to sampling and

re-weighting of particles.

Re-sampling occurs based on possible extension or contraction of measurement

error or a possible severe movement that changes the estimated mean. The

system re-samples twice when non-linear motion happens and mean estimation

reliability is out of date. First re-sampling process resets the quantization element

with particles located around prior highly weighted ones. Second one, adjust the

particles based on simply maximum likelihood since all prior information on

particles and density statistics is lost. This allows for a new particle set to determine

a better mean estimation around recent motion dynamics with up-coming

measurements. This allows two step fast convergence back to true tracking after

abrupt changes in motion happens.

Figure 4.12 implies the significance of quantization determining importance

sampling proposal as a better adjustment is made based on prior and maximum

likelihood estimations’ balance reshaped by quantization factor. That is considered

a cheap MAP method without any complex calculations but using auto-regression

for reliable measurements.

On the other hand, Figure 4.13 indicates the quantization factor lowering the error

margin when poor measurement abruptly occurs. Lower error margin means

keeping information alive that supports better data flow to quantization unit. In both

noise cases expectation maximization is produced via analyzing priori information

trajectory and sequence.
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Figure 4.12 Optimal importance sampling proposal based on data likelihood on

reliable measurements

Figure 4.13 Quantization effect on keeping information alive
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4.5.5 Pseudo Algorithm

Mentioned complex or default calculations are omitted and described as

inscriptions in brackets in pseudo code Figure 4.14.

TAPF for 3-D tracking;

00 ,Px Initialization

For Nn ,...,2,1

Form Samples: randnPxxn *000 

Nn /10 

EndFor
s=0

Form Transition Functions: (CTRV models f and h with dimensions ii and i)

Initial transformed process noise: )( 0PhQi 
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Propagate Samples: )( 1
n
k

n
k xfx 

Transform Samples: )( n
k

n
k xhy 

Weight p(yk|xnk,xnk-1):
))()*(2/1(2/1

2/

1

)2(
1~ Tn

kk
n
kk yyRyy

i
n
likelihood eRw  




EndFor

Normalize: 
 N n

likelihood

n
likelihoodn

likelihood
w

ww
1
~

~

Weight Proposal p(xk|ynk,xnk-1): )(),(
*~

11
1

1
n
kk

n
k

n
kk

k

s

n
k

n
likelihoodn

k
xxpxxyp

www








Normalize: 
 N n

k

n
kn

k
w

ww
1
~

~



53

Weighted Mean Estimation:

Determine Effective Sample Size: )(
1
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n
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(If measurement noise is varying → Adapt R based on residual function)

Gather Posterior Quantized Density Variance: R
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(Confidence interval corresponds to 2σ margin)

Determine Error Margin of Posterior Density: eff
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If Err>ErrT

Determine Transformed Process Noise:

s=k

For Nn ,...,2,1

Resample: (LSIR method)

Perturbate Samples:
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Figure 4.14 Layout of TAPF
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A completely stochastic new adaptive algorithm is designed for optimizing 3-D

tracking scenarios with less computational cost compared to its rivals, intelligence

algorithms. The interconnection between computations of sampling, re-sampling

and distribution proposals is provided with error margin factorization which brings

the system to a stochastic level that may work on any tracking scenario with given

primary model, without entering any deterministic parameter. With the

implementation and adaptation of less considered noise distribution and

effectiveness of error margin derived from density function, expected

improvements are as follows;

Solved impoverishment problems as re-sampling timer is based on predicted error

of sampling proposal which is determined by existent distribution spread of

particles,

Faster convergence and improved mean tracking based on residual information

usage ratio controlled by error margin factor,

High performance under noisy observations as divergence or overfitting problems

are appeased with optimal analytic expression of tracking proposal.
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5. Results and Discussion

This section consists of comparison of given algorithms under various noise

circumstances. Standard deviation of observation noise is denoted as S.t.d. in

meters for the following results.

Initialization

3-D Cartesian Coordinates

Figure 5.1 UKF results for Target_1 with S.t.d.= 50

Figure 5.1 and Figure 5.2 proves that UKF and PF are practical non-linear track

estimators with high quality error approximation and convergence on reliable

measurements. PF has better results due to weighting the complete density

histogram while UKF uses sigma point cross-correlation. Figure 5.3 represents

that the performance of PF is enhanced with the implementation of TAPF algorithm

as TAPF has improved techniques for mean estimation. It is shown that TAPF is

able to capture non-linear motion sooner and manages a fairly perfect 3-D tracking

on true trajectory when there is measurement reliability.
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3-D Cartesian Coordinates

Initialization

Figure 5.2 PF results for Target_1 with S.t.d.= 50

Initialization

3-D Cartesian Coordinates

Figure 5.3 TAPF results for Target_1 with S.t.d.= 50
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PF slightly loses control on severe changes such as second 43 in target motion

dynamics and model mismatch such as acceleration at second 140 as shown in

Figure 5.4 for Target scenario 1. TAPF has better manoeuvre control than PF on

severe changes when the model satisfies the dynamics of the motion. Figure 5.5,

that shows RMSE in meters, proves a slight improvement for TAPF based on

effectiveness of particles and efficiency of the system design that adapts to the

balance change between estimations and measurements quickly.

Figure 5.4 PF RMSE values for Target_1 with S.t.d.= 50
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Figure 5.5 TAPF RMSE values for Target_1 with S.t.d.= 50

Figure 5.6 presents that UKF can compensate model mismatch by describing its

uncertainty as process noise even for higher order moments that is described as a

yaw and pitch angle acceleration uncertainties. PF with 1000 samples, which is

lower limit for such 3-D radar tracking, fails to keep accurate track as shown in

Figure 5.7. Even though the track system does no diverge, its performance

degrades due to degeneration of particles constantly, followed by impoverishment

and growing uncertainty gap and distribution between particles.

Figure 5.8 represents that TAPF is an improvement on PF as it resembles kalman

based algorithms. However, nature of the filter involves particles that tends to lose

effectiveness exponentially under uncertain poor model. UKF works better under

model mismatch as a standard. However, model mismatch does not have

significance for an emphasize since nowadays model requirements can easily be

met with various theoretical or practical implementations for a tracker.
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3-D Cartesian Coordinates

Initialization

Figure 5.6 UKF results for Target_2 with S.t.d.= 50

3-D Cartesian Coordinates

Initialization

Figure 5.7 PF results for Target_2 with S.t.d.= 50
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Initialization

3-D Cartesian Coordinates

Figure 5.8 TAPF results for Target_2 with S.t.d.= 50

When the measurements are worsened UKF’s error co-variance gets bigger which

results in convergence to poor measurements in order to be able to keep the track

without divergence. Figure 5.9 represents the inefficiency of mean estimations of

UKF under noisy measurements. PF has better mean estimations as it considers

and weights multiple particles as predictions which is shown in Figure 5.10.

Figure 5.11 yields the leading contribution of this study as it visualize the strength

of TAPF which is the perfect mean estimations upon true trajectory under highly

noisy measurements. Even though measurements have substantially little

meanings, the auto-regressive MAP model and supportive adaptation for that

principle makes TAPF robust. The method has the ability to both manage reliable

means and converge quickly and adapt to changes and disturbances.
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Initialization

3-D Cartesian Coordinates

Figure 5.9 UKF results for Target_1 with S.t.d.= 300

Initialization

3-D Cartesian Coordinates

Figure 5.10 PF results for Target_1 with S.t.d.= 300
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Initialization

3-D Cartesian Coordinates

Figure 5.11 TAPF results for Target_1 with S.t.d.= 300

Figure 5.12 TAPF dimensional error for Target_1 with S.t.d.= 300
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Figure 5.13 TAPF RMSE values for Target_1 with S.t.d.= 300

3-D Cartesian Coordinates

Convergence Rates on Manoeuvre

Figure 5.14 Severe manoeuvre filter comparison with S.t.d.=50
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The results gives insight to the weaknesses and strengths of different algorithms

under same system specifications for comparison and input measurements.

Besides visual analogy, Root Mean Square Error (RMSE) estimator is used in

order to determine the spread of the expectations which represents the

performance with positional error scale in meters. Truek represents the true

trajectory of the target motion while ii=3 is meant for only zero order moments,

Cartesian positions.

ii
True

RMSE ii kk
k

 


2)( 
(4.1)

Mean of gathered multiple RMSE for the studied algorithms are given below:

Table 5.1 Performance evaluation of filters based on RMSE values

RMSE Table Reliable Measures Poor Measures Mismatched Model

EKF 88.4 N/A N/A

UKF 40.8 95.0 39.6

PF 23.2 72.1 123.8

TAPF 18.0 43.3 65.8

Reliable measurements correspond to Target 1 with S.t.d=50 in Table 5.1. Poor

measurements represent Target 1 with S.t.d.=300 while Target 2 with S.t.d.=50 is

defined as Mismatched Model.

First order linearization has high error when the scale goes higher. Standard EKF

should be optimized and fused with other methods in order to achieve a purpose on

3-D target tracking.

On the other hand, UKF imparts better results than PF under the assumption of

model mismatch. As sigma point approximation converges to optimal Kalman

co-variance predictions, UKF manages to track Target 2 due to superior uncertainty

deduction rather than a PF which lacks particle concentration under non-modeled
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uncertainty and high dimensions. Despite having better results UKF process noise

still should be adapted since low significance of priori causes overfitting.

Standard PF has increased performance and better RMSE values when the model

is valid but the performance relies on chosen particle distributions since there is

limited information on prior conditions and likelihood function output happens to be

deterministic when it comes to convergence rate.

As seen from the RMSE results and relevant figures, proposed TAPF method is

quite an improvement over the performance of UKF and PF. There is no input to

the algorithm except for initial estimation and error which makes the prediction

principle of the algorithm, highly stochastic that could be used on every situation.

Minimal model mismatches are benign even with the increasing dimensionality

since process noise is refreshed when needed.

Another prospect is that the filter has complete knowledge on prior estimations and

likelihood of measurement data as the system gives near perfect probability

statistics. This opportunity is both used in order to handle process noise, which is

less studied in PF applications contrary to UKF, and used to determine optimal

solutions. Figure 5.12 and 5.13 shows the over-powered mean track quality of the

TAPF compared to a standard particle filter under highly noisy environments up to

900 meters of measurement error. The decrease in TAPF RMSE for poor

measurements in Table 5.1 compared to other filters is overwhelming. This

enhancement, that is based on perfect mean convergence and adaptation to

changes, stands as the main contribution of the proposed TAPF.

Divergence and overfitting trade-off is surmounted with proper re-sampling

specifications and weighting if the state and measurement models are well

described. Since particle distribution adaption comes from the algorithm itself

certain impoverishment problems are minimized with the interconnection and

support between adapted methods.

On mild manoeuvre, all algorithms catch up based on CTRV model. Figure 5.14

represents a harsh manoeuvre of Target 1. UKF and PF has similar amount of
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divergence performances. The curse of reliability is the reason why PF can not

orientate suddenly to rapid changes since the particles moving pattern considered

these changes unlikely at first glance due to prior information. So, even though PF

uses multiple hypothesis, its highly non-linear motion results are similar to sigma

point filtering. TAPF adjusts to changes based on rationalized re-sampling timings

and corresponding arranged particle distributions with shown superiority (Figure

5.14).
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6. Conclusion

Non-linear radar tracking problems for 3-D radar applications was evaluated.

Different realistic scenarios with varying noisy measurements and model dynamics

were established with RF front end and DSP design based on RDC outputs.

Kalman based filters were studied in order to achieve desired solutions for

non-linear tracking for non-linear noisy observations.

EKF, UKF and PF are simulated and compared according to their weaknesses and

strengths on estimation and error approximation. Based on the problems detected

for 3-D tracking, a new method is proposed defined as TAPF in order to achieve

enhanced performance solutions. UKF and PF suffer from different varying

difficulties such as divergence and overfitting trade-off based on process noise,

degeneracy and impoverishment based on inefficiency of particle allocations

respectively. TAPF considers a fully stochastic approach with adaptation of filtering

methods that has no deterministic processes except for initial inputs.

Bayesian approach which is used in kalman filters is perfected for better estimation

of posterior density function as a Gaussian with the dependency of joint noise

processes. Kalman resemblance with Gaussian framing achieves an

auto-regressive optimal importance sampling proposal that maximize the

expectations with the ability to analyze output function statistically. The method is

fused with LSIR in order to diminish the effects of information loss. A proposed

particle adjustment based on adaptive process noise is formed. As the sampling,

re-sampling and particle distribution methods implemented, supports each other by

maximizing their tractability and minimizing the problems they suffer, an error

margin factorization is established in order to relate and keep the mentioned

methods intact jointly. This factorization obtains information from posterior

quantized density function to improve the reliability of the estimations and initiates

re-sampling and changes the particle dynamics based on the information gathered.

Results indicated that TAPF provides slight improvement on track estimation for

reliable measurements. TAPF responds faster to highly non-linear motions such as

severe manoeuvring and converges better rather than UKF and PF. The main
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contribution of the study is that TAPF provides nearly perfect mean estimations and

converges faster than expected on severe changes considering high measurement

noise in the system based on error margin intellect.

As TAPF benefits from prior information instead of any external methods, the

computational cost is no more than a standard naive PF. So, TAPF may be an

alternative option for costly intelligence algorithms for MAP estimation. Another

possible future improvement can be the particle distribution optimization based on

expectations. Chen, Tharmarasa, Pelletier, and Kirubarajan [49] suggests clutter

estimation to be integrated in track processor. In order to estimate clutter spatial

density, a recursive maximum likelihood method is derived considering the clutter

model. As TAPF works extraordinarily well on high noise, a non-Gaussian clutter

model and histogram could be attempted with the Gaussian mixture proposal.

https://ieeexplore.ieee.org/author/37961894300
https://ieeexplore.ieee.org/author/37398741000
https://ieeexplore.ieee.org/author/38226878400
https://ieeexplore.ieee.org/author/37268358200
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