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ABSTRACT

PERFORMANCE EVALUATION OF THOROUGHLY ADAPTIVE PARTICLE
FILTER (TAPF) FOR 3D RADAR TRACKING APPLICATIONS

Kadir Gokberk YAPICI

Bagkent University Institute of Science and Technology

The Department of Electrical and Electronics Engineering

Building 3-D Radar tracking system generally comes with issues of non-linearity on
both state and motion model. In this study, several common tracking algorithms are
compared performance-wise under noisy environment, mismatched model and
unsteady non-linear motions considering application areas such as ground based
missile guidance. A radar front end and a space-time adaptive radar data cube is
processed in order to achieve realistic observations from target motion which is

described as discrete time inputs for tracking algorithms.

After an analogical approach between kalman-based filters, the study focuses on
particle filter, which is chosen from mentioned algorithms to be enhanced based on
track performance and wealth of the field of study. A thoroughly adaptive particle
filter (TAPF) is proposed in order to acquire optimal filtering when the trade-off
between degeneracy and impoverishment problems and inverse proportion
between overfitting and divergence, under highly non-linear and noisy
environments, are considered. An important sampling proposal with kalman
resemblance, which is able to keep track of multiple prior data as a quantization
factor, is derived by extending the Bayes theorem on state estimations with
processing dependant joint Gaussian noise. Considering the need of regressive
information, an effective re-sampling scheme is designed that works in a harmony
with both sampling and adaptive particle distribution process based on data
likelihood. The ultimate aim of the proposed method is to be able to handle and

refine the “intractable”.

Keywords: 3-D Radar Tracking Algorithms, Unscented Kalman Filter, Adaptive
Particle Filter, Kalman Resemblance, Maximum a Posteriori Estimation
Supervisor: Asst. Prof. Dr. Selda GUNEY, Baskent University
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3D RADAR TAKIiP UYGULAMALARINDA TUMOUYLE UYARLI PARGACIK
FILTRESI’NIN (TAPF) PERFORMANS ANALIZi

Kadir Gokberk YAPICI

Baskent Universitesi Fen Bilimleri Enstitis(i

Elektrik & Elektronik Muhendisligi Anabilim Dall

3-D Radar takip sistemi kurmak, beraberinde sistem durum ve hedef hareket
modellerinde dogrusal olmayan sorunlar yaratir. Bu caligmada gudimlu fuze
sistemleri gibi, gurultuli ortamlarda, esleniksiz model altinda dogrusal olmayan
haraketli hedefler Gzerinde, ¢esitli takip algoritmalari kullanilarak performans analizi
yapilmigtir. Takip birimlerine gercek zamanl hedef radar gbézlem girdileri atamak
icin gergekgi radar 6n ug¢ tasarlanmis ve uzay-zaman adaptif radar veri kubu

islenmistir.

Kalman bazlh filtreler ile yapilan karsilastirmanin ardindan, calisma alanindaki
zenginlige ve takip performansina bagl olarak parcacik filtresi Gzerinde ¢alisiimaya
karar kihnmigtir. Buna bagli, tumuyle uyarl parcacik filtresi (TAPF) onerilmis,
dogrusal olmayan doéntsumll ve guraltili ortamlarda, dejenerasyon, fakirlesme,
sapma ve asiri uyum sorunlarinin ¢ézimu hedeflenmistir. Durum tahminleri igin
Bayes teoremi, bagil Gauss gurultuler iglenerek turetilmis, buna bagh olarak
kalman benzerligine sahip 6nem o&rnekleme oOnergesi gelistiriimistir. Bu 6nem
Onergesi bir nicemleme faktoru ile gecmis verilerin getirilerini glncel tutar. Geriye
donuk bilgiye duyulan ihtiyagtan dolayi, ornekleme ve uyumlu pargacik dagitim
islemi ile uyum iginde calisan bir yeniden érnekleme plani tasarlanmistir. Onerilen
metodun nihai amaci, islenmesi ve idare edilmesi zor takip fonksiyonunu, kavrayip

duzenleyebilmektir.

Anahtar Kelimeler: 3-D Radar Tracking Algorithms, Unscented Kalman Filter,
Adaptive Particle Filter, Kalman Resemblance, Maximum a Posteriori Estimation
Danigsman: Dr. Ogr. Uyesi Selda GUNEY, Bagkent Universitesi, Elektrik-Elektronik

Muhendisligi Bolumu
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1. INTRODUCTION

Radar is a system which is used for the purpose of detection and parameter
estimation of targets with the help of electromagnetic waves that is emitted,
reflected from target directly and received as an echo by radar receiver. 3-D radar
systems usually form information about range, azimuth, elevation and Doppler
velocity of targets [1]. However, localization success depends on prediction of
future values from previous ones. So, one needs a compatible tracking process in
order to achieve better results based on the historical discrete time data and
estimations that provides a deterministic target trajectory. Target tracking radar
systems call upon tracking algorithms, which initiate a near-continuous time track,
are required in order to update and estimate true position of a target and derive

future position with sufficient precision and accuracy [2].

1.1 Problem Statement and Objective

A target tracking radar provides refinement on predicted expectations and future
gating of the target which results with adjusted and corrected trajectory based on
performance and purpose of the track processor. Missile guidance for military
systems is a suitable motivation source for non-linear, noisy, 3-D Radar system
approach as it is mandatory to manage a proper high-quality tracking for it. It is not
easy to acquire perfect trajectory due to possible disturbances, natural clutter or
electronic counter-measures from the target [3]. By utilizing mentioned motivation
source, one can assume sensor sensitivity decays with distance or unwanted
system delays which leads to the ideology that implies the significance of enhanced
tracking with highly noisy poor measurement data which has known error
characteristics. Blair, Richards and Long [4] elaborates on these errors such as
system constraints, multipath, calibration errors and various recognized
interference and characterize their effect with accuracy and precision. This study
focuses on handling the precision of a tracker and improving short-term accuracy
mean errors since long-term accuracy errors are considered as systematic which is
manageable on system levels. Precision scope is defined as standard deviation
(S.t.d.).



For a short range single target tracking radar system, tracking issues include
non-linear functions’ accurate coordinate conversions, highly non-linear
manoeuvring motions, model mismatches and poor measurement precision and
accuracy with an expected Gaussian error distribution based on upcoming data
with impulse response variation. The objective is to estimate future states of a
system based on given noisy sensor outputs and model of dynamics with
uncertainties. Chung, Chou, Chen and Chuo [5] uses multiple sensor readings in
order to increase accuracy and reliability of non linear-functions with non-linear
manoeuvre motions. Multiple sensors provide data association for better coordinate
conversions. That being said, most target tracking applications lack the opportunity
and have to handle noisy non-precise measurement errors on non-linear functions
and dynamics. Widely-known non-linear filters and their algorithms are considered
for location correction and estimation such as extended kalman filter (EKF),
unscented kalman filter (UKF) and particle filter (PF) according to Konatewski,
Kaniewski and Matuszewski [6]. This study focuses on comparison of these filters
corresponding to their minimization of process and measurement noises,
manoeuvre performance, success on handling with non linear function variables
and their moments. Based on error distribution and information obtained, the study
majors on developing a new method that satisfy the objectives with enhanced

accuracy and precision with minimal divergence and over-fitting on measurements.

1.2 Literature Review

Numerous studies struggle with non-linear tracking filters by enhancing their
performance, mutilating the methods for algorithm designs partially or completely
or fusing different Monte Carlo and Bayesian tracking techniques in order to
optimize posterior predictions of a tracking radar system. Most tracking applications
make use of EKF even though it has high linearization errors while dealing with
non-linear problems. Mittermaier, Siart, Eibert and Bonerz [7] addresses this
problem by creating a multi-sensor environment for short range radars that
considers Doppler velocity which makes the localization a non-linear problem.
Estimation accuracy is covered with precise models and their stochastic process

and measurement properties. Another issue is that EKF’s consistency depends on



initialization. Precision of estimations is provided with the help of maximum

likelihood and data fitting. Results contain 3-D movement characteristics.

Another challenge of EKF is adaptation to manoeuvring targets as distant
linearization brings up excessive uncertainties that causes reduced performance,
even divergence. Liberato, Pizzingrilli and Longhi [8] introduces model switching
via interactive multiple model with EKF banks which has advanced model design
and depictions for missile guidance. Quijano [9] suggests a different alternative to
EKF and compares it with PF considering smoothness under model mismatch and
noisy measurements. The results indicate that EKF’s performance is limited with
the smoothness of the non-linear function as EKF linearizes it around a single point.
Although PF lacks designing of a passable noise model, on sharp edges it has
better performance as it estimates second moments of observation errors instead
of only first moments. Rigatos [10] approaches the comparison between PF and
EKF from noise distribution. PF does not make any Gaussian assumptions on this
distribution while dealing with state estimation. It is shown that PF has better
performance and wider application choices when sensor fusion is available for
measurement gathering. However, it is stated that the developments are in return

for computational costs.

One gripping proposal, is to use fast genetic algorithm in order to solve all error
problems of EKF with intelligence, is suggested by Hasan and Grachev [11].
Kalman estimations depends highly on state and measurement model co-variance
matrices. The study presents a genetic algorithm method to optimize and reduce
the variance of tracking error models on manoeuvre of the target in order to acquire

real time-tracking.

As EKF has various problems that needs to be solved considering model
designations, Obolensky [12] suggests to combine two kalman filtering techniques,
EKF and UKF, proposed by Julier and Uhlman, in order to describe Gaussian
random error with chosen set of sigma points. The combined filter works with an
adaptive varying model that deals with non-linearity of the dynamics while UKF is
improving the estimated error to its expectancy. It is represented that UKF has

similar working principles with EKF and yields enhanced results under the same



adaptations and improved conditions. Roth, Hendeby and Gustafsson [13] test this
noise sensitivity on non-linear functions by implementing coordinated turn models
for tracking manoeuvring as adaptations to non-linear filters EKF and UKF. Results
show that, performance with respect to the mentioned noise sensitivity and
parameters, is better in case of Cartesian velocity usage in coordinated turn model
for UKF rather that polar velocity. Schubert, Richter and Wanielik [14] take it to
another level by implementing more curvilinear models to the UKF system and
performing a tracking task that compares the performance of models. This
interactive system increases the robustness of the expectations which results with
better estimations. This advanced motion models are suggested for applications

areas such as two dimensional vehicle tracking.

In 3-D tracking it is more challenging to cover every aspects of motion dynamics
with low dimensional models. So, 3-D non-linear tracking filters possess model
mismatches. UKF has the ability of precise model-free error estimation. Zhou,
Huang, Zhao, Zhao and Yin [15] proposes an adaptive UKF that prevents
divergence and over-fitting caused by faulty sensor measurements and model
mismatches, resulting in estimation precision. The proposed method originates and
adjusts the co-variance matrices of process and measurements noise errors in real
time in an adaptive manner. Ge, Zhang, Jiang, Li and Butt [16] designs a similar
adaptability by working on time varying uncertain noise co-variances on UKF for
target tracking. The method involves deduction of real time measurement noise
from the redundant previous measurement residuals based on process noise. It is
shown that noise adaptation improves the tracking stability compared to standard
naive UKF. Wan and Merwe [17 acquaints machine learning algorithms for dual
estimation. It can be depicted as expectation maximization for the Gaussian
random variable from system co-variance dynamics for process and measurement

errors.

UKF is an optimized filter for non-linear function that almost approaches the
performance of an optimal linear system Kalman Filter (KF). Though, it is mostly
completed, in other words process and measurement noise optimization is the only
working field for improvement. Jwo, Chen and Tseng [18] fuses interactive multiple

model estimation with adaptive UKF when there is reliable measurements due to



sensor fusion. The results show that the improvement by using interactive multiple
model is minimal and the only problem that effects the performance of UKF has
been achieved and comes to a saturation point. PF has wider working fields and
application areas if certain computational constraints are met with. Chatzi and
Smyth [19] suggests and evaluates PF as a comparison for UKF based on
efficiency for highly non-linear problems. The method concludes with results that
Gaussian mixture PF has more robustness and accuracy compared to UKF for

heterogeneous displacement and acceleration sensors.

PF has computational constraints as multiple hypothesis are evaluated at the same
time. Lately, these constraints are overcame and PF is getting explored in many
application areas. Shu and Zheng [20] presents a performance based comparison
between PF and Kalman based filters. The study accepts that PF has superior
performance for non-linear and non-Gaussian Bayesian tracking under the
assumption of low signal to noise ratio and data rate and its outcome, poor
measurement inputs. Mean square error results indicate that the trade-off between
performance and computational cost can be minimized by improving the filtering
method without any significant computational load. These improvements are
implemented by working on known PF problems. Wang, Li, Sun and Corchado [21]
mentions about these problems and indicates remaining challenges for PF.
Mentioned topics include degeneracy, impoverishment, importance proposal
design, computational efficiency and intractable uncertainty caused by poor data
defined as measurement to tack challenges. The study implies that uncertain
tracking scenarios and complications of analyzing track estimations for future ones,

leaves non-solved challenges behind.

PF has many working areas that can be challenged. One of them is to solve
degeneracy and impoverishment by controlling the re-sampling procedure.
Ignatious, Mageswari and Lincon [22] proposes a variance reduction technique that
control particle distribution by interfering particle weights and modifying via a fading
factor. This factor can be adapted to re-sampling intervals of the system and
manages particle distribution variance. Another way to control information loss is to
study on importance proposal. Abbeel [23] lectures on importance sampling and

re-sampling methods such as optimal expectations of sequential proposal. The



lecture also suggests adapting particle numbers for sampling of particles in order to
prevent particle deprivation. Halimeh, Huemmer, Brendel and Kellermann [24] take
one step further and combine sequential importance sampling and re-sampling
techniques for an evolutionary set of particles selected. The study provides
long-term memory on re-sampling stage instead of sampling in order to reduce the
effects of degeneracy and impoverishment with computing efficiency. The
experiments represents the accuracy and robustness of proposed method

compared to standard PF.

Unlike kalman-based filters, prediction and correction stages are applied to multiple
hypothesis which compose a grip on complete posterior distribution for estimations.
Importance sampling proposals and weighting methods are suggested in order to
maximize the performance. Naive PF uses maximum likelihood method as generic
for state estimations. Martino, Elvira and Camps-Valls [25] presents group
importance sampling with sequential importance re-sampling that jointly employs
parallel PF systems. By grouping different schemes, various re-sampling intervals
and trajectories are created with independent acceptance probabilities. Though,
system complexity increases which is a constraint for PF algorithms. Fu, Wang, Liu,
Liang, Zhang and Rehman [26] uses sensor fusion for target localization and calls
upon PF and uses sum of Gaussian mixtures of two independent measurements
and prior estimation as importance sampling proposal in order to determine
posteriori density function. Combined weights of radar and laser sensor
measurements decreases the uncertainty based on variance of the particle
distribution significantly. Wei, Gao, Zhong, Gu and Hu [27] proposes a different
method, unscented particle filtering that adjusts the model noise from predicted
residual values. The systems fights with particle degeneracy without losing
information on previous estimations by tuning an adaptive factor that uses
unscented transformation (UT) to keep system and measurement disturbances
minimal. Results claim that usage of UT on PF presents an enhanced performance

for navigation systems.

As PF is a rich and practical filter, various study fields are yielded. Data assimilation
and kalman techniques have specific weaknesses. On the other hand, PF has a

reach on intractable model assignments. Leeuwen [28] benefits from freedom and



convenience of importance sampling proposal density to overcome curse of
dimensionality, which decreases the efficiency of particles exponentially. The study
manages to satisfy high dimensional Lorenz models with low amount of hypothesis
for geosciences. In case of tracking variables and their higher moments, state
clustering is suggested by Lee and Majda [29]. Instead of standard and localized
PF with independent state variables, study benefits from clustering of state
variables for particle adjustment that stabilize the distribution of particles. The
method presents no divergence and robust results under poor observation
gathering regimes. Li, Sun, Sattar and Corchado [30] resorts to artificial intelligence
algorithms in order to drawback main problems; degeneracy and impoverishment.
effective re-sampling intervals and optimization of particle distribution is suggested
with intelligence approach such as swarm or ant colony optimization or genetic
algorithm for man-shifting. Filtering in real-life is the main problem of PF combined
with intelligent emphasis as more computational cost that multiples for each

hypothesis occurs.

Inspiration of this study comes from problems that is encountered, instead of
solving techniques. He, Zhang, Hu, Sun [31] touches on one of these problems
while working on an adaptive UKF algorithm with adjusted estimations based on
maximum a posteriori (MAP) solution. The emphasized problem is determining the
balance recursively between co-variance matrices for state and observation
models. Usage of maximum likelihood for achieving MAP provides more stable
convergence of estimations. Wang, Wang, Li, Wang and Liu [32] presents an
adaptive PF method for target tracking estimations. The study focuses on solving
deterministic sampling and process noise variance problems with the help of a
regression analysis. An auto-regressive model has been designed based on
histograms that identify target motion which makes the deterministic iterations
stochastic. It is shown that tracking efficiency and robustness is increased via the
adaptive model changes. Thus, a new method is derived in this study in order to

overcome the challenges with different rustic techniques.



1.3 Methodology

The study includes determination of noisy measurements with varying reliability.
Digital signal processing part is featured in order to acquire realistic measurement
inputs such as range accuracy and precision by matched filter response for
tracking based on radar specifications. Due to the non-linear relation between
desired Cartesian output model and spherical observation input model, various
non-linear target track estimators are evaluated. These estimators consists of naive
formations of extended kalman filter, unscented kalman filter and particle filter.
Particle filter is deemed worthy to be worked on depending on its recent prosperous
spot in target tracking family and its susceptibility for further performance
improvements due to various fields of study on filter's working principle. Particle
filter is fixed upon as the focus of the study through kalman based filters for further

adaptations.

This thesis contributes with an all-rounded stochastic Gaussian based adaptive
particle filter after the consideration of objectives wished to be extended and former
literature and studies. The mentioned adaptive methods are linked in harmony via
Bayes filtering modifications. Instead of non-Gauss model free PF modifications,
kalman resemblance is administered in order to be able to analyze importance
proposal outcome and fuse it with re-sampling algorithms. Since there is no
co-variance matrix implementations in PF, process noise corresponds to
uncertainty added through re-sampling as particle diversion rate. According to
these, a combined adaptive importance sampling, state process noise and
re-sampling filter is proposed that aims to overcome degeneracy, impoverishment,
divergence and over-fitting problems under non-linear/Gaussian noise dynamics
based on a well analyzed and handled importance sampling proposal with respect

to a standard naive particle filter.

The proposed method is defined as Thoroughly Adaptive Particle Filter (TAPF)
since it is designed in a stochastic manner. PF could be designed as model free,
but TAPF needs sufficiently accurate state model description in order to acquire
reliable expectations based on a MAP similar method and system stability and

robustness. As literature review points out, nhowadays model constraints could



easily be solved for target tracking by covering motion dynamics and their

moments.

1.4 Outline

The outline summary of this thesis study is as follows:

Section 2 is the radio frequency (RF) front end design part in which radar
fundamentals and working principles are mentioned. Radar parameter
specifications are discussed which has effects on significant expressions, that will
be taken into considerations for further sections, such as range and Doppler

resolution, range and function ambiguity.

Section 3 is the digital signal processing and computing part where Space Time
Adaptive Processing (STAP) methods, that is indicated in Figure 1.1, are discussed.
The formation and usage of radar data cube is explained with methods such as
pulse compression and Doppler processing. Two target scenarios with different
motion models are generated in this section corresponding to previous RF front

end specifications, signal processing and possible target tracking models.

received echo

signal for
single tone
modulated output
transmission spectrum
target
p| matched || coherent [_,, | detection
filtering integration FFT (CFAR)

Figure 1.1 Signal processing block diagram

Section 4 consists of analogic evaluation of strengths and weaknesses of tracking
techniques which includes the proposed TAPF method. Then, the techniques are
compared according to their performance with root mean square error (RMSE) and
visual evaluation on critical point estimations. The success of convergence to true

mean values without divergence or over-fitting based on the non-linearity of the



function or the dynamics when the measurements are noisy and not viable, is

represented via the proposed method.

The thesis concludes with foreseeable success of TAPF upon objectives based on
comparison between tracking algorithms in Section 5. In case of adapting it to a
real time and life application and the challenges of doing it, further improvements

are suggested based on attainments acquired during the study.
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2. RADAR MODEL
2.1 Radar Fundamentals

Radio detection and ranging, as the term implies, calculate the range of a target
from the delayed time between a transmitted pulse and its backscattered energy
from the target based on the propagation medium. Designation of RF front end is in
charge with waveform generation, amplification, transmission and receiving and

filtering of a signal. Signal propagation concept is simply represented in Figure 2.1.

REFLECTING TARGET

.
%D / /‘J. ?\}\E:.'

Figure 2.1 Radar concept

Skolnik [33] explains that General Radar formula represents the free space path
losses and other target, antenna and radar specifications that clarifies the
maximum range which a target can be detectable based on an acceptable
signal-to-noise ratio (SNR) over minimum detectable signal. Waveform generation,
antenna design and radar parameters are selected according to the desired

purpose and performance.
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Radar Range equation is as below;

(47)’S

min

1/4
P ’R
Range ;( -GG A" Rcs j

(2.1)
2.2 Front End Design Parameters

The designation purpose of the radar detection system focused on this study, is to
work as a short range radar that is capable of gathering radial velocity due to
Doppler shift, azimuth and elevation information from a single target. Phased Array
antenna systems are able to steer its received pattern digitally for that purpose
(Figure 1.3). Uniform Linear array antenna with proper gap between array elements,
which can cover SNR with focused directivity, is feasible in common radar systems.
Number of antenna elements are proportional to directivity and accuracy of bearing
information. S-band as operating frequency encloses surveillance radar

requirements.
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Figure 2.2 Phased array antenna beam directivity [34]

Maximum Range of a radar system is based on both required received power and
pulse repetition interval (PRI) which is the inverse of pulse repetition frequency
(PRF). Pulse width and PRI of a waveform determine the unambiguous minimum
and maximum range respectively. Another issue with waveform design is range
resolution as the pulse length increases, the scope it sweeps increases as well
resulting with reduced range resolution coverage. The Doppler resolution, which
will be mentioned later, is also dependant on PRF value. There is trade-off between
all the terms distinguished and should be designed carefully according to the

purpose of the system, short range tracking.
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Figure 2.3 indicates ambiguous range by representing it in time domain.
Unambiguous maximum range equation, where ¢ stands for speed of light and r

stands for pulse width is as follows;

x (PRI 1)

max = 2 (22)
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Figure 2.3 Pulse repetition frequency [33]

One wants to detect far objects with better resolution, in other words shortened
pulses with more energy. Linear frequency modulated or so called, Chirp waveform
satisfies this requirement as modulation of frequency, increases time bandwidth
product of the transmitted pulse. This process is called pulse compression (Figure
2.4) and will be mentioned how it is implemented via the matched filter digitally

further in the study.

Equation (2.3) represents range resolution for given pulse width while Figure 2.4
explains the bandwidth and pulse width product, where B equals to bandwidth that

covers the modulated frequency interval between frequency values F71 and F2.

Rres - A (23)
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3. RADAR DIGITAL SIGNAL PROCESSING

Digital signal processing (DSP) is the process where signal are plugged away at
and filtered corresponding to various operations that gather information from the
message signal. In radar applications Analog to Digital Converters are used to
modulate the signal in a way to be ready for digitally processed. High sampling rate
is needed in order to acquire near perfect construction of the signal while

converting to digital discrete time signal. [34]

The modulated signal is then beamformed, matched to transmitted signal and
compressed, shifted in frequency with Fourier transform. Space Time Adaptive
Processing can handle these operation and is able to detect targets that is
otherwise hard to detect due to background clutter and complications of operations

mentioned.

STAP bonds spatial and temporary data and acquires information for real-time
processing without any significant latency with the help of a high-dimensional radar
data cube (RDC). RDC consists of sampled signal segments, array antenna
element bins, storage of multiple consequent pulses that can be processed
coherently and a retroactive temporal dimension. Joint storage of mentioned
dimensions provides capability of processing signal processing operations along

with each other simultaneously.

STAP is used in many airborne radar systems and 3-D ground surveillance of
airborne targets as a necessity. However, it has high computational cost that cause
latency on the overall system. These constraints of signal processing should be

considered as well.

3.1 Generating Radar Data Cube

As mentioned, composing a radar data cube is necessary in order to acquire
real-time processing in space-time continuity. It is a convenient way to create
storage of data by implementing the signal information in a multidimensional

database for further signal processing. The data cube organizes the extraction and
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gathering of range, velocity and bearing information. In addition to that, accessibility
of multiple signal information in the course of space-time continuum provides the

capability of decision making during digital processing.

First dimension of a radar data cube consists of range gates which validates a
target at a specific range with the designated range resolution due to the travel time
of message signal in nature. The derivation of range gates are based on the
sampling rate of received signals. Numerous intervals are gathered sample by
sample from the reflection of a single pulse which is dependant to PRF. These
sampling intervals are binned to successive range values so as to pinpoint the
distance of the target. This dimension that includes range bins are referred as fast
time dimension in literature due to much higher sampling frequency rather then
PRF of the system.

Another dimension is generated which works as an indicator of azimuth and
elevation angles. It consists of the collection of a single target reflection in multiple
received elements corresponding to array antenna structure. Each antenna
element is tied to a specific channel with successively generates a phase
difference in collections. This sampling is then used in order to gather accurate

bearing information from the target on further STAP processors.

Third significant dimension of the radar data cube is where multiple sequential
pulses with the rate of PRF are collected and processed concurrently. The
correlation between the coherent received pulses and range gates indicates
whether there is truly a target or not and plays a great role on decision-making and
initiation of a track. More to the point, the mentioned collection, which is called
coherent processing interval (CPI), facilitates the determination of a phenomenon
called Doppler effect or Doppler shift. Processing of this shift rate in frequency
during the propagation assists on calculation of speed of the target, in this case
radial velocity according to radar. This dimension is called the slow time dimension
since it is much slower than sampling of PRF and instead composed of multiple

pulses. Figure 3.1 represents the dimensions of RDC.
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Before working on information of target returns such as range, bearing and velocity
with various processing techniques, a threshold must be determined for
identification that implies if there is a target or not. When a data exceeds the
threshold, a covariance matrix, that is formed by CPIl and array antenna element
inputs with the help of neighboring range gates, is analyzed in order to get rid of

undesired signals’ noise and false alarms. [34]
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Figure 3.1 Radar Data Cube [34]

In this study, digital beamforming of array elements which includes phase shifts
and digital beam steering is considered. Then, pulse compression and Doppler
processing techniques are implemented. Direction of arrival estimation is not
applied since the focus of the study is track performance and tracking problems of
bearing inputs could be assumed realistically. Covariance matrix estimation that
shows the correlation between RDC dimensions and Constant false alarm rate
(CFAR) algorithms are not implemented in the radar front end and STAP process
either, since the focus of the tracking problems does not cover characterization of
clutter and reduction of undesired signals by data association and convergence of
measurements. This step is assumed as irrelevant since it occurs outside the field
of this study. The clutter rejection part is ignored as the study focuses on varying
noisy environments. Background clutter and interference is assumed to be settled

during the tracking system and algorithms.
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3.2 Digital Beam Forming

For an active radar, It is desired to lock up to an area where the possible target is in
order to narrow the regarding cut of range gates and reduce the chance of missing
the target. In array antenna systems, steering, phase shifting and processing of
these are not detached as antenna processing. Considered array’s pattern itself
can be aimed at the target with phase rotation. Beam steering occurs in azimuth
and elevation dimensions. By that way, antenna system ensures only the raw data

and beamforming happens digitally by STAP processors.

The digital beamforming module is responsible for determining the directions of the
target by creating digital beams. The module runs finite impulse response(FIR) filter
with longitude that equals to number of array antenna elements. Each of these FIR
elements are pre-allocated to allow formation of a beam on specific special
direction. This spatial beamforming allows signals to be amplified only on chosen
direction intervals when the signal fall into it. All other directions are suppressed. By
that way, mentioned FIR elements are plugged into certain directions without

mechanical rotation of hypothetical antenna but with phase shift. The beamforming

process is visualized in Figure 3.2.

Figure 3.2 Block diagram of digital beamforming [35]
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Another advantage of this filtering is that the beamforming process increases the
directivity of concerned antenna elements significantly. Increase in directivity
effects overall gain and SNR of the system directly by amplifying the received

channel outputs.

3.3 Pulse Compression

Pulse compression is a technique that achieves collection of the power during the
pulse on a single absolute point as a peak. This process is done by a time domain
convolution between received signal from the target and complex conjugate of
transmitted message signal. In other words, the process increase the SNR ratio via
the matched filter. Transmitted signals from radar system are used as only
coefficients for FIR input. By this way, phase of the transmitted signal is ignored
and only the target’s phase stay online. Peaks are generated on the spots that

correlation occurs between these signals.

Simply, the usage of chirp waveform allows the system to use matched filter as a
convolution between echo signals and anti-chirp which leads to a compressed
near-impulse response as an output in theory. Pulse compression provides better
range resolution without trading it off with speed resolution. The idea is to acquire
range resolution property of a much shorter pulse by modulating a longer pulse

without increasing its function ambiguity for both cases of range and velocity.

An issue of impulse response function is the integrated side-lobes. High side-lobe
clutter levels damage the radar sensitivity as it may effect further data. The system
should be acquainted with side-lobe suppression in order to obtain better and trusty
range resolution. However clutter rejections are out of field and omitted in this study
as various assumptions on noise level will be represented. Side-lobe clutters could

be easily attenuated with directional selectivity of the array antenna pattern [36].

Range bins are evaluated at this stage so as to determine range of the target based
on the time delay. Then, Doppler processing technique is applied on concerned
range gates that includes the targets echo. The joint pulse compression and

Doppler process is expressed in Figure 3.3.
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Figure 3.3 Matched filtering of pulse Doppler radar [36]

3.4 Doppler Processing

Working principle of a radar is to perceive and interpret the delay of signals
transmitted and received. RDC creates an opportunity of processing multiple fast
time data, which has already extracted as gates that the target is within,
simultaneously with the help of coherent processing. This coherent processing
interval is called slow time and its length via the sampling rate determines the radial

velocity resolution.

Fast Fourier Transform is applied to discrete slow time dimension in order to
transfer signals from time dimension to frequency dimension. The frequency shift
between received echoes of sequential transmitted pulses manifests the velocity
relative to the stationary radar which comes up as radial velocity as an inverse
function. Figure 3.4 presents Doppler processing along slow time dimension N

based on maximum value of fast dimension L.

V, = 5 (3.1)

In equation (3.1), vr is radial velocity, fq is doppler frequency and A is wavelength of

the message signal.
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Figure 3.4 Doppler processing along max range bin [34]

As beat frequencies are generated due to Doppler frequency, the velocity
resolution and unambiguous velocity range of a target based on velocity bins is
directly proportional to PRF that leads to the trade-off between range and speed
resolution for certain operating frequency. Increased time intervals based on low
PRF between coherent processing elements also limits the ability of detection of a
target under clutter since coherent processing also comes in handy for removing
stationary or low speed background clutter for an airborne target. So, waveform

specifications should be selected carefully based on all design concerns.

Equation (3.2) implies the importance of PRF selection as it determines range of

Doppler frequency that can be estimated;

PRF = max min (32)
fd _fd

3.5 Scenario Design

Design environments are used during the study on both RF front end and DSP
simulations, and evaluation of tracking algorithms. All simulations, designations
and tracking algorithms are produced and tested in these environments starting
with design of the scenario. Radar system and signal processing parameters are
selected based on desired designated general purpose of the system. The concept

is to model tracking algorithms and optimize them for a realistic 3-D short range
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single target search and track radar system which deals with unwanted noise

signals during tracking process.
Following radar and waveform specifications are assessed in Table 3.1 in order to
achieve almost real-time simulations, observations and detection errors that feeds

the calibration and performance evaluation of studied tracking algorithms;

Table 3.1: Radar design specifications

Operating Frequency 2e9 Hz
PRF 10e3 Hz
v 1e-5s
Sampling Rate 10e6 Hz
Number of array elements 100
Element Spacing 0.225m
Total Antenna Gain 75

CPI 300
Minimum acceptable SNR 15 dB

Constant Turn Rate and Velocity (CTRV) model will be commonly used and
discussed during the study in Section 4.2. The model characterizes the yaw
movement of possible target onto a simple constant velocity motion model. Model
is widely used in two dimensional systems and acceleration moments of the model
are considered as the independent process noise. When the model is adapted to

three dimensional systems, pitch movement of the target remains as uncertainty.

Two target scenarios has been modeled in order to cover the area of model
mismatches and uncertainty degree of tracking state models. First target starts with
a 43 seconds of constant velocity motion along a single line with almost irrelevant
elevation. Then it makes a severe turn briefly and starts manoeuvring at mild
variable rates for 90 seconds. Lastly, it starts accelerating at a constant rate until it
falls out of the maximum radar range for 25 seconds (Figure 3.5). Second target

makes a helix-wise motion which is jointly centred on both dimensions. It basically
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tumble mildly laterally (Figure 3.6). The targets become online at maximum

unambiguous range 13.5 kilometers.
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Figure 3.5 Designed motion model of Target 1
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Figure 3.6 Designed motion model of Target 2
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DSP affords an opportunity so as to measures for radar outputs, target
environment and simulations. The results are yielded in Figure 3.7 for a single

pulse.
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Figure 3.7 Beamforming, matched filtering and Doppler processing outputs for a

single pulse

After these steps, interpretation of the outputs of each radar process delivers the
desired outputs which includes range resolution that is calculated based on the
time gaps between range gates that is 15 meters. A better estimate is derived
based on the half power of the output impulse response of compression that gives
a theoretical distribution for measurements with a certain variance. On low SNR

this value could be deteriorated and become much higher.

Table 3.2 Relevant resulting terms of radar system

Unambiguous Maximum Range 13.5 km
Unambiguous Doppler Range 375 m/s
S.t.d of measurements 50 m

Radial Velocity Resolution 2.5m/s
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Although programming environment is used to create the environment and the
simulations of radar system that generates measurements and track initiation,
these simulations could be adopted to real time signal processing. In order to
satisfy computational load, constraints and requirements of a real-time processing
of the mentioned STAP system consists of correlation and white noise generation,
Ozgir [37] suggests that field programmable gate array (FPGA) could be
suggested with its parallelism feature since it consists of only hardware. It can
handle programming of multiple arithmetic and computational operators. However,
graphic processing unit platforms are preferred due to the ease of processing

floating points.
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4. TARGET TRACKING ALGORITHMS

A relevant question on tracking radar systems is why one needs a tracking
algorithm instead of just initializing and focusing on a detected target. The reason is
that tracking radar systems measure the significant parameters which the system
then keeps track of by predicting the future values. This predicted state of the
relative parameters is corrected based on the recursive process of the concerned
tracking algorithm. These attributes are mandatory considering application areas
such as airborne localization, active homing, robotics, storm tracking. This study
conceives a ground-based flight guidance for calibration of interested tracking

algorithms.

The performance of tracking algorithms depends on the validity and precision of
generated tracking gate for posterior that the algorithm creates recursively from
prior information. An optimal tracker should be able to follow the true motion of an
object without diverging from it completely or over-fitting the estimations on input
measurements which is given as inexact and noisy observations. RMSE
estimations and visual resources on critical stages represents the performance of
compared algorithms in this study. Algorithms have a step time of T=1 second for

measurement updates.

Methods of tracking involves linear quadratic estimations, linearization of non-linear
systems for that matter and sequential Monte Carlo practices. Recursive Bayesian
approach is used one way or another in order to gather information on probability of
predicted density using existent data. Kalman filter theory, extended and unscented
kalman applications of it for the non-linear system, patrticle filtering and a proposed
thoroughly adaptive particle filter which resembles kalman in theory are suggested

in this section.
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4.1 Kalman Filter

KF is a linear quadratic estimation theorem that can predicts and corrects the
posterior estimations of the state at each iteration. What makes kalman filter so
special is that it has knowledge on how much predictions and measurements are

flawed and incorrect. The linear stochastic system is as follows;
x(k+1)=F(k)x(k)+v(k) v(k)=N(0,0,) (4.1)

y(k)=H(k)x(k)+e(k) e(k)=N(O,R)) (4.2)

where x and y are state and observations at time step k respectively. F(k) and H(k)
represents state and observation functions that controls the dynamics of the model.
v(k) and e(k) represents process noise and measurement noise respectively in the
dynamic system. Qx and Rx are their Gaussian covariance matrices that is defined

as additive white noises to system.

State space model of a kalman filter consists of a state process, its independent
process noise and a joint observation model with an independent measurement
noise. Kalman filter predicts and corrects based on a kalman gain which is derived
from the gaussian distribution of prior estimation and independently from the state
estimation by corresponding co-variance matrices. The mean values and their
distributions based on these error estimations anticipate the distribution of a
posterior estimate which leads to searching of the best solution at each iterative

step.
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Figure 4.1 Kalman filter sequel [38]

Figure 4.1 is formed of Riccati equation derivations that corresponds to prediction
and correction stages of kalman filter. Kk is the kalman gain that tunes and
minimizes the error co-variances for future estimations where k indicates the
current track step. The representations of variables that is explained in Figure 4.1 is

as follows:

k-1 previous time step, state estimates xx and xx.s, state transition function A,
Control function B with control input uk, error co-variance matrix P, observation
function H, process and measurement noise co-variances Q and R respectively. In
correction phase posterior state estimate is updated based on prior state estimate
that is determined during prediction phase, kalman gain and innovation residual

(zk-H*xx) where zx is actual measurements

KF is almost flawless and optimal for cases that obtain linear functions and
gaussian distributions around it. However most tracking radar systems consist of
non-linear functions due to spherical measurements while one needs cartesian

mapping instead of curvilinear outputs. So, kalman filter is well out of the field as
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one needs to make better assumptions on error estimations since the mean and

variance of the function outputs are no longer gaussian.

4.2 Extended Kalman Filter

Kalman filter is unable to calculate the mean and variance values of possible
distribution of a non linear function, in this case different observation and state
coordinate models. Linear approximation is required in order to estimate utilizable
gaussian approach which is achieved from the first order derivative of Taylor series
applied on estimations. This process is referred as extended kalman filter (EKF) as
it offers an extension by linearization to formulation and calculation of kalman state,

observation function and corresponding covariance matrices.

Figure 4.2 mentions about linearization errors of EKF when the function grows
apart from the mean. p(x) and p(y) is probability density functions, before and after
non-linear transformation respectively while g(x) is the approximated
transformation function. Right-hand histogram implies on the increased mean

divergence error that is caused by poor transformation.
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As the measurements consists of azimuth, elevation, range and its first moment,
they need to be transformed into “x-y-z” positions and their higher moments for
state estimations. Since linear approximation is not accurate, one needs a proper
state transition model matrix in order to specify significant motion parameters.
CTRV comes in handy as it extends Cartesian position and velocity model with a
yaw measurement that is predicted and merged inside the state transition function.
CTRV is a consistent model in two dimensional systems. It can be applied in 3-D
motion model due to its effectiveness for manoeuvre with fairly low dimensions,
with model mismatch that can be handled. It is known that, usage of Cartesian
velocity instead of polar velocity in state transition function results with better

approximations. [40]

State Vector and Transition Matrix:
X=[x,y,z,x,p,Z,0] (4.3)

For equation (4.3), (4.4), (4.5), (4.6), state variables x, y, z are Cartesian positions.
X,V ,z are respective velocities and @ is independent turn rate. T is time step

interval that is designed as 1.

X+ isin(a)T) _2 (1-cos(wT))
@ @

v+ X (1-cos(wT))+ b (sin(wT))
0] 7 @

¥ )= zZ+z

S &) xcos(wT) - ysin(wT) (44)

xsin(wT)+ ycos(wT)

z

()
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Tracking algorithms in this study are based on CTRV model for precise comparison
between their performance under certain circumstances. Augmentation of a turn
rate provides tracking of highly non-linear dynamic target model without increasing

the state dimensions excessively.
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Figure 4.3 EKF Formulation [38]

Figure 4.3 shows that EKF differs from KF based on computation of jacobian
matrices Hx based on f and h function derivatives. that is derived from the
coordinate transformation between cartesian and spherical. Jacobian matrix is the
computation derived from the Taylor series that deals with the linear approximation.
Jacobian computations are responsible for transformation of noise covariance
matrices in order to relate them. Prior predictions are mapped to spherical
coordinates, which is called the innovation residual part, and posterior estimations
are gathered with linearization between state transition and observation functions.
As the residual mapping is not one to one, Kalman gain does not control a portion
of the system and divergences are expected when the model probability

decreases.
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Measurement mapping vector and derived Jacobian matrix for CTRV respectively:

P+t + 27

P
o | |arctan(z/(yx* +y*)
h(X,)= = arctan(y/ x) (4.5)
® . ; ; )
. XX+yy+zz
P JxP+y*+ 27
—r ) z 0 0 0 0
X+ VX +7 |+
Xz yz — ¥+ 0 0 0 0
@: ( \/xz +y2 +Zz)2 \/xz +y2 ( \/xz +)72 +Zz)2 \/xz +y2 ( \/xz +y2 +Z2)2
v .
7 yz N yz 0 0 0 0 0
e R y :
( 2 +y2 _’_Zz)yz ( m)yz ( \/xz +y2 +Zz)3/2 \/xz +y2 e \/xz +y2 7 \/xz +)/’2 e
(4.6)

In equation (4.5), p is range, 0 is elevation, ® is azimuth, p is radial velocity.

Although EKF is widely used for non-linear systems, it is not close to being an
optimal estimator for target tracking unlike KF. Approximations are inaccurate due
to capturing only the first moment of the terms as linearization happens on a single
point. Therefore, the system prones to diverge under bad design parameters,
mismatched model or poor quality observations. One of the possible solutions is to
use a bank of EKFs with varying state models and uncertainties based on process
noise with a likelihood estimation between them using an interactive multiple model
that covers all the possible dynamic changes of a motion model. Based on
miscalculated means, initial estimations should be close to true values or else they

should be adapted by optimization techniques.
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4.3 Unscented Kalman Filter

UKEF is designed simply to obtain better performance on non-linear functions by
approximating almost a true gaussian around the mean of estimations by dealing
with a bunch of points instead of transforming around a single point. Since Taylor
series expansion terms increase exponentially, third order approximation from its
derivatives give nearly perfect essential results. UKF manages that without any

linearization process delay for predictions and their covariances.

UKF attempts to structure an optimal KF for non-linear functions. It benefits from
sigma points in order to handle approximation of Gaussian plantation with UT
instead of sub-optimal first order linear EKF approximation. Sigma points are the
towering individuals that represents whole distribution. Certain points are taken into
consideration at state coordinate system which manages initial source Gaussian
error. Weights are assigned to these points around the mean. Then, these points
are propagated mapped through measurement function and a new Gaussian is
composed from weighted sigma points. New attributes of the transformed

Gaussian are approximated such as mean and variance [41].

Number of sigma points, that scale the dimensions of state estimate, is derived as
2n+1 considering “n” denotes the number of state model dimensions. “X” is the

sigma point matrix in this case.

XO :/'lx
X, =u +K(n+y)P), for i=l,..,n (4.7)
X,=u —Km+y)P),, for i=n+l,..2n

v =n(a’ -1) (4.8)
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w; represents weights of corresponding sigma points, ¥ is scaling factor, £, is

priori mean and P is priori co-variance matrix for equations (4.7), (4.8) and (4.9).

These sigma points are propagated through non-linear function separately.

Scaling factors for sigma points, a and B represents the spread intervals and
distribution specifications of the sigma points respectively. f=2 is designed as
optimal for Gaussian distribution. Sum of weights of the sigma points are equal to 1

and calculated as;

W, = v
n+y
TW, = . +(1-a’+p)
n+y (4.9)
: =# i=1,..,2n
2(n+y

Then, new mean and co-variance should be estimated by multiplication of weights
and projected sigma points based on CTRV for corresponding dimensions. Then,
the outcome is relocated to measurement space from state. State and
measurement functions that is implemented for these calculations are same

functions that are mentioned in previous EKF section.
Figure 4.4 indicates the near-perfect approximated error co-variance P throughout

the non-linear function g(x) with better results than linearization and less hypothesis

is used called sigma points.
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Figure 4.4 Unscented transformation covariance accuracy [42]

Instead of Jacobi computations and linearization, UKF calculates the prediction
error via the cross-correlation between the locations of sigma points around the
mean in state space and measurement space. The resulting computation kalman
gain is similar to the one in EKF. “T” represents the cross-correlation instead of

linearization and “Q” represents measurement noise in the following Figure 4.5.
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Figure 4.5 UKF correction compared to EKF [38]

UKF has optimal Gaussian approximation for non-linear functions. Computational
cost is no more than EKF with better performance. Unreasonable model mismatch
can theoretically be handled by uncertainty characteristics. Adaptive process noise
estimation based on state circumstances can be implemented in order to get better
stability, convergence, smoothness. Matching degree of process noise distribution
based on prior information or uncertainty co-variance matrix estimation at present
time are examples of study topics that has been implemented in literature as
adaptive UKFs.

Although UKF supplements the desired purpose which is tracking, Han Song and
He [41] mentions that UKF has a narrow working field for improvement on any
aspects. Selected inputs that completes UKF to a closed system are sigma variates;
a, B, process and measurement noises; Qv, Re, and initial estimates; xo, Po. Initial
estimations converges with the increasing number of recurrence, UT parameters
have negligible effects on estimation accuracy and precision since they are related
to higher order terms of derivation and could be calibrated optimally beforehand. Qy
is the only parameter which can be profitable on further performance measures as
Re is stochastic and depends on known measurement error or clutter patterns. If

priori or deterministic knowledge of noise exceeds the limits and mismatches with
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the respective dimensions in state space, the system suffers from degradation
caused by lost stability. Otherwise, noise is added the system which causes
over-fitting on faulty measurements. This performance issue is the one of the few

field that may be improved by mentioned parameters.

4.4 Particle Filter

Particle Filter are based on Monte Carlo sampling method on Bayesian network in
order to achieve better approximations on complex dynamic systems. Nowadays
computational and physical restrictions are costly but manageable with parallel
computing on hardware architectures such as FPGA which brings the particle filter

applications back for high dimensional systems.

Multiple particle are systematized instead of a single hypothesis in particle filter. It
can deal with non-Gaussian noise output directly, as multiple hypothesis represent
the posteriori joint error probability distribution by shaping it. Range of source
Gaussian is maximized by the repeated reproduction of particles. In this study,
CTRV is suggested to particle filter as a transition model. Model works with 1000
samples which is assessed as enough for a non-clustered dynamic model with 7

dimensions.

This section of the study stresses on naive particle filter theory and a simple
implementation of particle filter. PF is known to be distressed by particle
degeneracy and impoverishment. Degeneracy is caused by likely particles getting
bigger weights and bad assumptions diminishing. The loss of control group is
solved with re-sampling which causes impoverishment caused by lost information
on particle states. Design details and upcoming problems are discussed at next

section.
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Figure 4.6 Naive particle filter steps [43]

First, state motion model is applied to initial equally weighted and distributed
particles. Correction segment of particle filter includes important sampling proposal
which evaluates every particle due to their probabilistic occurrence likelihood and
weights them. Sub-optimal maximum likelihood and a Gaussian framing are
imposed as the sampling proposal that leads to state estimation which is the
weighted mean of the distribution outcome of weighted particles. Lastly, a
sequential importance re-sampling process is applied on weighted particles in
order to obtain new unbiased particle distribution with normalized weights based on

process noise. The cycle continues with motion model drift again (Figure 4.6).
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Figure 4.7 Simple particle filter algorithm [44]

Figure 4.7 shows the iteration of standard particle filter. N is number of particles, k
is time step as initial estimates for each particle x«' are propagated through model.
Then, a weighting process of particle probabilities occur solely on maximum
likelihood of predictions based on measurements, p(z«x« ). Weights are normalized
to a sum of 1 and re-sampled based on specified scheme in order to keep particle

amounts alive.

Although particle filter obtains good results based even with a sub-optimal
designation, its real-time tracking ability without latency is poor due to the number
of hypothesis. However, it is ripe for development as it has the ability to produce
probabilistic approximation of whole posterior density function and observe it
analytically for further improvements and lots of deterministic design parameters

that could be adapted jointly.
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4.5 Proposed Method: Thoroughly Adaptive Particle Filter

Sequential Monte Carlo algorithms provides complete information on posterior
density function for a Bayesian framework. The context gives opportunity to make
statistical inferences from the predicted output. Importance sampling proposal of
TAPF algorithm resembles kalman-based filtering and keeps track of prior tractable
predictions in order to refine posterior estimations and converge them to true mean
using Gaussian framing. Particle filtering has the option to represent full posteriori
density function with multiple hypothesis and handle intractable Bayes filter
equations. Kalman resemblance creates an opportunity to analyze and benefit from
created posterior density characteristics that is applied with Gaussian laws and
statistics. Mutual relationship of sampling and re-sampling processes are defined
with an error margin factor. This factor that arbitrate the regression ratio of the

system, is derived from Gaussian posterior estimation laws and statistics,

One purpose of improved importance sampling method is to prevent divergence
when the particles are strict due to determined low additive noise. Other purpose is
to forestall overfitting, which is convergence to uncertain measurements due to low
trust on suggested model. Adaptive re-sampling, process noise computation,
marginalization of correlation between joint Gaussian are implemented as a MAP
design with an interconnection between mentioned methods in order to achieve

expectation maximization.

The proposed TAPF method contemplates a system environment in which the
algorithm manages to handle the quantization step, which is a coefficient factor for
importance proposal, based on retrospective re-weighting. The main problem that
comes up with the multiple hypothesis computation is that particle degeneracy.
High probability particles keep getting heavier with reliable measurements as low

probability particles diminish which disturbs the clarity of posterior distributions.

Re-sampling step occurs in particle filters in order to distribute the particles again.
However information is lost with the abandoned particles and distribution pattern
based on impoverishment of changing particle span and weight at conventional

importance re-sampling methods. In order to reduce the dependency of inverse
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ratio from trade-off between degeneracy and impoverishment, local search
importance re-sampling (LSIR) is applied. The output distribution is handled with
adaptive process noise that takes the noise of nearby previous measurements as

basis.

4.5.1 Importance Sampling Proposal

Importance sampling proposal is a variance reduction method that determines the
hypothesis that has more impact than others. KF is successful at handling process
and measurement noise dependency that is derived from design of discrete time
model. The additive Gaussian noise sequences are assumed as independent
themselves. However, there is dependency between steps of them. PF is unable to
relate this dependency as a general solution. [45] So, importance sampling
proposal function is optimized with Gaussian mixture based on the chosen

dependency type that is shown in the following Figure 4.8.

Figure 4.8 Noise dependency of recursive system [45]

State and observation functions consist of CTRV model transformations is given

as;

X, = () v (4.10)
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yk :hk(xk)+ek (4'11)

The state space equations xx (4.10) and yx (4.11) indicates the state and
observation that determines the posterior distribution. During the segment k-1 and
k represents previous and current time steps respectively that associates the
additive process and measurement noise dependency vk-1 and ex. fk and hk consists

of non-linear state and observation functions of CTRV model.

Structure of the dependency is as follows where the probability function gives the

density shaped with multiple hypothesis variables X and Y:

p(xk‘Xk_lp)lk_l) :p(xk‘xk—l) (412)

POX Y ) = p(relxes X)) (4.13)

Equations (4.12) and (4.13) gives conditional probabilities for the mentioned state
and observation functions based on the noise dependency. It is shown that
measurement likelihood is dependent to both prior and current predictions in

equation (4.13).
If we characterize the probabilities of information on previous and present

estimations with present measurement with respective additive Gaussian noises, it
allows the decomposition (4.14) from (4.12) and (4.13).

PV ,€) = p(ek‘vk—l)p(vk—l) (4.14)

Based on this decomposition of the mentioned state and measurement noise

dependency, the relation between iteration steps is derived as:
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P Velx) = P(xk‘xk—l)p (Ve xi) (4.15)

As Gaussian resemblance is established, corresponding Bayesian theorems (4.16),
(4.17), (4.18) are practicable.

p(AB)

= p(AB
p(B) PAp) (4.16)
B|A)p(A4
oAl = 2EAPA)
p(B) (4.17)

p(B)=Y_ p(B|4)p(4) (4.18)

Xk-1 condition that represents the priori data is collaborative for each element for the
decomposition equation derived from noise dependency (4.15). The condition is
simply met by propagating prior samples through the state model. Using mentioned
Bayesian theorems on p(xk,y«|xk-1), considering A and B incidents correspond to xx
and yx functions respectively, one can achieve equation (4.19) where n is added in
order to represent the samples that shapes the probability density function that they

are within and k is time step.

p(y, ‘x,’: X)) P(X; ‘xl:lfl)
P,

p(xk xZ—I’yZ) =

Xi1) (4.19)

Where;

p(yk‘x/?—l) = ZP(J’k

xl? ) 'xl’:—l )p(x, xZ—l)

(4.20)
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In equation (4.19), p(x«|x"k-1,y"x) is the proposal density function that is quantized
with prior density functions (4.20) which gives the weights to each sample based on
their importance determined by the equation. p(y«|x"x, X k-1) is maximum likelihood of
samples based on measurements. p(xk|x"k.1) is predicted state based on priori
estimation. p(y«|x"x1) is quantization factor that indicates data likelihood that

determines the reliability of measurement yx at time step k.

Since the observation model is multi-dimensional and kalman resemblance is
desired, a multivariate Gaussian model is implemented as for maximum likelihood
framing. Weights of samples that shapes maximum likelihood p(y|x"xX"-1) is
represented as Wikeinoos IN @ Gaussian window. R is measurement noise
covariance, y"x is samples that is propagate and transformed throughout the model
in equation (4.21).

~ 1 R 1O o)

Wiikelihood = 2
(27) (4.21)

Quantization factor in random process is meant to be a coefficient factor for
probability functions. In case of particle filters with multiple hypothesis, quantization
shapes the posterior density and determine the balance between state estimations

and measurements.

A standard PF with sequential importance re-sampling and sub-optimal sampling
has performance flaws and mismatches due to weighting based on maximum
likelihood of an uncertain measurement. Since unbiased re-sampling resets the
information on prior state estimation weights for each hypothesis, PF tends to lose
grip with each particle distribution. Figure 4.9 implies loss of information on prior

estimations with each iteration based on particle effectiveness.
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Figure 4.9 Sub-optimal importance sampling

Sub-optimal quantization as a denominator that cancels prior probabilities that

leaves maximum likelihood, p(ykx«" ) as solo importance parameter in standard
particle filter is given below:

q (xk‘xk—l) oc p(X[x; )

(4.22)

probability

Priot—k-p. Likelihood

v

single variate xx

Figure 4.10 Bayesian estimation for importance sampling
Optimal posterior information is shown in Figure 4.10 with Gaussian windowing.
Mean correction estimations are deduced based on these probability weightings.

However particle filter lacks the prior information as particles are reshaped and
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weighted with each re-sampling iteration that is needed to control degeneracy. For

that matter LSIR method is fused with proposed importance sampling.
4.5.2 Importance Re-Sampling

Benefits of LSIR is visualized in Figure 4.11. Relativity between sampling and
re-sampling is covered with LSIR as prior inputs for sampling proposal has known
and biased distribution that is established to adjust over high probability regions
with a desired distribution. Weights are dismissed in order to adjust a new mean.
This method is known to acquire more effective sample size that leads to better

results when the model dynamics are designed appropriately. [46]
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Figure 4.11 Local search importance re-sampling

Another idea behind the administered LSIR method is to keep track of the prior
functions based on a statistics threshold that determines particle degeneracy
exceeds a limit. The limit is determined by the ratio of the decay between effective
sample size and posterior density function variance as both is expected to decay
with the same logarithmic ratio as variance breeds from multiplication of two

Gaussian. This approach allows the system to re-sample prematurely when
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unexpected dynamic divergence occurs. This re-sampling trigger will be detailed in

Segment 4.5.4 which is defined as error margin factorization.

4.5.3 Adaptive Particle Distribution

Importance weights of particles, w;, that is determined by the proposal function, is

presented in Equation (4.23) After passing all the particles through whole proposal
calculations, the weights are normalized whose sum is equal to 1 in Equation (4.24)

where N represents total amount of particles. Weighted means for each state

variable, ;' is spotted as the new estimation whose probability density becomes

future prediction for the next step if re-sampling does not occur. ii denotes state

dimension.
~n _ Wikeihood .+ Wiet
Wk o k-1 n n n
Zs Pl X)) P(X X)) (4.23)
n 17{}k
e v
Z Wi
1 (4.24)
i ns .  n
Hi = Zxk Wi
n (4.25)

If re-sampling occurs a new adaptive process noise, that determines the respective
distribution after local search for weighted samples, needs to be determined in
order to prevent the increase in data association ambiguity caused by ascending
distribution. Process noise co-variance can be tuned up so as to compensate for
the uncertainties in motion model dynamics for 3-D manoeuvre and acceleration in
CTRV case. However validation gates that is formed by particle distribution getting
bigger. This phenomenon is controlled by real time adaptive noise co-variances by
UKEF. In case of particle filter it causes degeneration and impoverishment instead of

divergence as the process noise is the weight spread ratio.
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Maggio and Cavallaro [47] suggests an adaptive particle distribution with a
transition model free system. As system does not propagate particles, the study
focuses on portraying uncertainty and covering it with particle distribution. Though,
this system is ineffective, it gives an inspiration for adjusting particle distributions
based on mapping the difference between measurements and estimations at same
time step while a couple previous steps are taken into account. Qi represents
adaptive process noise in observation coordinates as i is the dimension size of

observation transition function. Future estimations, p,  are transformed to

spherical coordinates as well.

VO, =, Jyi—um]/3

(4.26)
4.5.4 Error Margin Factorization

As we have perfect Gaussian approximation of estimations, the statistics for
probability density frame becomes tractable with distribution statistics [48].
Effective sample size, Nerr is contemplated in Equation (4.27), described as the

distinction between weight impact of particles.

1

N,=——
eff "

>

n (4.27)

In this study, measurement noise co-variance, R is designed to be stable as no
clutter involved in the design of the system. Adaptive R could be established based

on kalman like residual calculations in case of a non-stable R.

Equation (4.28) computes the mixed Gaussian noise variance o, at time step k.

the value s denotes the time steps in which last re-sampling occurs.
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2 _
%k = 1 k—s
+

O +o;, R (4.28)

Confidence interval z,,, defines the effective interval of a Gaussian distribution.

It is chosen to be 95% of sample space which corresponds to 2 S.t.d. margin.
Equation (4.29) and (4.30) determines the error margin and its threshold

respectively on each iteration of algorithm.

2 2
Err2 — (Za/z) Oy

eff (429)
2 (Za/Z)ZR
Err,” = N/Z .30)

When Err > Errr  re-sampling occurs.

As the denominator of the proposal computes data likelihood based on each
particle’s hypothesis in a Gaussian window, quantization changes the histograms
and refine them based on specified number of prior steps k-s instead of being a
mere coefficient factor. That being said, coefficiency attribute of quantization
regulates the weighting spread and allows for higher runs without re-sampling
when dynamics are estimated with success. The cases that re-sampling occurs is

as below:

Re-sampling occurs when effective sample size are low with respect to adaptive
particle distribution, based on data likelihood determined by change in
measurement co-variance. This allows the algorithm to keep track on mean even
though the measurement are poor until the expected motion loses its validation and

can’t be met by effective sample size under assigned variance.
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If the algorithm converges and stabilize at a weighted mean estimation too fast,
system re-samples as error margin exceeds the threshold due to distinction
between weighted samples grows sharply. Threshold is exceeded based on high
search interval for particles defined as mixed Gaussian variance. This prevents
non-precise, diverged track under high measurement noise. In other words, as
error prediction is dependant on both weighting and distribution sampling volatility,
system invokes re-sampling when the estimations converge to expectation too fast
which may not be accurate or the predicted posterior estimation mean diverges too
much. These specifications increases the accuracy of desired deterministic
re-sampling intervals which also provides accurate quantizations to sampling and

re-weighting of particles.

Re-sampling occurs based on possible extension or contraction of measurement
error or a possible severe movement that changes the estimated mean. The
system re-samples twice when non-linear motion happens and mean estimation
reliability is out of date. First re-sampling process resets the quantization element
with particles located around prior highly weighted ones. Second one, adjust the
particles based on simply maximum likelihood since all prior information on
particles and density statistics is lost. This allows for a new particle set to determine
a better mean estimation around recent motion dynamics with up-coming
measurements. This allows two step fast convergence back to true tracking after

abrupt changes in motion happens.

Figure 4.12 implies the significance of quantization determining importance
sampling proposal as a better adjustment is made based on prior and maximum
likelihood estimations’ balance reshaped by quantization factor. That is considered
a cheap MAP method without any complex calculations but using auto-regression

for reliable measurements.

On the other hand, Figure 4.13 indicates the quantization factor lowering the error
margin when poor measurement abruptly occurs. Lower error margin means
keeping information alive that supports better data flow to quantization unit. In both
noise cases expectation maximization is produced via analyzing priori information

trajectory and sequence.
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4.5.5 Pseudo Algorithm

Mentioned complex or default calculations are omitted and described

inscriptions in brackets in pseudo code Figure 4.14.

as

TAPF for 3-D tracking;

Xy, F, — Initialization
For n=12,...N
Form Samples: x; = x, + \/?O*randn
w, =1/N
EndFor
s=0
Form Transition Functions: (CTRV models fand h with dimensions ii and /)
Initial transformed process noise: Qi = h(PO)
For k=12,....T

For n=12,...N

Propagate Samples: X, = f(x, ;)
Transform Samples: )_//? = h(x;:)

. P _ 1 ‘ R‘-”Z TV ZFOTDRT (=)
Weight p(yi|x"k,X"k-1): " likelihood — (27?)”2

EndFor

~n

n Wiikelihood

likelihood — NN ~,
Normalize: Zl Wiiketihood

n % . N
Wiikelihood = WVk-1

W}Z - k-1 n n n
Weight Proposal p(xk|y™x,X"k-1): ZS P x> X)) P(X | X )
W
Wi = =
Normalize: Zl Wy
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Weighted Mean Estimation:

Ne/f - 2
Determine Effective Sample Size: (Z Wi )

(If measurement noise is varying — Adapt R based on residual function)

) 1

Tk = 1 k—s
3 +
0 +o., R

Gather Posterior Quantized Density Variance:

(Confidence interval Z,,7 corresponds to 20 margin)

2 2
Er? = (2412) T

Determine Error Margin of Posterior Density: o

2

z R
E]"]"Tz — ( a/2)
Determine Error Margin Threshold: N/2
If Err>Errr
k i i

Determine Transformed Process Noise: \/Qi = (Zk_2 Vi — My )/3

Ss=k
For n=12,...N

Resample: x,’j — (LSIR method)

Perturbate Samples: X; = X, ++/Q *randn
w, =1/N
EndFor

Endif
EndFor

Figure 4.14 Layout of TAPF
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A completely stochastic new adaptive algorithm is designed for optimizing 3-D
tracking scenarios with less computational cost compared to its rivals, intelligence
algorithms. The interconnection between computations of sampling, re-sampling
and distribution proposals is provided with error margin factorization which brings
the system to a stochastic level that may work on any tracking scenario with given
primary model, without entering any deterministic parameter. With the
implementation and adaptation of less considered noise distribution and
effectiveness of error margin derived from density function, expected

improvements are as follows;
Solved impoverishment problems as re-sampling timer is based on predicted error
of sampling proposal which is determined by existent distribution spread of

particles,

Faster convergence and improved mean tracking based on residual information

usage ratio controlled by error margin factor,

High performance under noisy observations as divergence or overfitting problems

are appeased with optimal analytic expression of tracking proposal.
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5. Results and Discussion

This section consists of comparison of given algorithms under various noise
circumstances. Standard deviation of observation noise is denoted as S.t.d. in

meters for the following results.
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Figure 5.1 UKF results for Target_1 with S.t.d.= 50

Figure 5.1 and Figure 5.2 proves that UKF and PF are practical non-linear track
estimators with high quality error approximation and convergence on reliable
measurements. PF has better results due to weighting the complete density
histogram while UKF uses sigma point cross-correlation. Figure 5.3 represents
that the performance of PF is enhanced with the implementation of TAPF algorithm
as TAPF has improved techniques for mean estimation. It is shown that TAPF is
able to capture non-linear motion sooner and manages a fairly perfect 3-D tracking

on true trajectory when there is measurement reliability.
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Figure 5.3 TAPF results for Target_1 with S.t.d.= 50
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PF slightly loses control on severe changes such as second 43 in target motion
dynamics and model mismatch such as acceleration at second 140 as shown in
Figure 5.4 for Target scenario 1. TAPF has better manoeuvre control than PF on
severe changes when the model satisfies the dynamics of the motion. Figure 5.5,
that shows RMSE in meters, proves a slight improvement for TAPF based on
effectiveness of particles and efficiency of the system design that adapts to the

balance change between estimations and measurements quickly.
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Figure 5.4 PF RMSE values for Target_1 with S.t.d.= 50
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Figure 5.5 TAPF RMSE values for Target 1 with S.t.d.= 50

Figure 5.6 presents that UKF can compensate model mismatch by describing its
uncertainty as process noise even for higher order moments that is described as a
yaw and pitch angle acceleration uncertainties. PF with 1000 samples, which is
lower limit for such 3-D radar tracking, fails to keep accurate track as shown in
Figure 5.7. Even though the track system does no diverge, its performance
degrades due to degeneration of particles constantly, followed by impoverishment

and growing uncertainty gap and distribution between particles.

Figure 5.8 represents that TAPF is an improvement on PF as it resembles kalman
based algorithms. However, nature of the filter involves particles that tends to lose
effectiveness exponentially under uncertain poor model. UKF works better under
model mismatch as a standard. However, model mismatch does not have
significance for an emphasize since nowadays model requirements can easily be

met with various theoretical or practical implementations for a tracker.
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When the measurements are worsened UKF’s error co-variance gets bigger which
results in convergence to poor measurements in order to be able to keep the track
without divergence. Figure 5.9 represents the inefficiency of mean estimations of
UKF under noisy measurements. PF has better mean estimations as it considers

and weights multiple particles as predictions which is shown in Figure 5.10.

Figure 5.11 yields the leading contribution of this study as it visualize the strength
of TAPF which is the perfect mean estimations upon true trajectory under highly
noisy measurements. Even though measurements have substantially little
meanings, the auto-regressive MAP model and supportive adaptation for that
principle makes TAPF robust. The method has the ability to both manage reliable

means and converge quickly and adapt to changes and disturbances.
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The results gives insight to the weaknesses and strengths of different algorithms
under same system specifications for comparison and input measurements.
Besides visual analogy, Root Mean Square Error (RMSE) estimator is used in
order to determine the spread of the expectations which represents the
performance with positional error scale in meters. Truex represents the true
trajectory of the target motion while ii=3 is meant for only zero order moments,

Cartesian positions.

Zii (True, — u,)*

12

(4.1)

RMSE, = \/

Mean of gathered multiple RMSE for the studied algorithms are given below:

Table 5.1 Performance evaluation of filters based on RMSE values

RMSE Table | Reliable Measures | Poor Measures Mismatched Model
EKF 88.4 N/A N/A

UKF 40.8 95.0 39.6

PF 23.2 721 123.8

TAPF 18.0 43.3 65.8

Reliable measurements correspond to Target 1 with S.t.d=50 in Table 5.1. Poor
measurements represent Target 1 with S.t.d.=300 while Target 2 with S.t.d.=50 is

defined as Mismatched Model.

First order linearization has high error when the scale goes higher. Standard EKF
should be optimized and fused with other methods in order to achieve a purpose on

3-D target tracking.

On the other hand, UKF imparts better results than PF under the assumption of
model mismatch. As sigma point approximation converges to optimal Kalman
co-variance predictions, UKF manages to track Target 2 due to superior uncertainty

deduction rather than a PF which lacks particle concentration under non-modeled
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uncertainty and high dimensions. Despite having better results UKF process noise

still should be adapted since low significance of priori causes overfitting.

Standard PF has increased performance and better RMSE values when the model
is valid but the performance relies on chosen particle distributions since there is
limited information on prior conditions and likelihood function output happens to be

deterministic when it comes to convergence rate.

As seen from the RMSE results and relevant figures, proposed TAPF method is
quite an improvement over the performance of UKF and PF. There is no input to
the algorithm except for initial estimation and error which makes the prediction
principle of the algorithm, highly stochastic that could be used on every situation.
Minimal model mismatches are benign even with the increasing dimensionality

since process noise is refreshed when needed.

Another prospect is that the filter has complete knowledge on prior estimations and
likelihood of measurement data as the system gives near perfect probability
statistics. This opportunity is both used in order to handle process noise, which is
less studied in PF applications contrary to UKF, and used to determine optimal
solutions. Figure 5.12 and 5.13 shows the over-powered mean track quality of the
TAPF compared to a standard particle filter under highly noisy environments up to
900 meters of measurement error. The decrease in TAPF RMSE for poor
measurements in Table 5.1 compared to other filters is overwhelming. This
enhancement, that is based on perfect mean convergence and adaptation to

changes, stands as the main contribution of the proposed TAPF.

Divergence and overfitting trade-off is surmounted with proper re-sampling
specifications and weighting if the state and measurement models are well
described. Since particle distribution adaption comes from the algorithm itself
certain impoverishment problems are minimized with the interconnection and

support between adapted methods.

On mild manoeuvre, all algorithms catch up based on CTRV model. Figure 5.14

represents a harsh manoeuvre of Target 1. UKF and PF has similar amount of
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divergence performances. The curse of reliability is the reason why PF can not
orientate suddenly to rapid changes since the particles moving pattern considered
these changes unlikely at first glance due to prior information. So, even though PF
uses multiple hypothesis, its highly non-linear motion results are similar to sigma
point filtering. TAPF adjusts to changes based on rationalized re-sampling timings
and corresponding arranged particle distributions with shown superiority (Figure
5.14).
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6. Conclusion

Non-linear radar tracking problems for 3-D radar applications was evaluated.
Different realistic scenarios with varying noisy measurements and model dynamics
were established with RF front end and DSP design based on RDC outputs.
Kalman based filters were studied in order to achieve desired solutions for

non-linear tracking for non-linear noisy observations.

EKF, UKF and PF are simulated and compared according to their weaknesses and
strengths on estimation and error approximation. Based on the problems detected
for 3-D tracking, a new method is proposed defined as TAPF in order to achieve
enhanced performance solutions. UKF and PF suffer from different varying
difficulties such as divergence and overfitting trade-off based on process noise,
degeneracy and impoverishment based on inefficiency of particle allocations
respectively. TAPF considers a fully stochastic approach with adaptation of filtering

methods that has no deterministic processes except for initial inputs.

Bayesian approach which is used in kalman filters is perfected for better estimation
of posterior density function as a Gaussian with the dependency of joint noise
processes. Kalman resemblance with Gaussian framing achieves an
auto-regressive optimal importance sampling proposal that maximize the
expectations with the ability to analyze output function statistically. The method is
fused with LSIR in order to diminish the effects of information loss. A proposed
particle adjustment based on adaptive process noise is formed. As the sampling,
re-sampling and particle distribution methods implemented, supports each other by
maximizing their tractability and minimizing the problems they suffer, an error
margin factorization is established in order to relate and keep the mentioned
methods intact jointly. This factorization obtains information from posterior
quantized density function to improve the reliability of the estimations and initiates

re-sampling and changes the particle dynamics based on the information gathered.

Results indicated that TAPF provides slight improvement on track estimation for
reliable measurements. TAPF responds faster to highly non-linear motions such as

severe manoeuvring and converges better rather than UKF and PF. The main
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contribution of the study is that TAPF provides nearly perfect mean estimations and
converges faster than expected on severe changes considering high measurement

noise in the system based on error margin intellect.

As TAPF benefits from prior information instead of any external methods, the
computational cost is no more than a standard naive PF. So, TAPF may be an
alternative option for costly intelligence algorithms for MAP estimation. Another
possible future improvement can be the particle distribution optimization based on
expectations. Chen, Tharmarasa, Pelletier, and Kirubarajan [49] suggests clutter
estimation to be integrated in track processor. In order to estimate clutter spatial
density, a recursive maximum likelihood method is derived considering the clutter
model. As TAPF works extraordinarily well on high noise, a non-Gaussian clutter

model and histogram could be attempted with the Gaussian mixture proposal.
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