Arising Prevalence of OXA-48 producer *Escherichia coli* and OXA-48 with NDM co-producer *Klebsiella pneumoniae* Strains

Aylin Uskudar-Guclu¹*, Mustafa Guney², Ali Korhan Sig³, Selcuk Kilic⁴,⁵, Mehmet Baysallar²

1. Baskent University, Faculty of Medicine, Ankara, Turkey
2. University of Health Sciences, Gulhane Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey
3. Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey
4. Public Health General Directorate, Ministry of Health, Ankara, Turkey
5. University of Health Sciences, Istanbul Medical Faculty, Department of Medical Microbiology, Ankara, Turkey

Abstract

Background/aim: This prospective study aimed to determine the presence of the most common carbapenemase genes, *bla*OXA-48, *bla*KPC, *bla*IMP, *bla*VIM and *bla*NDM on carbapenem resistant clinical *K.pneumoniae* and *E.coli* isolates.

Materials and methods: Isolates were selected according to EUCAST guideline; gradient test and disc diffusion with both meropenem and ertapenem discs. Resistance rates of these isolates to other antimicrobial agents were also examined by disc diffusion method. Carbapenem resistance gene were investigated by using Real-Time PCR.

Results: A total of 3845 *E. coli* and 1689 *K.pneumoniae* isolates from clinical samples between January 2015 and April 2017 were evaluated. The 419 isolates were found as carbapenem resistant but only the first resistant isolate (n=155; 126 *K.pneumoniae* and 29 *E.coli*) of each patient were included. Carbapenem resistant isolates were most frequently isolated from intensive care units (48.8%). Colistin was the most effective antibiotic (91.0%). The 121 (78.1%) of the tested isolates were positive for OXA-48 (103 *K.pneumoniae* and 18 *E.coli*) and 9 *K. pneumoniae* carrying *bla*NDM were also positive for *bla*OXA-48. VIM, IMP and KPC type carbapenemases were not detected in any isolates. **Conclusion:** Carbapenem-resistant pathogens have been shown to be able to develop resistance mechanisms with more than one carbapenemase encoding gene.

Keywords: *Klebsiella pneumoniae*, *Escherichia coli*, carbapenem resistance, antimicrobial resistance, Enterobacteriales

Received: 25ᵗʰ January 2019; Accepted: 13ᵗʰ June 2019; Published: 14ᵗʰ July 2019

Corresponding author: Aylin Uskudar-Guclu, Baskent University, Faculty of Medicine, Ankara, Turkey.
E-mail: uskudaraylin@gmail.com
Introduction

Intestinal microbiota includes Enterobacterales and members of this order are the most common types of human pathogens which cause both community-acquired and hospital-acquired infections, such as cystitis, pyelonephritis, septicemia, pneumonia, peritonitis, meningitis and catheter-related infections (1,2). Nowadays, carbapenem resistance in Enterobacteriaceae has become the most common antibiotic resistance problem worldwide (2,3). Being the major contributors to carbapenem-producing enterobacterial infections, Klebsiella pneumoniae and Escherichia coli include other resistance genes as well as carbapenem resistance genes. Acquisition of resistance to last resort drugs has also increased the incidence of mortality and morbidity rates by nullifying existing treatment options (3,4). Determination of the resistance mechanisms of these clinically important isolates is critical both in terms of infection control and public health measures and in understanding the geographical distribution of these isolates and risk factors (3). In this study, we aimed to investigate bla\textsubscript{OXA-48}, bla\textsubscript{KPC}, bla\textsubscript{IMP}, bla\textsubscript{VIM} and bla\textsubscript{NDM} genes, which are the most common carbapenemase producer genes worldwide in carbapenem resistant K. pneumoniae and E. coli isolates.

Materials and Methods

Isolate Profile

Between January 2015 and April 2017, carbapenem resistant K. pneumoniae and E. coli isolates from various clinical specimens sent to the laboratory of Gulhane Training and Research Hospital were collected. Identification of isolates were performed by using MALDI-TOF MS (Brucker, USA). Carbapenemase producing isolates were selected according to EUCAST guideline by gradient test and disc diffusion test with ertapenem and meropenem discs (5). The first carbapenem resistant isolates of each patient were included in the study. The isolates were stored at -20°C in 5% skimmed milk until use.

Antimicrobial Susceptibility Testing

Antimicrobial susceptibility tests for imipenem, meropenem, ertapenem, doripenem, ciprofloxacin, levofloxacin, amikacin, gentamycin, ceftazidine, cefepime, ceftriaxone, cefotaxime, piperacillin-tazobactam, ampicillin-sulbactam, amoxicillin-clavulanic acid, aztreonam, trimethoprim-sulfamethoxazole (Oxoid, UK) were performed by disc diffusion method. In carbapenem resistant strains, gradient tests were performed with E-test for ertapenem, imipenem, meropenem and piperacillin-tazobactam (AB Biodisk, Switzerland), and broth microdilution was performed for colistin. Escherichia coli ATCC 25922 and Escherichia coli NCTC 13846 were used as control strains (5,6).

Detection of Carbapenemase Genes by PCR

DNA isolation from bacteria was performed by boiling bacterial suspension in ultrapure water at 95°C for 10 min. Cell residues were removed by centrifugation. Bio-Speedy™ CRE Real Time PCR screening kit (Istanbul, Turkey) was used to detect bla\textsubscript{OXA-48}, bla\textsubscript{KPC}, bla\textsubscript{IMP}, bla\textsubscript{VIM} and bla\textsubscript{NDM} gene region according to the manufacturer’s instructions. The detection limit of the kit is 3 copies DNA/μL for the target DNA. For reproducibility studies, the compatibility rate was determined as 96-100% for all targets. All isolates were screened for the presence of bla\textsubscript{OXA-48}, bla\textsubscript{KPC}, bla\textsubscript{IMP}, bla\textsubscript{VIM} and bla\textsubscript{NDM} gene region separately. The amplification conditions were as: pre-denaturation at 95°C 180 seconds and multiplication (40 cycles) at 95°C for 10 seconds and 55°C for 40 seconds. K. pneumoniae ATCC 1705 blaKPC, K. pneumoniae NCTC 13440
blaVIM-1, *K. pneumoniae* CDC 529 blaNDM-1, *K. pneumoniae* CDC309 blaIMP-2, and *K. pneumoniae* blaOXA-48 confirmed positive strains were used as positive control strains.

Interpretation of PCR Results

Cycle threshold (CT)> 38 was interpreted as the reaction was inhibited or there might be contamination that inhibits the qPCR reaction in DNA isolation. In this case, DNA isolation was performed again. CT <38 was interpreted as absence of any inhibition from the sample, indicating that the reagents were working. One of the bla_{OXA-48}, bla_{KPC}, bla_{IMP}, bla_{VIM} and bla_{NDM} target gene regions tested by Real-Time PCR was interpreted as having a positive result in the corresponding gene in the bacterial isolate.

Statistical Analysis

Statistical analysis was performed using 95% confidence interval using SPSS version 15.0, similarity between ratios by chi-square test.

Results

A total of 419 (39 *E. coli* and 380 *K. pneumoniae*) carbapenem resistant isolates were detected among 3845 *E. coli* and 1689 *K. pneumoniae* isolates. 155 (126 *K. pneumoniae* and 29 *E. coli*) carbapenem resistant isolates of the first isolate of each patient were included the study. Of these 155 patients, 74.2% were male (n = 115) and 25.8% (n = 40) were females. Urine (n=45; 29%) was the predominant sample followed by respiratory (n=41; 26.5%), blood (n=34; 21.9%), wound/tissue (n=21; 13.5%) and sterile body fluid samples (n=14; 9.1%). The 95.5% of the isolates were resistant to meropenem and 97.4% to imipenem. The MIC levels of *E. coli* strains were 16-256 mg/l for imipenem, 8-128 mg/l for meropenem. The MIC levels of *K. pneumoniae* strains were 8-256 mg/l for imipenem, 8-256 mg/l for meropenem. The most effective antibiotic against these isolates was colistin (91%) (MIC levels of resistant *K. pneumoniae* strains were 8-128 mg/l), followed by amikacin (52.9%) and gentamicin (34.8%). Resistance rates of *K. pneumoniae* are much higher than *E. coli* strains. The increase in colistin resistance in recent years is noteworthy (11.1%). *E. coli* isolates did not show resistance to colistin. As shown in Table 1, the resistance rate of the β-lactam/β-lactamase inhibitor combination was 100%. Resistance rates of ceftriaxone, ceftazidime, cefotaxime and cefepime were determined at a high rate of 94.2-99.4%. Co-trimoxazole resistance was close to that of *E. coli* and *K. pneumoniae*, which were found as 72.4% and 75.4%, respectively. In Table 1, resistance rates were given to all agents tested both on the isolate basis and on total.

The studied isolates were most frequently isolated from the patients admitted to intensive care unit (ICU) (n=75), followed by surgical clinics (n=27), internal medicine clinics (n=24), and haematology/oncology (n=11), burn care unit (n=11), pediatrics (n=5) and emergency service (n=2). The majority of carbapenem resistant *K. pneumoniae* were isolated from respiratory tract specimens (31.0%), followed by urine samples (29.4%) and blood culture (20.6%).

According to the Real-Time PCR results, 121 (78.1%) of the 155 isolates studied for target gene regions were found to have OXA-48 positivity. Of these, 103 were *K. pneumoniae* and 18 were *E. coli* (Table 2). No target resistance gene was detected in 34 (21.9%) isolates (11 *E. coli*, 23 *K. pneumoniae*). The bla_{NDM} was detected in 9 (7.1%) *K. pneumoniae* isolates, co-carrying bla_{OXA-48} gene region as well. The bla_{NDM} gene was not found in any *E. coli* isolates, and VIM, IMP and KPC were not detected on any isolates. In Table 3, the numbers and ratios of the target genes in the isolates are given. Both OXA-48 and NDM positive isolates showed higher rates of resistance to antimicrobial agents (Table 3).
E. coli and K. pneumoniae are the major contributors to carbapenem-resistant Enterobacteriales (CRE) infections worldwide and they may contain other resistance genes besides carbapenemase resistance genes, which causes almost all available treatment options to be, therefore, ineffective (7). In Turkey, CRE seem to become a problem for less than a decade. In 2009, imipenem resistance was 3.1% for K. pneumoniae and had not yet been detected in E. coli isolates according to HITIT2 study (8). In another study in 2011, imipenem susceptibility was reported as 100% and 94% in ESBL positive E. coli and K. pneumoniae isolates, respectively (9). However, by 2016, imipenem resistance in E. coli

Table 1. Antimicrobial resistance rates

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>K. pneumoniae (n=126)</th>
<th>E. coli (n=29)</th>
<th>Total (n=155)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R (%)</td>
<td>n</td>
<td>R (%)</td>
</tr>
<tr>
<td>ETP</td>
<td>100.0</td>
<td>126</td>
<td>100.0</td>
</tr>
<tr>
<td>MEM</td>
<td>95.2</td>
<td>120</td>
<td>96.6</td>
</tr>
<tr>
<td>IMP</td>
<td>96.8</td>
<td>122</td>
<td>100.0</td>
</tr>
<tr>
<td>AK</td>
<td>54.8</td>
<td>69</td>
<td>13.8</td>
</tr>
<tr>
<td>GN</td>
<td>70.6</td>
<td>89</td>
<td>41.4</td>
</tr>
<tr>
<td>CIP</td>
<td>98.4</td>
<td>124</td>
<td>75.9</td>
</tr>
<tr>
<td>LEV</td>
<td>93.7</td>
<td>118</td>
<td>72.4</td>
</tr>
<tr>
<td>CAZ</td>
<td>96.0</td>
<td>121</td>
<td>86.2</td>
</tr>
<tr>
<td>FEB</td>
<td>97.6</td>
<td>123</td>
<td>89.7</td>
</tr>
<tr>
<td>CTX</td>
<td>99.2</td>
<td>125</td>
<td>100.0</td>
</tr>
<tr>
<td>CRO</td>
<td>97.6</td>
<td>123</td>
<td>96.6</td>
</tr>
<tr>
<td>AMC</td>
<td>100.0</td>
<td>126</td>
<td>100.0</td>
</tr>
<tr>
<td>SAM</td>
<td>100.0</td>
<td>126</td>
<td>100.0</td>
</tr>
<tr>
<td>ATM</td>
<td>95.2</td>
<td>120</td>
<td>93.1</td>
</tr>
<tr>
<td>FOX</td>
<td>93.7</td>
<td>118</td>
<td>89.7</td>
</tr>
<tr>
<td>PTZ</td>
<td>100.0</td>
<td>126</td>
<td>100.0</td>
</tr>
<tr>
<td>SXT</td>
<td>75.4</td>
<td>95</td>
<td>72.4</td>
</tr>
<tr>
<td>CL</td>
<td>11.1</td>
<td>14</td>
<td>0.0</td>
</tr>
</tbody>
</table>

ETP; ertapenem, MEM; meropenem, IMP; imipenem, AK; amikacin, GN; gentamicin, CIP; ciprofloxacin, LEV; levofloxacin, CAZ; ceftazidime, FEB; cefepim, CTX; Cefotaxime, CRO; ceftriaxone, AMC; amoxicillin-clavulanic acid, SAM; ampicillin-sulbactam, ATM; aztreonam, FOX; cefoxitin, PTZ; piperacillin / tazobactam, SXT; trimethoprim / sulfamethoxazole, CL; Colistin. R; resistant, n; number.

Table 2. The rates and numbers of target genes in isolates

<table>
<thead>
<tr>
<th>Target Gene</th>
<th>K. pneumoniae (n=126)</th>
<th>E. coli (n=29)</th>
<th>Total (n=155)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>blaOXA-48</td>
<td>81.7</td>
<td>103</td>
<td>62.1</td>
</tr>
<tr>
<td>blaNDM</td>
<td>7.1</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>blaVIM</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>blaIMP</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>blaKPC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>88.9</td>
<td>112</td>
<td>62.1</td>
</tr>
</tbody>
</table>

n=number

Discussion

E. coli and K. pneumoniae are the major contributors to carbapenem-resistant Enterobacterales (CRE) infections worldwide and they may contain other resistance genes besides carbapenemase resistance genes, which causes almost all available treatment options to be, therefore, ineffective (7). In Turkey, CRE seem to become a problem for less than a decade. In 2009, imipenem resistance was 3.1% for K. pneumoniae and had not yet been detected in E. coli isolates according to HITIT2 study (8). In another study in 2011, imipenem susceptibility was reported as 100% and 94% in ESBL positive E. coli and K. pneumoniae isolates, respectively (9). However, by 2016, imipenem resistance in E. coli...
and K. pneumoniae isolated from urinary tract infections had been reported as 3.2% and 36.4%, respectively, and recently, resistance rates show a rise in current studies (10). According to the last CAESAR surveillance report, resistance/intermediate susceptibility rates for E. coli and K. pneumoniae among blood and cerebrospinal fluid isolates in Turkey were 5% and 41% respectively. Although lower rates were reported from western European countries, similar higher threats in Turkey can clearly be observed for third-generation cephalosporin-resistant E. coli, multidrug resistant K. pneumoniae and Acinetobacter spp., and finally carbapenem-resistant E. coli and K. pneumoniae (11). Imipenem and meropenem resistance rates in K. pneumoniae isolated from our blood cultures increased in the last 5 years compared to the previous 5-year period, from 4.7% to 33.3% and 32.0%, respectively, showing a statistically significant increase (p < 0.001). In E. coli, the resistance rates were 4.7% for both carbapenems over the last 5 years (12). Carbapenem resistance of K. pneumoniae was reported as <1% in countries such as UK, Ireland, Norway, Germany, but 33% in Italy, 7% in Bulgaria and 62% in Greece (13). It is obvious that our data are compatible with the countries that are geographically in the same region, and the increase in carbapenem resistance has become a global problem in E. coli, as well. CRE isolates are a serious risk for inpatients and develop resistance to many other antibiotic classes. All of the isolates included in the study were highly resistant and the rate of resistance to the most effective agent, colistin, increased to 11.1% in K. pneumoniae isolates. Polymyxins, some aminoglycosides, and tigecycline are generally “last resort drugs” with in vitro activity against CRE (14). Currently, colistin, tigecycline and aminoglycosides in treatment protocols are the main options for the treatment of invasive CRE infections and combination therapy may be superior to monotherapy (15). In our study, the tigecycline susceptibility test was not performed, but the status of colistin and aminoglycoside resistance is worrying. In enteric bacteria, carbapenem resistance is mainly developed by two mechanisms. The first one is the acquisition of carbapenemase genes encoding enzymes that hydrolyze carbapenems. The other one is the structural and/or quantitative deficiency of porin expression. The most important carbapenemases leading to high levels of resistance to carbapenems can be subdivided into three groups; Metallo-β-lactamases (MBL);
Klebsiella pneumoniae carbapenemase (KPC) and oxacillinases (OXA) (2).

In Turkey, IMP-1 was reported in 2006 from *K.pneumoniae* isolate, and VIM-5 in 2003 (16,17) followed by sporadic cases and the prevalence of VIM was reported as 4.0% in the 2017 EUSCAPE report (3). Our isolates did not produce IMP and VIM enzymes. Until recently, the most common MBLs found in *Enterobacterales* were VIM and IMP, while in 2008, NDM was identified in the *K.pneumoniae* isolate and has spread worldwide. In Turkey, the first NDM-1 was detected in *K.pneumoniae* isolate in 2011 (18) and Turkey was located among the countries with regional spreads (19). Until 2015, isolates carrying both the OXA-48 and NDM-1 resistance genes were reported only from Morocco, Tunisia and Switzerland (20-22), suggesting that NDM-1 was carried to Turkey by refugees from Syria according to the reported case (23). Of the 155 isolates included in this study, *bla*\textsubscript{NDM} was detected in 9 (5.8%) *K. pneumoniae* isolates which carried also *bla*\textsubscript{OXA-48}. Significant phenotypic resistance was also observed in these strains with high MIC levels (64-256 mg/l for both imipenem and meropenem).

KPCs are the class of the fastest geographically distributed carbapenemases and the first KPC isolate in Turkey was reported in 2014 (24). In our study, KPC was not detected from any strain, the same as in the previous rectal swab screening report from Turkey (25). Despite the high prevalence rates of *K.pneumoniae* isolates in Greece and Italy, and *E.coli* isolates in geographically close countries such as Greece, Italy and Cyprus (3), KPC-positive pathogens in our country were limited to sporadic cases.

Although other carbapenemases are reported, the most common carbapenemase in our country is OXA-48, which is endemic for Turkey (19). The 103 (81.7%) of the 126 carbapenem resistant *K.pneumoniae* isolates, and 18 (62.1%) of 29 *E.coli* isolates were OXA-48 positive. In a multicenter study in Turkey, OXA-48 enzyme was determined to be 84.6% (26). The prevalence of *bla*\textsubscript{OXA-48} in carbapenem resistant *K.pneumoniae* isolates was reported as 79% and in carbapenem resistant *E.coli* isolates as 86.4% (3), which is actually statistically similar with our study (*p*=0.438). There were 34 (21.9%) isolates (23 *K.pneumoniae* and 11 *E.coli*) that carried none of the target genes. Although carbapenem resistance in *Enterobacterales* is largely developed by the acquisition of genes encoding carbapenemases, it should be remembered that carbapenem resistance may develop from alternative mechanisms such as variability in permeability. In the European CRE surveillance report of 2017, carbapenem resistance mechanism for the isolate that does not carry any of the genes was indicated on reduction of permeability (3).

In our study, these strains were not further evaluated for defining other carbapenem resistance mechanism, which was the limitation of this study. Another limitation is that it is not a multicenter surveillance study. Thus, prevalence may not represent all regions of Turkey; however it is important to observe multi-carbapenemase-producer strains and their arising condition.

In this study, *bla*\textsubscript{KPC}, *bla*\textsubscript{VIM} *bla*\textsubscript{OXA-48}, *bla*\textsubscript{NDM} and *bla*\textsubscript{IMP} resistance genes were screened in carbapenem-resistant *E.coli* and *K.pneumoniae* isolates by Real-time PCR method. Carbapenem resistant isolates were found to be multi-drug resistant and developed high resistance against other antibacterial agents, as well. Even in the last option of treatment of CRE, such as colistin, resistance to antibiotics has been observed. It has been found that some of our isolates carry more than one resistance mechanism and they have higher resistance rates.

Ethical Approval

Ethical approval is not required for this study.
Conflict of Interest

The Authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Authors’ contribution

Aylin Uskudar-Guclu (Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Writing – original draft; Writing – review & editing)

Mustafa Guney (Conceptualization; Formal analysis; Investigation; Methodology; Project administration; Writing – original draft; Writing – review & editing)

Ali Korhan Sig (Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Validation; Visualization; Writing – original draft; Writing – review & editing)

Selcuk Kilic (Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Validation; Visualization; Writing – original draft; Writing – review & editing)

Mehmet Baysallar (Methodology; Project administration; Supervision; Validation; Visualization; Writing – original draft; Writing – review & editing)

References

5. The European Committee on Antimicrobial Susceptibility (EUCAST) guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Version 2.0; 2017.
12. Mataj V. Investigation of bacterial pathogens isolated from blood cultures and antimicrobial profile in Gulhane Training and Research Hospital. PhD, Health Sciences University, Gulhane Medical School, Ankara, Turkey, 2017.