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OZET

Can Kutay TUC

HIDROPNOMATIK SUSPANSIYON SiSTEMIi TASARIMI VE ANALIZI
Baskent Universitesi Fen Bilimleri Enstitiisii

Makine Miihendisligi Anabilim Dah

2020

Siispansiyon sistemleri genel olarak, siiriis dinamikleri ve konfor bakimindan bir aracin en
onemli pargalarindan biri olup, araglarin, oOzellikle yiiksek tonajli araglarin arazi
performanslar1 ve hareket kabiliyetleri de silispansiyon sistemlerine bagli olarak
degismektedir. Bu tez calismasinda, ilk olarak hidropnomatik siispansiyon sistemi
mekanizmasinin pozisyon ve hiz denklemleri, daha sonra sistemin parametrik olarak
tasarlanabilmesi icin gerekli olan sistem giris ve c¢ikis parametreleri belirlenerek, bu
parametreler ile ilgili gerekli denklemler tiiretilmistir. Tiiretilen parametrik denklemler
kullanilarak, farkli konfigiirasyonlardaki hidropnomatik sistem tasarimlarinin hizli ve
kolay bir sekilde tasarlanmasina olanak saglayacak kullanic1i arayliz programi
gelistirilmistir. Daha sonra, dnceden belirlenen sistem giris parametreleri ve gelistirilen
kullanict arayiiz programi kullanilarak, hidropndmatik sistem detay tasarimi yapilmis ve
sistemin 3 boyutlu katt modeli olusturulmustur. Tasarlanan sistemin malzeme listesi, parga
ve montaj teknik resimleri hazirlanmistir. Ayrica, tasarlanan sisteme en Kritik yiikleme
kosulu altinda sonlu elemanlar analizi yapilmis ve sonlu elemanlar analizi sonucu elde
edilen veriler ile kullanic1 arayliz programi sonucu elde edilen veriler karsilagtirilmistir.
Son olarak, tasarlanan hidropndmatik siispansiyon sistemi i¢in teknik veri paketi

hazirlanmustir.

ANAHTAR KELIMELER : Siispansiyon, Hidropnomatik siispansiyon, Siispansiyon

tasarimi, Parametrik modelleme



ABSTRACT

Can Kutay TUC

DESIGN AND ANALYSIS OF A HYDRO-PNEUMATIC SUSPENSION SYSTEM
Baskent University Institute of Science and Engineering

Department of Mechanical Engineering

2020

Suspension systems are generally one of the most critical components for the ride
dynamics and comfort performance of a vehicle. Also, off road performance and mobility
of the high tonnage vehicles directly depend on the suspension system of the vehicle. In
this thesis study, firstly displacement and velocity equations have been derived by using
the kinematics of the hydro-pneumatic suspension unit (HSU) mechanism. Furthermore,
the input and output parameters have been specified to design an HSU and necessary
parametric equations have been derived which related with the input and output
parameters. By using the derived equations, a graphical user interface (GUI) has been
developed which enables the user to easily design different configurations of an HSU.
Then, by using the predetermined input parameters and developed GUI, detailed design of
the system and the 3D CAD model of a hydro-pneumatic suspension system have been
performed. Bill of materials, manufacturing and assembly drawings have been prepared for
the designed system. Also, structural finite element analysis have been performed for the
worst case loading conditions of the system and finite element analysis results have been
compared with the GUI output results. Finally, technical data package have been prepared
for the designed HSU.

KEYWORDS : Suspension, Hydro-pneumatic suspension, Suspension design,

Parametric modelling
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1. INTRODUCTION

Suspension systems are one of the most critical components for the ride dynamics
and comfort performance of a vehicle. Also, off road performance and mobility of the high
tonnage vehicles directly depend on the suspension system of the vehicle. High tonnage
vehicles such as tanks, tracked howitzers and fighting vehicles in military applications
generally use two types of suspension systems. Those are torsion bars and hydraulic
suspension systems. Most of the tracked military vehicles which require high mobility and
off road performance together with comfortableness and speed preferred to use torsion bar
suspension systems due to low cost and low maintenance. But, hit accuracy and long term
combat requirements brought the necessity of using more comfortable and higher off road
performance for these types of vehicles. The solution to these new requirements is found
by the hydro-pneumatic suspension systems.

“A suspension system usually consists of a spring and a damper. The spring alone would already
allow the decoupling of input side and isolated side just by its elastic properties and would compensate
accelerations/displacements from the input side. Yet, due to the displacement, the spring would store energy
and therefore the system would keep on oscillating permanently. Not only this, in case of further excitations
with suitable frequency and phase, it would pick up further energy and the amplitude on the isolated side
would increase even further (resonance). If this happens the result is the exact opposite of the original goal,
instead of reducing the accelerations on the isolated side they are amplified above the level without a
suspension system. This is why a spring is almost always used in combination with a damper. The energy
that has been temporarily stored in the spring is converted into heat by the damper and the amplitude of the
oscillation therefore decays. The higher the damping forces, the faster the amplitude will decay, yet the
stronger is the direct (non-elastic) coupling of the input side to the isolated side and the input side excitations
will be transferred with higher intensity. So to achieve the best possible result from the tuning of a
suspension system, there is a lot of experience, intuition and effort (especially testing) necessary. Most

commonly used dampers are hydraulic components which use the displacement of internal fluid and the

respective viscosity to generate damping forces — the latter are therefore velocity dependent.” (Bauer, 2008,
Pg. 6) [1]

The linear characteristics of conventional suspension systems limit the mobility, the
ride performance and the comfort of tracked vehicles. But the nonlinear characteristics of
hydro-pneumatic suspension units (HSU) provide better performance in above mentioned
parameters. Also HSU have superior damping performance and compact designs. For that

reasons the HSUs not only increases the mobility, ride performance and comfort, but also



significantly increase the weapon system accuracy for armored fighting vehicles by
providing more stable gun platform compared to conventional suspension systems.
As a result, in tracked vehicle applications hydro-pneumatic suspension units are

preferred due to its advantages on conventional suspension systems.

1.1. Scope of Work

There are two main purposes of this study; first one is to derive displacement and
velocity equations by parametric modelling to the system for developing a graphical user
interface (GUI) to easily design different configurations of an HSU. The second one is to
design an HSU by using the developed GUI and prepare a technical data package for that
HSU.

The necessary equations and input-output parameters have been derived. By using
the derived equations, a GUI has been developed in “MATLAB-App Designer” to provide
output parameters for designing a hydro-pneumatic suspension system.

By using the predetermined input parameters and developed GUI, detailed design
and the 3D CAD model of a hydro-pneumatic suspension system have been performed.
Then, bill of materials, manufacturing and assembly drawings have been prepared for the
designed system. Furthermore; structural finite element analysis has been performed for
the worst case loading conditions of the system and finite element analysis results have
been compared with the GUI output results. Finally, technical data package have been
prepared for the designed HSU. The typical view of HSUs on a tracked vehicle and the
front, left, top and isometric views of the designed HSU have been shown in Figure 1.1
and Figure 1.2 respectively.
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Figure 1.1 Typical view of HSUs on a tracked vehicle [2]



Figure 1.2 Front, left, top and isometric views of the designed HSU



2. LITERATURE REVIEW

S. Sridhar and N.S. Sekar have been published an article about optimization of
kinematics of hydro-pneumatic suspension units used in tracked vehicles. It is known that
the sealing performance of the piston seals is one of the most important issues for the
system reliability. The optimization methods for minimizing the transverse force on the
piston seals which are, shifting and reorienting the cylinder axis and determination of the
load transfer factor, have been explained in detail in the study of S. Sridhar and N.S. Sekar.
The kinematic arrangement of a hydro-pneumatic suspension has been shown in Figure
2.1. Also, the transverse force acting on the hydraulic piston for the cases; non-shifted and
non-reoriented cylinder axis, shifted but non-reoriented cylinder axis, shifted and
reoriented cylinder axis have been shown in Figure 2.2, Figure 2.3 and Figure 2.4

respectively. [2]
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Figure 2.1 Kinematic arrangement of a hydro-pneumatic suspension [2]
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Figure 2.4 Transverse force acting on the hydraulic piston for, shifted and reoriented
cylinder axis [2]

U. Solomon and Chandramouli Padmanabhan have published an article about
mathematical modelling of a hydro-pneumatic suspension units used in tracked vehicles. In
this paper, the spring characteristics of a hydro-pneumatic suspension have been
represented by using the polytrophic gas compression model and the orifices have been
modeled by using the hydraulic conductance. Moreover, the analytical models have been
validated by experiments. The sketch view of the mechanism has been shown in Figure 2.5
and force — displacement graph for analytical model results and experimental results have
been shown in Figure 2.6. The force acting on the wheel has been computed by using

equation (2.1) where, F,,; is piston reaction force and W, is wheel reaction force. [3]

Fyi-e
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Figure 2.6 Experimental and theoretical force — displacement graph [3]



H. A. Hammad, A. M. Salem, I. Saleh Mostafa, I. A. Elsherif have carried out
theoretical and experimental studies on hydro-pneumatic suspension units. A mathematical
model has been developed and the developed mathematical model has been validated by
using MATLAB-SIMULINK. [4]

Gao Xiaodong, Gu Liang, Guan Jifu, Gao Junfeng have published an article about in-
arm suspension units (ISU). In this article, the growth and the ISU products of three
companies, which are producing the ISU’s in mass production, have been introduced. Also,
the working principles, the main characteristics and application fields of the ISU’s have
been discussed in this paper. [5]

Saayan Banerjee, V. Balamurugan, R. Krishnakumar have published an article about
development of single station representation of a hydro-pneumatic suspension. The
nonlinear stiffness characteristics of the system have been derived by using the kinematics
of the hydro-pneumatic suspension system. Then, the equations of motion have been
derived for the system and the equations have been solved by using MATLAB. Moreover,
ride dynamics of the suspension have been analyzed and validated by using MSC
ADAMS. With the help of the mathematical model developed in this study; vibration
characteristic of the vehicle has been estimated. [6]

GUO Huaping and LI Ning have published an article about tracked vehicle
suspension system growth for military application. In this article; active suspension and
semi-active suspension is explained. Moreover, improvement of the suspension system for
the military tracked vehicle is explained. [7]

M. K. Ravishankar and C. Sujatha have worked on comparison of torsion bar
suspension and hydro-pneumatic suspension systems. Constant stiffness passive
suspension system and variable stiffness hydro-gas suspension have been compared on
known profile at different speeds. Although, root mean square (RMS) body bounce
accelerations have been decreased while the speed decreased for both system; it is
observed 50-60% more decreasing RMS body bounce accelerations on the hydro-gas
suspension system than passive suspension system. For the other parameters, such as body
bounce displacements, similar reduction rates have been observed because of the variable
stiffness characteristics of the hydro-gas suspension system. Therefore, hydro-gas

suspension system is preferable for military tracked vehicle. [8]



Ganesh Vijaykumar Kinagi, Syam Prasad Pitchuka and Dnyanesh Sonawane, have
worked about light military tracked vehicle. They have described the design parameters for
hydro-pneumatic suspension of a military tracked vehicle. The required and important
parameters are highlighted. Analytical modeling of a hydro-pneumatic suspension has been
described to find spring and damping characteristics. It is seen that leverage ratio is very
important parameter to identify initial gas volume and maximum gas pressure. Moreover,
when the wheel motion frequency is increasing, the damping force also increases. [9]

Jin-Rae Cho, Hong-Woo Lee and Wan-Suk Yoo have worked about damping
characteristics of the tracked vehicle hydro-pneumatic suspension unit. It is found that
wheel motion frequency and orifice diameter affect the damping performance and gas
spring force. When frequency is increasing, damping force is also increasing. Moreover,
the damping force is increasing with the decreasing orifice diameter. However, the gas
spring force is decreasing with the decreasing orifice diameter and increasing frequency.
[10]



3. PARAMETRIC MODELLING OF THE SYSTEM

3.1. Introducing the HSU

The main components of the HSU are; stationary casing, suspension arm, piston rod,
wheel arm and sliding pistons (hydraulic piston and hydro-gas piston). System is fixed
from the stationary casing. Road wheel is assembled to the wheel arm by using the wheel
mounting hub. The vertical movement of the road wheel leads to rotate the suspension arm
from the joint axes with the suspension arm. Thus, rotary motion of wheel arm is converted
to linear displacement of hydraulic piston. The hydraulic oil inside the hydraulic cylinder
flows through the hydraulic block assembly to the hydro-gas cylinder. As a result, the gas
inside of the gas chamber is being compressed.

The main components and the layout of the designed HSU have been shown in

Figure 3.1 and Figure 3.2 respectively.

Hydro-gas piston

Hydraulic Piston

Piston rod

Figure 3.1 Main components of the HSU

The developed HSU have been analyzed in three sections. The first section is the
kinematics of the system which is a four bar slider crank mechanism. It is important to
configure the kinematics with suitable linkage arrangement considering the mechanism
limits, volumetric restrictions and loading conditions of the HSU.

The second section is spring characteristics of the system. Rather than the
mechanical spring used in conventional suspension systems, nitrogen gas is used as a
spring medium in HSU. By usage of nitrogen gas as a spring, the spring characteristics
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(spring rate) of the system changes nonlinearly with the upward and downward travel of
the wheel. The suspension is soft and spring rate is less for low distance travels of the
wheel. However, for high distance travels of the wheel, spring rate increases dramatically
thanks to nonlinear characteristics of gas. This provides better ride performance, comfort
and mobility for the system in normal conditions. System can also supply required forces
for gun recoiling and off road usage.

The last section is the damper characteristics of the system. Hydraulic oil, valves and

orifice have been used to provide required viscous damping forces for the system.

Gas Chamber Hydro-gas piston

Stationary casing Hydraulic oil

Hydraulic block

Hydraulic piston

Piston rod
Suspension arm Wheel arm

Wheel mounting hub
Figure 3.2 Layout of the HSU

In this chapter, input and output parameters have been specified for designing a
HSU, parametric equations have been derived individually as a function of input
parameters for kinematics, spring characteristics and damper characteristics of the system
respectively. Finally, the combined kinematic, spring and damper characteristics of the

system have been performed.

3.2. Input and Output Parameters of the System
Input parameters which are required to begin for designing a HSU are as follows;

e mechanism linkages

e rebound, static and bump positions of the wheel axis

11



e maximum axle arm velocity in terms of the vertical velocity of wheel
e static wheel load and maximum wheel load
e piston diameter (the diameter of hydraulic piston and hydro-gas piston are equal)
e discharge coefficient of orifice
e density of hydraulic oil
o orifice diameter
e pressure relief valve set pressure
Output parameters of the HSU which are derived by using input parameters are as
follows;
e maximum piston force
e piston (gas) pressure at static position
e maximum piston (gas) pressure
e total piston stroke
e required dead volume of hydro-gas piston
e maximum velocity of the pistons
e maximum flow rate of the hydraulic fluid
Furthermore, the equations for position, velocity, pressures and forces have been computed

as a function of input parameters.

3.3. Kinematics of the System

The kinematic arrangement shown in Figure 3.3 represents the slider crank
mechanism for the HSU which converts rotary motion of axle arm into linear piston
displacement.

Design and optimization of mechanism have been carried out by taking into
consideration space restrictions, wheel displacement limits (rebound and bump positions of
the wheel axis), forces acting on links for static and dynamic conditions. Moreover, the
radial forces acting on the hydraulic piston seals have been considered, because sealing
performance of the piston seals play critical role for the HSU. Leakage in pistons may lead
to failure of the HSU. To increase the sealing performance and life of the seals, radial loads
on hydraulic piston seals have been minimized by suitable design of the linkage
mechanism and changing the orientation of axis of the cylinder.

12



rebound

Figure 3.3 Sketch of the mechanism

Kinematic analysis has been carried out to find out the displacement and the velocity
of the hydraulic piston as a function of linear velocity and displacement of the wheel axis.
The coordinates of point A can be written as,

Xy = 13- c08(8;) ; Y4 = 75 5in(6;)

Also it can be written by using geometry,

T'2 - Sln(ez) = T3 " Sll’l(93) —e
Rearranging the above equation yields,

sin(63) = %(e + 1, - sin(6,)) (3.1)

By using Figure 3.3 the displacement of the hydraulic piston (Xp) can be written as;
Xg =1y cos(6,) + 13- cos(83) (3.2)

It is known that from trigonometry,
(cos(65))* + (sin(63))* =1

Than cos(65) can be written as,
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cos(63) = F+/1 — (sin(63))? (3.3)

Substituting equation (3.1) into equation (3.3) and rearranging the equation,

cos(0s) = F /()7 — (e + 7, sin(@))?
3

It is known that from Figure 3.3; cos(63) > 0 then,

cos(6;) = %\/(7@)2 — (e + 1, - sin(6,))? (3.4)

By substituting equation (3.4) into equation (3.2) and rearranging, displacement of the

hydraulic piston can be determined as follows;

Xg =1,-cos(8,) + \/(r3)2 — (e + 1, -sin(6,))? (3.5)

Taking the derivative of the equation (3.5) with respect to time yields to velocity of the

hydraulic piston;

de
dx do., (e+1m,-sin(8,)) 1, cos(8,) —2
_B = —r2 . Sln(gz) . 2 — 2 2 2 2 dt (36)
dt dt V(13)% = (e + 1, * sin(6,))?
Note that,
Xy o Xy = Vyand 22 = g
dr BT BANG T T

Substituting V and 6, into equation (3.6);
(e + 1, - sin(6,)) - 1, - cos(6,) - 6,
V(3% — (e + 15 - sin(6,))?

Vg = —1, - sin(6,) - 6, — (3.7)

Equations (3.5) and (3.7) are the equations which show displacement and velocity of
the hydraulic piston respectively. Note that the variables in these equations are the angle of
link 2 with respect to the X coordinate (6,) and the angular velocity of link 2 (65).
However, it was aimed to derive these equations as a function of position (h) and vertical
velocity of the wheel axis (V). Therefore the angle of link 2 with respect to the X
coordinate (6,) and the angular velocity of link 2 (6,) must be written as a function of
position and velocity of the wheel axis.

From geometry, the position of the wheel axis can be written as;
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h
h =1.-sin(6cx) = Ocx = asin (—) (3.8)

rC
Also the angle of link 2 with respect to the X coordinate can be written as;

HCX =2n—a — 92 - HAC (39)

Combining and rearranging the equations (3.8) and (3.9), the angle of link 2 with respect to

the X coordinate can be written as a function of position of the wheel axis.

h
0, =2m — a — 04 — asin (r_) (3.10)
c

By taking the derivative of the equation (3.10) with respect to time, the angular velocity of

link 2 can be computed as a function of vertical velocity of the wheel axis.

e - () (311

Substituting 6, into equation (3.5) and rearranging the equation, displacement of the
hydraulic piston can be computed as a function of position of the wheel axis.
h

Xg =1, cCos (271 —a — 04 —asin (—))
TC

+ j(rg)z = (e +7,sin (2” — @ =04 —asin (2)))2 (3.12)

Substituting 6, and 6, into equation (3.7) and rearranging the equation, velocity of the
hydraulic piston can be computed as a function of vertical velocity of the wheel axis. (Note
that h = V,, and Xz = V)
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h
Vg =|sin (271 —a — 0y —asin (—))

Te

(e + 1, - sin (Zn —a — Oy —asin (r—}z))) * COS (27r —a — 04c — asin (T—}i))
+

\/r32 — [e + 7, - sin (271 —a — O, — asin (r—ﬁ))]z

h 2
r. - 1 — =
‘ (rc) (3.13)
As a result, the displacement and the velocity of the hydraulic piston as a function of

linear velocity and vertical displacement of the wheel axis have been computed in
equations (3.12) and (3.13).

3.4. Spring Characteristics of the System

The spring characteristics of the system are specified by the pressure of nitrogen gas
inside the gas chamber. Displacement of the hydro-gas piston leads to compression and
expansion of nitrogen gas inside the gas cylinder. During the compression and expansion
of nitrogen gas, it has been assumed that nitrogen gas follows a polytrophic process due to
rapid compression or expansion of gas when HSU is working. Thus, spring characteristics
of the system change nonlinearly and increase progressively by the increasing
displacement of the hydro-gas piston. The detailed view of the hydro-gas piston has been
shown in Figure 3.4.

The equations related to spring characteristics of a HSU have been derived. Finally
hydro-gas piston pressure and piston force have been computed as a function of the
position of the wheel axis.

For polytrophic process, the ideal gas law can be written as;

P -V =Py Vg
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Instantaneous gas pressure in the hydro-pneumatic cylinder (P;) can be written as;

n

Yo
Pi = PO -W (314)
L

Also instantaneous gas volume inside the hydro-pneumatic cylinder (V;) can be written as;
Vi=Vy— Ap(XBi — Xpo) (3.15)

Substituting the equation (3.15) into equation (3.14) yields;
Vi

Pi = PO . m (316)
[Vo — Ap(Xp: — Xo)]
Also it is known that;
FPspring =P - Ap (3.17)

Substituting equation (3.16) into equation (3.17), the instantaneous piston spring force of
the hydro-gas piston as a function of the wheel position can be written as:
45
A
n P
Vo — Ap(Xgi — Xpo)]

FPspring =P [

The spring coefficient of the gas can be written as;

ko = FPspring
Pi— Yy v
XBL' - XBO

Note that, V;, X5, and P, are the initial conditions and can be calculated by using the
input parameters.
As a result, the equation has been derived which gives the piston force as a function

of the vertical displacement of the wheel axis.

Hydro-Gas Piston

Figure 3.4 Detailed view of hydro-gas piston
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3.5. Damper Characteristics of the System

The hydraulic section of the system works as a damper. Figure 3.5 shows the
hydraulic circuit diagram of the HSU. There are two cylinders which have in-parallel
oriented to each other. The first cylinder is a hydraulic cylinder filled with hydraulic oil.
The second cylinder is a hydro-pneumatic cylinder which is filled with nitrogen gas and
hydraulic oil at the same time. Nitrogen gas and hydraulic oil are separated from each other

with hydro-gas piston.

— ifi Check Valve
Orifice

Gas Qil ’\Y
i -

Hydro-Gas Piston

\
Hydraulic Piston \ \
‘ N — N |
\ Oil
‘ — Pressure Relief Valve

Figure 3.5 Hydraulic circuit diagram

For upward motion of the wheel, the hydraulic oil passes from hydraulic cylinder to
hydro-pneumatic cylinder through the hydraulic block assembly which compresses the gas
inside the gas chamber. The fluid flow inside the hydraulic block is restricted with an
orifice. Pressure difference between the inlet and the outlet of the orifice generates the
viscous damping force. The force generated by the orifice is proportional to the vertical
velocity of the wheel. Therefore, increasing the vertical velocity of the wheel leads to
increase the damping force linearly. But for high vertical velocities of the wheel, pressure
difference between the inlet and the outlet of the orifice increases dramatically. To protect
the system from excessive pressures and damping forces, pressure relief valve have been
assembled to the hydraulic block assembly. When the pressure difference exceeds the set
pressure of the pressure relief valve, spool of the pressure relief valve opens and discharges
the over pressure to the hydro-pneumatic cylinder.

For downward motion of the wheel, process is reversed. The compressed gas in the

gas chamber forces the hydro-gas piston and hydraulic oil flows freely through the check
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valve into the hydraulic cylinder side. So the wheel moves quickly and freely into the
downward position.

The equations related to damper characteristics of a HSU have been derived and
finally damping force has been computed as a function of the vertical velocity of the wheel
axis.

The instantaneous flow rate at the orifice can be written as;
Qi =4,V (3.18)

Also the instantaneous flow rate through the orifice can be written in another way as

follows,
2-AP
Qi =Cq - Ay (3.19)
Equating the equations (3.18) and (3.19) yields;
2-AP
Ay Vy=Cq- A (3.20)
Rearranging the equation (3.20), differential pressure at the orifice can be written as;
p- A% . VpZ
APyom = 702 a2 (3.21)

Note that, the differential pressure is limited by the pressure relief valve set pressure, so the
differential pressure must be less than or equal to the set pressure of the pressure relief
valve.

If APyom < APpax = APyom = AP

Else, AP,pm = APpgy = APpgy = AP

Where AP, is set pressure of the pressure relief valve, so the damping force of the
hydraulic piston can be written as;
Fpaamping = ¢+ Vp = Ap - AP (3.22)

By substituting equation (3.21) into (3.22) and rearranging the equation, the damping

coefficient can be written as;
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As a result, the equation have been derived which gives the damping force of the

piston as a function of the vertical velocity of the wheel axis.

3.6. Combined Kinematic, Spring and Damper Characteristics
Viscous damping force and spring force equations have been reflected to the wheel
by using the kinematics of the HSU. Free body diagrams (FBD) for the links of the

mechanism have been drawn, which are shown in Figure 3.6, Figure 3.7 and Figure 3.8.

Wheel

Figure 3.6 Free body diagram of link 2

F
43

Figure 3.7 Free body diagram of link 3
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Figure 3.8 Free body diagram of link 4

It can be written from Figure 3.6;

Fwheer " 1 COS(HCX)

Fy, = i (3.23)
and,

h3 - TZ ) Sin(923) (324)
Also, it can be seen from Figure 3.3;

923 = 92 + 93 — T (325)

By rearranging the equations (3.23), (3.24), (3.25) the force acting on the piston rod can be

written as a function of the wheel position.

_ Fwheet " T COS(HCX)
- Sin(92 + 93 - T[)

FSZ

Also it can be seen that, the magnitudes of the forces F;, and F;, are equal to each other.
Thus, by using the Figure 3.8, the longitudinal force (piston force) and the transverse force
(quide ring force) acting on the piston can be written as follows;

Fyheer " 1¢ COS(QCX)
1y *sin(f, + 03 — 1)

Fpiston = F3y- COS(HB) = ) COS(93) (3.26)

Fwheet " 1¢ COS(GCX)

F,
Ty - sin(0, + 05 — 1)

guidering = F3, - sin(03) =

- sin(63) (3.27)

By using the equation (3.26), the spring force acting on the wheel can be written as;

_ FPspring ‘15 sin(0, + 03 — 1)
FWspring -

e COS(ch) : COS(93) (328)

Also viscous damping force acting to the wheel can be written as;
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FPdamping ‘1 sin(6, + 03 — m)

F . =
Wdamping T cos(HCX) : COS(93)

Substituting the equation (3.8) into equations (3.28) and (3.29), equations yields;

FPspring "1, sin(0, + 03 — m)

T, * COS (asin (T_}i)) - cos(63)

F Wspring —

. FPdamping Ty Sin(ez + 65 — )

Fwaamping = 7. - cos (asin (r—}i)) - cos(6s)

Finally the total force acting on the wheel can be written as follows.

FPspring Ty Sin(92 + 65 — )

T, * COS (asin (%)) - cos(63)

Fwheer =

Fpaamping " 12 * sin(0, + 03 — m)

T, * COS (asin (%)) - cos(63)

Simplifying the equation (3.30) yields,
(FPspring + FPdamping) "1y + sin(6, + 03 — )

T, * COS (asin (%)) - cos(63)

Fywheet =

22
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4. DEVELOPMENT OF THE GRAPHICAL USER INTERFACE

A graphical user interface has been developed in the environment of “MATLAB-
App Designer” by using the parametric equations which are derived in “PARAMETRIC
MODELLING OF THE SYSTEM” topic.

Using the developed graphical user interface, determination and optimization of the
parameters for designing a hydro-pneumatic suspension unit could be performed quickly
and easily by iterating the input parameters. Thus, the time consumed in predesign phase

could be reduced significantly.

4. Ul Figure - a x
INPUT PARAMETERS OUTPUT PARAMETERS
72 (mm) 0 Fpbump (kN) 0
73 (mm) 0 Pstatic (bar) 0
e (mm) 0 Phump (bar) 0
e (mm) 0 Stotal (mm) 0
alpha (rad) 0 VPhump {cm™3) 0
thetadC (rad) 0 Vpmay (mm/s) 0
hrebound (mm) 0 Omarx (L/min) 0

hstatic {mm) 0 :
Calculate Output Parameters

hbump (mm) 0
i GRAPHS
Vhimeax (mm/'s) 0
Position and Velocity Graphs
Fwstatic (N) 0
Fwhump (N) ] Piston Internal Pressure Graph
] 0
Dp (mm) Force Graphs
Cd o
Dftuid (kg/m*3) 0 Show Mechanism Sketch
i @ B
dl (mm) DESCRIPTION
delPmax (bar) 0

Figure 4.1 Main page of the developed GUI

The main page of the developed GUI has been shown in Figure 4.1. Output
parameters, position and velocity graphs for hydraulic piston could be produced by filling
the input parameters in the GUI. Moreover, gas pressure inside the gas chamber, spring

reaction forces, damping reaction forces, total reaction forces on the wheel, force acting on
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the piston rod and force acting on the piston guide ring could also be plotted by using

related buttons on the screen.

The explanations for input and output parameters have been shown in Table 4.1.

Table 4.1 Explanation of the parameters of the GUI

Parameter Explanation of the Parameter
Length of link 2 (suspension arm) in Figure 3.3 Sketch of the
r2 (mm) .
mechanism
r3 (mm) Length of link 3 (piston rod) in Figure 3.3 Sketch of the mechanism
e (mm) Offset distance of the hydraulic cylinder from X axis
rc (mm) Length of the wheel arm
alpha (rad) Angle between x and X axis

thetaAC (rad)

Angle between suspension arm and wheel arm

hrebound (mm)

Distance between x axis and wheel axis when the system is at
rebound position

hstatic (mm)

Distance between x axis and wheel axis when the system is at static
position

hbump (mm)

Distance between x axis and wheel axis when the system is at bump
position

Vhmax (mm/s)

Maximum vertical velocity of the wheel axis

Fwstatic (N)

Wheel load at static position

Wheel load at bump position which is also equal to the maximum

Fwbump (N) | \yheel load
Dp (mm) Diameter of hydraulic and hydro-gas piston
Cd Discharge coefficient at the orifice

Dfluid (kg/m"3)

Density of the used hydraulic oil

do (mm)

Diameter of the orifice

delPmax (bar)

Set pressure of the pressure relief valve

Fpbump (kN)

Piston reaction force when the system is at bump position which is
also equal to maximum piston reaction force.

This parameter might be used for calculating the maximum forces
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acting on the system components.

Pressure inside the cylinders when the system is at static position.

Pstatic (bar) This parameter is used for setting the initial pressure inside the gas
chamber.

Pressure inside the pistons when the system is at bump position
which is also equal to the maximum pressure inside the pistons.

Pbump (bar) : : o :
This parameter might be used for determination of the wall thickness
of the hydraulic and hydro-gas cylinders.

Stotal (mm) Total piston stroke of the HSU

Vbump (cm”3) Dead volume of the gas chamber

Vpmax (mm/s) Maximum velocity of the pistons

Qmax (L/min) Maximum flow rate of the hydraulic fluid

Six buttons have been placed on the main window of the GUI as seen in Figure 4.1. The
functions of these buttons have been explained in Table 4.2. Templates of the 2D and 3D
plots have been shown in Figure 4.2 and Figure 4.3 respectively.

Table 4.2 Functions of the buttons

Button Name Functions of the Buttons

Represents the output parameters on output

Calculate Output Parameters )
parameters section

Plots the graphs of hydraulic piston position and
Position and Velocity Graphs velocity as a function of the wheel position and the
wheel vertical velocity

Plots the graph of gas pressure inside the gas

Piston Internal Pressure Graph chamber as a function of wheel position

Plots the graph of; spring reaction force, damper
reaction force, total reaction force, force acting on the
Force Graphs piston rod and force acting on the piston guide ring
as a function of wheel position and vertical wheel
velocity

Displays the sketch view of mechanism which
Show Mechanism Sketch contains the input parameters of the mechanism
(Figure 4.4)

Displays the description for input and output

Description parameters to help the user (Figure 4.5)
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4 Figure 1

File

Edit

View Insert Tools Desktop Window Help

Ddde | M|AROBDEL- 2|08 0O

Hydraulic Piston Fosition (XB)

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

Wheel Position - Hydraulic Piston Position

01 02 03 04 05 06 07 08 09
Wheel Position (h)
(mm)

Figure 4.2 Template of a 2D graph

26




4 Figure 2 — O

File Edit View Insert Tools Desktop Window Help

NEES| b RXRTDEL- || DB |aD

Wheel Vertical Velocity - Wheel Position - Hydraulic Piston Velocity

Hydraulic Piston Velocity (VB)
m/

0.5

0.4
0.2
Wheel Position (h) 0 o

{mm}) Wheel Vertical Velocity (Vh)
(mmy/'s)

Figure 4.3 Template of a 3D graph
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4 Figure 1

File Edit View Insert Tools Desktop Window Help

Ddde | | RAROBDLEL- S |0B M

hrebound
hstatic
hbump

Figure 4.4 Mechanism sketch view
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r2 (mm)

3 (mm)

e (mm)

re (mm)
alpha (rad)
thetaAC (rad)
hrebound (mm)
hstatic (mm)
hbump (mm)
Vhmax (mm/s)
Fwstatic (N)
Fwbump (N)
Dp (mm)

cd

Dfluid (kg/m”3)
do (mm)
delPmax (bar)
Epbump (kN)
Pstatic (bar)
Pbump (bar)
Stotal (mm)
Vbump (cm”3)
Vpmax (mn/s)

Omax (L/min)

: Crank radius

: Piston rod length

: Piston offset

: Axle arm length

: Slope of piston axis

: Angle between crank radius and axle arm
: Height of the wheel axis at rebound position
: Height of the wheel axis at static position
: Height of the wheel axis at bump position
: Maximum vertical velocity of wheel axis

: Static wheel load

. Maximum wheel load

: Piston diameter

: Discharge coefficient at orifice

: Density of hydraulic oil

: Orifice diameter

: Pressure relief valve set pressure

. Maximum piston reaction force

. Piston (gas) pressure at static position

. Maximum piston (gas) pressure

: Total piston stroke

: Required dead volume of hydro-gas piston
. Maximum velocity of the piston

: Maximum flow rate of the hydraulic fluid

Figure 4.5 Description for input and output parameters
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5. DESIGN AND ANALYSIS OF THE SYSTEM

It is known that designing a HSU is complicated and iterative process. The
developed GUI has been used to adjust required input parameters for optimum HSU. By
the help of the developed GUI, the iteration of the input and output parameters has been

performed easily and quickly.

5.1. Input and Output Parameters (Numeric)

Firstly, the maximum vertical velocity of the wheel, static and dynamic load
capacities of the HSU have been determined by considering the using field of the HSU. It
has been assumed that, the designed HSU will be used in a tracked vehicle which has the
weight of 24 tones and totally 12 HSU have been placed on the vehicle. For that reason,
the static wheel load has been taken 2 tones (19.61 kN) and the dynamic wheel load has
been taken 8 tones (78.45 kN). In reference [3], the experimental and theoretical studies
have been performed for the frequencies of 0.1 Hz and 0.8 Hz. Moreover, in reference [6]
the maximum vertical velocity of the wheel has been taken about 300 mm/s. In this study,
it has been aimed that the designed HSU capable of working higher frequencies and
velocities compared to the references [3] and [6]. Thus, the maximum vertical velocity of
the wheel axis has been assumed 600 mm/s. The mechanism linkage has been created by
taking into consideration of the volumetric restrictions. At last, by using the developed
GUI, iteration has been performed and all the input parameters have been determined. The

numerical values of input parameters for the designed HSU have been listed in Table 5.1.

Table 5.1 Numerical values of the input parameters

Parameter Parameter Value Description
r2 (mm) 150 mm Determined from the mechanism linkage
r3 (mm) 325 mm Determined from the mechanism linkage
e (mm) 140 mm Determined from the mechanism linkage
rc (mm) 550 mm Determined from the mechanism linkage
alpha (rad) 0.201 rad Determined from the mechanism linkage
thetaAC (rad) 1.361 rad Determined from the mechanism linkage
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hrebound (mm) | 470 mm Determined from the mechanism linkage
hstatic (mm) 335 mm Determined from the mechanism linkage
hbump (mm) 100 mm Determined from the mechanism linkage
Vhmax (mm/s) 600 mm/s Determined from the system limit

Fwstatic (N)

19.61 kN (2 tones)

Determined from the system limit

Fwbump (N) 78.45 kN (8 tones) | Determined from the system limit
Dp (mm) 100 mm Determined by iteration

Cd 0.9 Orifice discharge coefficient
Dfluid (kg/m"3) | 860 kg/m”3 Fluid density

d0 (mm) 3 mm Determined by the iteration
delPmax (bar) 80 bar Determined by the iteration

The output parameters have been achieved and related graphics have been plotted by

using the developed GUI. The achieved output parameters for designed HSU have been

listed in Table 5.2.

Table 5.2 Achieved output parameters for designed HSU

Parameter Explanation of Parameter

Fpbump (kN) 288.4 KN

Pstatic (bar) 86.87 bar

Pbump (bar) 367.2 bar

Stotal (mm) 107.2 mm

Vbump (cm”3) | 283 cm”3

Vpmax (mm/s) | 172.5 mm/s

Qmax (L/min) | 81.28 L/min

Input and calculated output parameters of the system have been shown in Figure 5.1. Also,
the plots obtained by using the input parameters have been shown in Figure 5.2, Figure 5.3,
Figure 5.4, Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9.
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Hydraulic Piston Position (XB)

(mm)

300

“lu Figure

Vimax (mm/s)

INPUT PARAMETERS
r2 {mm) 150
r3 {mm) 325
e (mm)
T {mm)
aipha (rad)
thetaAC (rad)
Trebound (mm) 470
hstatic (mm) 335
hbump (mm) 100

Fwstatic {N) 1.961e~0
Fwbump (N} 7.845e~0
Dp (mm) 100
ca
Dffuid (kg/m3)
il (mm)
delPmax (bar)

- O
OUTPUT PARAMETERS
Fpbump (kN) 2884

Pstatic (bar) §6.87
Phump (bar) 367.2
Stotal (mm) 107.2

Vhump (cm”3) 283

Vpmax (mm/s) 1725

[

Omax (Limin) 8128

Calculate Output Parameters |

GRAPHS

| Position and Velocity Graphs |
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Figure 5.8 Wheel vertical velocity — Wheel position — Force acting on piston rod plot
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5.2. Detailed 3D CAD Model Design and Drawings of the HSU

Figure 5.10 Isometric views of the designed HSU

In the detailed design process,

e The components of the HSU have been designed and modeled by taking into
consideration the parameters which have been achieved by using the developed
GUL.

e The commercial off the shelf (COTS) items have been determined.

e Using the designed parts and the COTS items, the subassemblies and the main

assembly have been created.

¢ Bill of materials for the designed HSU, which contains all the parts and the COTS

items, has been created.

e Drawings for the assemblies and the parts have been generated.

The isometric views of the designed hydro-pneumatic suspension unit have been
shown in Figure 5.10.
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Figure 5.12 Fully exploded view of the HSU
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The exploded views of the HSU have been shown in Figure 5.11 and Figure 5.12.
The HSU is consisted of four subassemblies which are; suspension arm assembly (Figure
5.21), hydraulic piston assembly (Figure 5.28), hydro-gas piston assembly (Figure 5.30)
and hydraulic block assembly (Figure 5.32). In this section; parts, subassemblies, sealing
details of the design, bill of materials and drawings of the designed HSU have been
described.

5.2.1. Parts and subassemblies of the HSU
e Stationary casing

Stationary casing have been used for fixing the system to the vehicle body. Bolt and
pin holes on the stationary casing have been utilized to mount the HSU to the vehicle body.
Front cover, rear cap and piston cylinders have also been mounted on the stationary casing.
Moreover, the nitrogen gas filling interface has been located on the stationary casing. The
isometric views of the stationary casing have been shown in Figure 5.13.

The downward motion of the wheel arm has been limited with the extruded section
inside the casing. The surface of the suspension arm pushes the surface of the extruded
section inside the casing, while the suspension arm is at the end of the downward stroke as

seen in Figure 5.14.

Gas Filling

Extruded Section

Figure 5.13 Isometric views of the stationary casing
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Figure 5.14 Position of the wheel arm at the end of the downward stroke

e Piston pin and anchorage plate

Connection of the suspension arm and the piston rod has been provided with the piston
pin. Lubrication holes have been drilled into pin for greasing the joint by using a grease
nipple. Piston pin have been fixed on to the suspension arm by using the anchorage plate.
Isometric view of the piston pin has been shown in Figure 5.15. Also, assembled view of

the anchorage plate, grease nipple and piston pin have been shown in Figure 5.16.

Figure 5.15 Isometric view of the piston pin

Piston Pin

Grease Nipple

Anchorage Plate

Figure 5.16 Assembled view of the anchorage plate, grease nipple and piston pin
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e Piston cylinder
There are two piston cylinders in designed HSU which have been assembled parallel
to each other. Piston cylinders have been fixed on the stationary casing via the threaded
portion. The tightening of piston cylinders have been performed from the wrench flats on

the part. The isometric view of the piston cylinder has been shown in Figure 5.17.

Threaded Portion

Wrench Flats

Figure 5.17 Isometric view of the piston cylinder

e Hydraulic block cap
The hydraulic block cap has been designed for fixing the hydraulic block to the
piston cylinders. The isometric view of the hydraulic block cap has been shown in Figure
5.18.

Figure 5.18 Isometric view of the hydraulic block cap

e Bearing cap and rear cap
Bearing cap and rear cap have been designed for fixing the spherical roller bearing on arm
shaft and stationary casing. The isometric views of the bearing cap and the rear cap have
been shown in Figure 5.19.
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Figure 5.19 Isometric views of the bearing cap and rear cap

e Maintenance cap
The maintenance cap has been designed for accessing the suspension arm - piston
rod joint. By removing the maintenance cap, assembling and disassembling of the joint,
also greasing of the joint can be performed easily. The isometric view of the maintenance

cap has been shown in Figure 5.20.

Figure 5.20 Isometric view of the maintenance cap

e Suspension arm assembly

Figure 5.21 Exploded view of the suspension arm assembly
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The exploded view of the suspension arm assembly has been shown in Figure 5.21
and the section view of the suspension arm assembly has been shown in Figure 5.26. The
suspension arm assembly is consisted of front cover (Figure 5.22), locating shim (Figure
5.23), arm shaft (Figure 5.24), suspension arm (Figure 5.25), wheel arm (Figure 5.27),
wheel arm cap (Figure 5.23), keys (Figure 5.23) and the COTS items (Cylindrical roller
bearing, rotary seal, bolts, washers and spring washers).

Figure 5.22 Isometric view of the front cover

Figure 5.23 Isometric views of the locating shim, the wheel arm cap and the key

Wheel arm and suspension arm have been located on the arm shaft. The orientation
of the wheel arm, the suspension arm and the arm shaft related to each other is directly
effects the linkage positions of the mechanism in assembled state of the HSU. For that
reason, position of the keyways on the wheel arm, the position of the keyways according to
the spline profile on the arm shaft and the orientation of the spline profile according to the
cartesian axis of the suspension arm are quite important.
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Figure 5.24 I1sometric view of the arm shaft

The wheel arm has been interference fitted on the arm shaft and transmits the torque
produced, due to the force on the wheel arm hub. The torque has been transmitted from
wheel arm to arm shaft with keys and the friction force occurred between the interference
fitted surfaces of the parts. So, pulling out of the wheel arm and the keys from the
suspension arm has been blocked with the wheel arm cap. Also the suspension arm has
been fitted on the arm shaft by using the splined connections on the parts. The arm shaft
has been located on the front cover by using a cylindrical roller bearing and a rotary seal
has been used for isolating the interior of the system from environmental effects. The
whole location of the suspension arm assembly into the stationary casing has been

determined by the locating shim.

Figure 5.25 Isometric view of the suspension arm
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Arm Shaft /

Front Cover

Wheel Arm

Figure 5.26 Section view of the suspension arm assembly

Wheel arm is consisted of two parts which welded and joined together. Firstly these
parts have been roughly machined and welded. After that the welded parts have been
machined to satisfy the close tolerances on the part. The green painted surfaces shown in

Figure 5.27 have been machined after welding of the parts.

Figure 5.27 Isometric views of the wheel arm
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e Hydraulic piston assembly

Figure 5.28 Exploded view of the hydraulic piston assembly

The exploded view of the hydraulic piston assembly has been shown in Figure 5.28
and the section view of the hydraulic piston assembly has been shown in Figure 5.29. The
hydraulic piston assembly is consisted of hydraulic piston, piston rod bushing, piston front
cap, piston friction bushing, hydraulic piston and the COTS items (Seals, piston guide
rings, bolts, washers and spring washers).

Seals and Guide Rings i
/ Piston Rod
— B8 8 /

/

e

e eyl _
\ \ Piston Front Cap
Friction Bushing Piston Rod Bushing

Hydraulic Piston

Figure 5.29 Section view of the hydraulic piston assembly

As known from slider crank mechanism, the movement of the piston rod is not linear.
When the wheel arm moves, piston rod linearly displaces and rotates from the joint of the
hydraulic piston. Likewise, the piston rod makes relative motion to the suspension arm. For
that reasons, the friction bushing and the piston rod bushing have been designed to prevent
the wear and reduce the friction at the joints. Piston guide rings have been used for

absorbing the transverse forces occurred between piston and cylinder.
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e Hydro-gas piston assembly

Figure 5.30 Exploded view of the hydro-gas piston assembly

The exploded view of the hydro-gas piston assembly has been shown in Figure 5.30
and the section view of the hydro-gas piston assembly has been shown in Figure 5.31.
Hydro-gas piston assembly is consisted of hydro-gas piston, seals and piston guide rings.

Note that, volume of the groove inside the hydro-gas piston is equal to the calculated dead
volume of the hydro-gas piston.

—g g—

™

SHS

Figure 5.31 Section view of the hydro gas piston assembly

o Hydraulic block assembly

Figure 5.32 Exploded view of the hydraulic block assembly
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The exploded view of the hydraulic block assembly has been shown in Figure 5.32.
The hydraulic block assembly is consisted of the hydraulic block and the COTS items
(pressure relief valve, orifice check valve, hydraulic connector and plugs). The pressure
relief valve and orifice check valve have been selected by considering the maximum flow
rate of the hydraulic oil, the maximum pressure inside the piston and the designed orifice
diameter of the HSU.

5.2.2. Sealing details of the design

When the system was designing, it has been known that the designed system is going
to be work at harsh environmental conditions. Therefore, the sealing of the system from
environmental conditions plays critical role for increasing the life and the reliability of the
system. Also, the sealing performance of the piston seals inside the system (hydraulic
piston seals and hydro-gas piston seals) is another important subject for the life and the
performance of the designed system.

The sealing between the stationary parts have been ensured by using O-rings.
Suitable O-ring grooves have been machined to the related parts. The O-rings used in the
HSU have been shown in Figure 5.33, Figure 5.34, Figure 5.35 and Figure 5.36.

Figure 5.33 O-ring used under maintenance cap
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Figure 5.36 O-rings used in cylinders and hydraulic block assemblies
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The sealing of the rotating parts have been ensured by using the rotary seal between
the rotating and stationary parts. The only rotating part outside the HSU is arm shaft; the

used rotary seal has been shown in Figure 5.37.

Figure 5.37 Rotary seal used in the HSU

As mentioned the sealing performance of the piston seals are critical for the system.
Considering the maximum working velocity of the seals and maximum pressure inside the
cylinders, proper seals have been selected. Also, the transverse forces acting on the seals

have been diminished by using guide rings. The selected piston seals and guide rings have

i

Figure 5.38 Piston seals and guide rings

been shown in Figure 5.38.

The maximum pressure inside the cylinder and the maximum velocity of the seals
has been determined from the values obtained by output parameters of the GUI as 367.2
bar and 172.5 mm/s respectively. The velocity of the hydraulic piston has been plotted as a
function of wheel vertical velocity and wheel position as shown in Figure 5.39.
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Figure 5.39 Hydraulic piston velocity plot

Surface pressures on the guide rings of the hydraulic piston have been calculated by
using the maximum force acting on the guide ring (Fyy;gering= 8361 N), which have been
taken from the “Wheel Vertical Velocity — Wheel Position — Force Acting on Guide Ring”
plot as seen in Figure 5.40. Also it is known that, piston diameter (D,) is 100mm and the
total width of the used guide rings in hydraulic piston (Wyyigering) is 50mm. Then the

surface pressure on the guide ring has been calculated as follows;

P Fguidering 8361 N

L — =1.8MP
guidering Dp i Wguidering (100 mm) - (50 mm) a

For chosen guide rings the maximum allowable surface pressure is (Pgy; guigering) 12 MPa.

Then factor of safety (Fs gyigering) fOr the chosen guide rings have been calculated as;

Pall.guidering _ 12 MPa

FS : : = = =
.guidering
Pyuidering 1.8 MPa
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Wheel Vertical Velocity - Wheel Position - Force Acting on Guide Ring
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Figure 5.40 Force acting on guide ring plot

5.3. Structural Finite Element Analysis for the Critical Parts

Structural finite element analysis has been performed for the worst case condition of
the system. The worst case condition has been assumed that, the system is in bump
position and maximum allowed wheel force (78.48 kN) has been applied to the system.
Stresses, strains and displacements have been achieved for the critical parts of the HSU.
Moreover, the hydraulic piston reaction forces, also the forces acting on the bearings and
hydraulic piston guide rings have been performed. Then the forces obtained from the
analysis and the forces obtained from GUI have been compared.

The model for the analysis has been created by simplifying the designed 3 CAD
model of the HSU. Cylinders and hydraulic block assembly removed from the model as
seen in Figure 5.41. Also wheel arm, arm shaft and suspension arm have been modeled as
one part as seen in Figure 5.42. The mechanism view of the simplified 3D model has been

shown in Figure 5.43.
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Figure 5.41 Simplified 3D model of the HSU
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Figure 5.42 Simplified 3D model of the wheel arm — arm shaft — suspension arm
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Figure 5.43 Mechanism view of the simplified 3D model

The simplified 3D model has been used for structural analysis by finite element
program through ANSYS R19.2. Tetrahedral-quadratic and hexahedral-quadratic elements
have been used for meshing the geometry. Totally, 76628 elements and 123257 nodes have
been used for meshing. The average mesh quality is 0.76. Meshed view of the simplified
3D model of the HSU has been shown in Figure 5.44 and Figure 5.45.
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Figure 5.44 Meshed view of the model

0,00 100,00 200,00 (rarm) x
I

50,00 150,00
Figure 5.45 Meshed view of the mechanism

The system has been fixed from the stationary casing and the force has been applied
from the wheel mounting hub as seen in Figure 5.46.
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Figure 5.46 Boundary conditions

Stress and strain distributions, on the HSU and on the parts of the HSU have been
achieved. Stress distribution on the designed HSU has been shown in Figure 5.47 and
Figure 5.48. Stress distributions on the stationary casing and front cover have been shown
in Figure 5.49. Stress distributions on the wheel arm, arm shaft and suspension arm have
been shown in Figure 5.50. Moreover, stress distributions on the piston rod, hydraulic
piston and piston pin have been shown in Figure 5.51, Figure 5.52 and Figure 5.53
respectively.

Furthermore, the displacement values have been obtained from the results of the

structural analysis which has been shown in Figure 5.54.
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Figure 5.47 Stresses distribution on the HSU
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Figure 5.48 Stress distribution on the mechanism
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Figure 5.49 Stress distribution on the stationary casing and front cover
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Figure 5.50 Stress distribution on the wheel arm, arm shaft and suspension arm
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Figure 5.51 Stress distribution on the piston rod
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Figure 5.52 Stress distribution on hydraulic piston
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Figure 5.53 Stress distribution on the piston pin
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Figure 5.54 Total displacements on the system
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Arm shaft has been located on the system by using a double row cylindrical roller
bearing (NNCF 4924 CF) and a spherical roller bearing (22216 E) which have been shown
in Figure 5.55. The reaction forces acting on the double row cylindrical roller bearing and
spherical roller bearing have been achieved from the results of the structural analysis as
155.8 kN and 168.1 kN respectively (Figure 5.56 and Figure 5.57). Moreover, the axial
force and the transverse force acting on the hydraulic piston have been achieved as 288.7
kN and 6.9 kN respectively (Figure 5.58 and Figure 5.59).

22216 E NNCF 4924 CF

h=3 «

Figure 5.55 Bearings used in the HSU
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Geometry A Print Preview ) Report Preview/ |
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1]02 -25907 -17241 0, 31119
2 (04 -51837 -34487 0, 62261
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Figure 5.56 Reaction force on the first bearing (NNCF 4924 CF)
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Figure 5.57 Reaction force on the second bearing (22216 E)
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Figure 5.58 Axial force acting on the hydraulic piston
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Figure 5.59 Transverse force acting on the hydraulic piston
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The axial and the transverse forces acting on the hydraulic piston obtained from the

structural analysis and the developed GUI have been compared in Table 5.3. As seen from

the table, the results are consistent. (The transverse force acting on the hydraulic piston

obtained from the GUI has been shown in Figure 5.60.)

Force Acting on Guide Ring (Fguidering)

Table 5.3 Comparison of the GUI results and the structural analysis results

Parameter GUI Result | Analysis Result
Axial force on hydraulic piston 288.4 kN 288.8 kN
Transverse force on hydraulic piston 6.9 KN 6.9 KN

Wheel Vertical Velocity - Wheel Position - Force Acting on Guide Ring

200

Wheel Position (h)
(mm)

100 0

200

600

Wheel Vertical Velocity (Vh)

(mm/s)

Figure 5.60 Transverse force acting on the piston (GUI output)
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5.4. Material Selection Criteria

It is known that, the selection of materials for the HSU parts, play critical role for the
design process. Stress values on the parts of the HSU and the forces acting on the piston
and bearings have been determined for the most critical loading condition of the system by
using the structural analysis results.

The computed stress results are the primary criterion for the selection of the materials
of the HSU parts. Also machinability, weldability and heat treatment capabilities of the
materials are other critical criteria for the selection of the types of materials. Maximum
stresses on the critical parts of the HSU and the chosen materials have been tabulated in
Table 5.4.

Table 5.4 Maximum stresses on the critical parts and chosen materials

Part of the HSU Mg)t(;re?sjm Chosen Material Yi;'g iz;i:a]?;[:l of
Stationary Casing | 58 MPa 1.1191 (C45E) 565 MPa
Front Cover 68 MPa 1.1191 (C45E) 565 MPa
Wheel Arm 210 MPa | 1.0570 (S355J2G3) 315 MPa
Arm Shaft 353 MPa | 1.6587 (18CrNiMo7-6) 785 MPa
Suspension Arm | 353 MPa | 1.6587 (18CrNiMo7-6) 785 MPa
Piston Rod 241 MPa 1.1191 (C45E) 565 MPa
Hydraulic Piston | 151 MPa | 1.1191 (C45E) 565 MPa
Piston Pin 120 MPa | 1.1191 (C45E) 565 MPa

The types of materials chosen for the parts of the HSU have been given in bill of
materials (BOM) and drawings of the parts. Also, the heat treatment details for the parts

have been given in drawings of the parts.
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5.5. Bill of Materials (BOM) and Drawings
Bill of materials has been prepared according to the designed HSU. The prepared
BOM for the HSU has been shown in Table 5.5.

Table 5.5 Bill of materials of the designed HSU

NO PART NUMBER PART NAME MATERIAL WEGLS)HT QTY
1 001-01000-00-R00 SUSPENSION ASSEMBLY | ASSEMBLY 195.83 1
11 001-01000-01-R00 STATIONARY CASING 1.1191 (C45E) 62.35 1
12 001-01000-02-R00 PISTON PIN 1.1191 (C45E) 2.46 1
13 001-01000-03-R00 PISTON PIN ANCHORAGE 1 1 0402 (c22) 0.07 1
14 001-01000-04-R00 PISTON CYLINDER 1.0044 (S2751R) 5.49 2
15 001-01000-05-R00 HYDRAULIC BLOCK CAP | 1.1191 (C45E) 3.87 1
16 001-01000-06-R00 BEARING CAP 1.1191 (C45E) 0.75 1
17 001-01000-07-R00 REAR CAP 1.1191 (C45E) 247 1
18 001-01000-08-R00 MAINTENANCE CAP 1.0037 (S2351R) 0.82 1
1.9 001-01100-00-R00 iggEfANBSL'sN ARM ASSEMBLY 79.20 1
191 | 001-01100-01-R00 FRONT COVER 1.1191 (C45E) 14.54 1
192 | 001-01100-02-R00 ARM SHAFT 1.6587 (18CrNiMo7-6) 21.93 1
193 | 001-01100-03-R00 LOCATING SHIM 1.1191 (C45E) 0.77 1
194 | 001-01100-04-R00 SUSPENSION ARM 1.6587 (18CrNiMo7-6) 12.22 1
195 | 001-01100-05-R00 WHEEL ARM 1.0570 (S35512G3) 26.77 1
1951 | 001-01100-05-R00-01 WHEEL ARM BODY 1.0570 (S355J2G3) 24.86 1
1952 | 001-01100-05-R00-02 WHEEL ARM PIN 1.0570 (S35512G3) 192 1
196 | 001-01100-06-R00 WHEEL ARM CAP 1.1191 (C45E) 173 1
197 | 001-01100-07-R00 WHEEL ARM KEY 1.1191 (C45E) 0.29 2
198 | BEARING_NNCF 4924 CV COTS ITEM - - 1
199 | ROTARY_SEAL 130x160x15 COTS ITEM - - 1
1910 | WASHER_DIN 125 _M10 COTS ITEM . - 6
19.11 f;;_',\'\/'l%"VASHER—D'N COTS ITEM - - 6
1912 | BOLT_DIN 912_M10x40 COTS ITEM . - 6
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HYDRAULIC PISTON

110 | 001-01200-00-R00 HYORAOL ASSEMBLY 13.68 1
1101 | 001-01200-01-R00 PISTON ROD 1.1191 (C45E) 853 1
1102 | 001-01200-02-R00 PISTON ROD BUSHING | 2.0966 (CUAI1ONiSFed) |  0.38 1
1103 | 001-01200-03-R00 PISTON FRONT CAP 1.1191 (C45E) 0.11 2
1104 | 001-01200-04-R00 IS TN FRICTION 1.7225 (42CrMod) 0.60 1
1105 | 001-01200-05-R00 HYDRAULIC PISTON 1.1191 (C45E) 3.85 1
1106 | SPRING WASHER DIN 128 M5 | COTS ITEM - - 8
1107 | BOLT_DIN 912 MS5x16 COTS ITEM - - 8
1108 | WASHER_DIN 125_M5 COTS ITEM . - 8
e | BRSSO 60 | cors o | NE
11010 | IRELLEBORG_SLYDRING_GP7 | v ey ) ] ,
111 | 001-01300-00-R00 ";'\JEER,\%%S PISTON ASSEMBLY 3.65 1
1111 | 001-01300-01-R00 GAS SIDE PISTON 1.1191 (C45E) 357 1
111.2 TEE\JLGL_EP%%{(?R)TOL&-RMCSN_GLYD COTS ITEM . - 2
1115 | [RELLEBORG SLYDRING GPT | oy jrey ) ] ,
112 | 001-01400-00-R00 PYDRALLIC BLOCK ASSEMBLY 14.60 1
1121 | 001-01400-01-R00 HYDRAULIC BLOCK 1.1191 (C45E) 1450 1
i | QTR | cororn | NE
i | R A | cors o | NE
1124 | CONNECTOR_SKK20-GL 4 PB | COTS ITEM . - 1
1125 | PLUG_DIN 908_G3_4 COTS ITEM . - 1
1126 | PLUG_DIN 908_G1 2 COTS ITEM - - 2
1127 | PLUG_DIN 908_G1_4 COTS ITEM . - 1
113 | BEARING_22216_E COTS ITEM . - 1
114 | CONNECTOR SKK20-G1 4 PB | COTS ITEM - - 1
115 | O-RING_117,07x353 COTS ITEM . - 2
116 | O-RING_107,54x353 COTS ITEM . - 2
117 | O-RING_139,37x2,62 COTS ITEM - - 1
118 | O-RING_1,78xL1118 COTS ITEM . - 1
119 | WASHER_DIN 125_M12 COTS ITEM . - 18
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120 fg;_',\'\/'l‘fEWASHER—D'N COTS ITEM . - 18
121 | BOLT_DIN 931_M12x50 COTS ITEM - - 8
122 | BOLT_DIN 931_M12x40 COTS ITEM - - 10
123 | WASHER_DIN 125_M10 COTS ITEM - - 10
124 fZP;',\NA%WASHER—D'N COTS ITEM - - 10
125 | BOLT_DIN 912 M10x25 COTS ITEM - - 6
126 | BOLT DIN 912 M10x40 COTS ITEM - - 8
127 | O-RING_1,78xL447 COTS ITEM - - 1
128 | WASHER_DIN 125_M5 COTS ITEM . - 7
129 | SPRING WASHER DIN 128 M5 | COTS ITEM - - 7
130 | BOLT_DIN 912_M5x14 COTS ITEM . - 7
131 fﬁﬁf&yx'ﬂ'-E—D'N COTS ITEM . - 1

Detailed manufacturing drawings for the parts and assembly drawings for assemblies

of the designed HSU have been given in Appendix 1.
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6. CONCLUSION

Suspension systems are one of the most critical components for the ride dynamics
and comfort performance of a vehicle. Also, off road performance and mobility of the high
tonnage vehicles directly depend on the suspension system of the vehicle. High tonnage
vehicles such as tanks, tracked howitzers and fighting vehicles in military applications
generally use two types of suspension systems. Those are torsion bars and hydraulic
suspension systems. Most of the tracked military vehicles which require high mobility and
off road performance together with comfortableness and speed preferred to use torsion bar
suspension systems due to low cost and low maintenance. But, hit accuracy and long term
combat requirements brought the necessity of using more comfortable and higher off road
performance for these types of vehicles. The solution to these new requirements is found
by the hydro-pneumatic suspension systems.

In this thesis, a parametric design tool is aimed to be developed for manufacturing
hydro-pneumatic suspension system which may serve for all type of vehicles with different
tonnages. For preliminary design of a hydro-pneumatic suspension system, a Graphical
User Interface (GUI) has been developed for the input parameters and getting output
design parameters. This enables to process the input-output parameters fast and easily.
Thus, the predesign process time for designing a hydro-pneumatic suspension unit has
been reduced significantly. Essentially, the back side of the GUI runs the developed
analytical solver by using input parameters and provides output parameters required for
designing a hydro-pneumatic suspension unit. For this tool, a mathematical model has been
developed which contains necessary equations for developing a hydro-pneumatic
suspension unit and then, kinematics, spring characteristics and damper characteristics of a
hydro-pneumatic suspension unit have been analyzed.

In order to verify the mathematical model with finite element analysis, required input
parameters for a 24 tones-example have been specified and output parameters and plots by
the developed graphical user interface have been generated for detailed design of a hydro-
pneumatic suspension unit.

Finally, structural finite element analysis has been performed for the critical parts of
the system. Stress and strain distributions on the critical parts have been obtained.
Furthermore, the reaction forces on the bearings and hydraulic piston have been obtained

from the structural analysis results. The axial and transverse forces acting on the hydraulic
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piston, obtained from the analysis results and the graphical user interface have been
compared and it has been seen that the results are consistent to each other.

After verification, a technical data package based on selected vehicle data has been
performed which involves 3D CAD model of the designed HSU, bill of materials (COTS
items included), assembly and part drawings of the system. Thus, a verified developing

tool has been settled for further designs.

6.1. Future Work
A prototype of the designed hydro-pneumatic suspension unit might be prepared and
tested. By using the test results, the developed mathematical model and designed 3D CAD

model might be improved.
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APPENDIX 1 : TECHNICAL DRAWINGS OF THE DESIGNED HSU
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