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ABSTRACT 
 

ALPEREN ERDOĞAN 

OBJECT CLASSIFICATION ON NOISE REDUCED AND DATA 
AUGMENTED MICRO-DOPPLER RADAR SPECTROGRAMS  

Başkent University Institute of Science 

Department of Electrical and Electronics Engineering 

2021 

The classification of targets is one of the most challenging tasks in radar signal processing. 

Classifying a target can help radar operators figure out the nature of the target, such as its source 

and activity. However, it is very difficult to find the labeled data necessary to develop radar 

target classification models. Generating a radar dataset is an expensive and time-consuming 

process.  

To address these issues, we propose a noise reduction method that can be applied to micro-

Doppler radar datasets. This method is carried out by averaging the spectrograms of each class 

in the RadEch micro-Doppler radar datasets and subtracting pixel by pixel from each sample. 

RadEch dataset has also been augmented with traditional and learning-based data augmentation 

methods. The learning-based data augmentation method was carried out by using Generative 

Adversarial Networks.  

Raw spectrograms, augmented spectrograms and noise reduced spectrograms have been 

classified using 5-layer CNN, VGG-16, and VGG-19. Classification results are compared with 

state-of-art studies. Comparison results shows that classification on noise reduced spectrograms 

performs better than current state-of-art methods. 

 

KEYWORDS: Micro-Doppler Radar, Radar Signal Classification, Data Augmentation, 

Noise Reduction, Convolutional Neural Network, Transfer Learning 

 

 

 



 ii 

ÖZET 
 

ALPEREN ERDOĞAN 

GÜRÜLTÜSÜ AZALTILMIŞ VE VERİ SETİ ARTTIRILMIŞ MİCRO-
DOPPLER RADAR SPEKTROGRAMLARI İLE NESNE 
SINIFLANDIRILMASI 

Başkent Üniversitesi Fen Bilimleri Enstitüsü 

Elektrik/Elektronik Mühendisliği Anabilim Dalı 

2021 

Nesnelerin sınıflandırılması, radar sinyal işlemedeki en zorlu görevlerden biridir. Bir hedefi 

sınıflandırmak, radar operatörlerinin, nesnenin kaynağı ve etkinliği gibi hedefin doğasını 

anlamalarına yardımcı olabilir. Ancak radar nesne sınıflandırma modelleri geliştirmek için 

gerekli olan etiketli verileri bulmak çok zordur. Bir radar veri seti oluşturmak pahalı ve zaman 

alıcı bir süreçtir.  

Bu sorunları ele almak için mikro-Doppler radar veri setlerine uygulanabilecek bir gürültü 

azaltma yöntemi bu tez kapsamında önerilmiştir. Bu yöntem, RadEch micro-Doppler radar veri 

setlerindeki her sınıfın spektrogramlarının ortalaması alınarak ve bu ortalama spektrogramın, 

sınıflarda bulunan her örnekten piksel piksel çıkarılması ile gerçekleştirilir. RadEch veri kümesi 

ayrıca geleneksel ve öğrenme tabanlı veri geliştirme yöntemleriyle de zenginleştirilmiştir. 

Öğrenmeye dayalı veri artırma yöntemi, Çekişmeli Üretici Ağlar kullanılarak 

gerçekleştirilmiştir.  

Ham spektrogramlar, geliştirilmiş spektrogramlar ve gürültüsü azaltılmış spektrogramlar beş 

katmanlı evrişimsel sinir ağı, VGG-16 ve VGG-19 kullanılarak sınıflandırılmıştır. 

Sınıflandırma sonuçları, literatürde yapılmış alan son çalışmalarla karşılaştırılmıştır. 

Karşılaştırma sonuçları, gürültüsü azaltılmış spektrogramlar üzerinde yapılan sınıflandırma 

başarısının, mevcut en son yöntemlerden daha iyi bir performansa sahip olduğunu göstermiştir. 

 

ANAHTAR KELİMELER: Mikro-Doppler Radar, Radar Sinyallerinin Sınıflandırılması, Veri 

Arttırma; Gürültü Azaltma, Evrişimsel Sinir Ağları, Öğrenme Aktarımı 
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1. INTRODUCTION 
 

The classification of targets is one of the most challenging tasks in radar signal 

processing. Classifying a target can help radar operators figure out the nature of the target, such 

as its source and activity. The original classification of targets was done by listening to the 

audio signals that were received by the radar. A moving target produces unique sounds caused 

by the Doppler effect, which trained operators can recognize. Nonetheless, it introduces an 

inconsistency and a slow classification, making it unsuited to real-time classification. For the 

military, robust, reliable, and modular targeting algorithms are required to increase efficiency 

and performance. With increasing use of automatic target recognition algorithms, humans will 

serve less and less in tasks such as target recognition. Automatic target recognition algorithms 

not only provide reliable and objective learnings but also serve as a cost-effective alternative to 

human participation. Due to radar's ability to suppress stationary targets and minimize clutter, 

Doppler radar is widely used to detect, recognize, and classify moving targets. A moving target 

introduces a time-varying delay between the radar and the target which causes frequency shifts. 

A Doppler shift is the major change in frequency caused by a subject's main movement. By 

adjusting these shifts, micro-Doppler signatures can be created that describe the nature and 

activity of the target. 

1.1. Objectives 

In this thesis, RadEch dataset is used for classification. The micro-Doppler radar signals 

in the RadEch dataset were first converted to spectrograms. Spectrograms have been adapted 

to the Convolutional Neural Network to be used for classification. Then, the noise reduction 

technique proposed in this study was applied to the spectrograms. Then, traditional and 

learning-based data augmentation techniques were applied to Raw spectrograms in order to 

increase number of the dataset samples. After all these pre-processing, the obtained pre-

processed data were classified using three different Convolutional Neural Networks with and 

without transfer learning.  

1.2. Contributions 

The main contribution of this thesis is that it has higher classification accuracy with lower 

demand of the amount of training data than state-of-art studies in the literature. Additionally, a 

noise reduction method for micro-Doppler radar signals is proposed. It has been observed that 

the method exceeds the classification accuracy obtained in other studies in the literature. The 
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performance of VGG-16 and VGG-19 architectures on micro-Doppler radar spectrograms has 

been tested and compared with and without transfer learning. Traditional data augmentation 

methods and Learning-Based data augmentation methods using Generative Adversarial 

Network were compared. 

1.3. Thesis Structure 

This section describes the rest of thesis structure: 

a. Chapter 2 (Literature Review): This chapter defines the necessary concepts that is 

needed in this thesis and gives a survey of other works which is related to the filed 

b. Chapter 3 (Methodology): This chapter clarifies and describes what is contributed to 

micro-Doppler radar signal classification. 

c. Chapter 4 (Results): This chapter shows and describes the outcomes and results that is 

acquired from the model that is developed. 

d. Chapter 5 (Discussion): This chapter summarizes the work and the results of the project. 

This chapter also compares all results in each other and other study. Future works are 

also mentioned here. 

e. Chapter 6 (Conclusion): This chapter explained briefly what have been done in this 

thesis and show results in a nutshell. 
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2. LITERATURE REVIEW 
 

2.1. Radar Systems 

Radar is a type of electromagnetic device used for detecting and locating objects. Initially, 

radar systems were limited to detecting targets and determining their distance. The word radar 

is derived from the phrase RAdio Detection And Ranging. An electromagnetic energy is 

transmitted by radar - such as pulsed sine waves - and echoes are collected to provide range, 

velocity, position, and other target information such as reflectivity. In this chapter, radar 

systems are defined detailed. Basic radar block diagram is illustrated and every component in 

the block diagram are explained briefly. Radar equation, radar range ambiguity, radar range 

resolution, velocity measurement is expressed briefly.  

Figure 2.1 illustrates an elementary example of a typical radar system, which omits many 

details. This system uses an oscillator to generate electromagnetic energy, which is sent to a 

microwave antenna via a duplexer, a device that simultaneously transmits and receives the 

signals. As a transducer, the antenna couples electromagnetic energy into free space, where it 

propagates at the speed of light (approximately 3 × 108  m/s). Radar antennas recover some of 

the backscattered energy reflected by objects. According to Equation 2.1, the time delay 

between the transmission by the radar and the reception of the returned echo at a range R is the 

round-trip time.:  

 𝑡! =	
2𝑅
𝑐  (2.1) 

 

Where speed light c. The R which represents range is multiplied with 2 due to two-way 

propagation of radar signal.  
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Figure 2. 1 Radar Block Diagram 

 

Receivers are typically equipped with Low Noise Amplifiers (LNA) for amplifying weak 

reflected radar signals and reducing noise. The receiver also contains a filter-to-filter 

unnecessary signal in receiving band and noise. Incoming signals are filtered by the filter and 

passed to the low noise amplifier so that they can pass the desired bandwidth. Down converters 

that inside of the transmitter, make radar signals more suitable for signal processing. After 

required signal processing, indicator shows meaningful information to radar operators. A shift 

in the carrier frequency of the reflected wave, also known as Doppler shift, can be used to 

calculate relative velocity if there is relative movement between the radar and the target. 

Doppler shift and Doppler radar are explained in section 2.1.3 detailly. 

There are five basic elements of basic radar systems: a duplexer, a transmitter, an antenna, 

a receiver, and an indicator. The functions of basic elements are explained in below. 

Transmitter: Radar systems have transmitters as a major component, and it produces the 

radio frequency (RF) power signal to propagate the target. A continuous wave (CW) signal or 

a pulse signal may be generated in the RF transmitter. An effective radar system will use it with 

an amplitude and frequency that fit its specific requirements. RF power can be generated in two 

ways: first method is in the power oscillator approach, where the signal is generated at a 

sufficiently high level to be applied directly to the antenna; and second method in the master 

oscillator, where RF signals at a low level are amplified to a higher level [2]. 
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Duplexer: Duplexers allow monostatic radars to use the transmission and reception on 

the same antenna. Depending on the radar system, two antennas could be used: one for 

transmitting and one for receiving. This kind of radar system does not required duplexer. 

Transmission and reception of RF signals via duplexers are usually accomplished by switching 

between them [2]. 

Receiver: Basically, the receiver consists of low-noise radio frequency amplifier, 

intermediate frequency amplifier (IF) and display unit. RF amplifiers on the front end are 

usually parametric amplifiers or low noise transistors. An IF signal of centre frequency 30 or 

60 MHz and bandwidth of about 1 MHz is produced by converting the RF signal to an IF signal 

using a mixer and local oscillator (LO). Second detector extracts pulse modulations at 

intermediate frequency, which are matched by the intermediate frequency amplifier. After the 

signal has been demodulated, it is then amplified by the video amplifier so that it can be 

displayed on an indicator, usually a cathode-ray tube (CRT) [2]. 

Antenna: Antennas used in the radar system are mostly directional. Due to the fact that 

directional antennas propagate signals out to areas of interest. The signal propagates in both 

vertical and horizontal directions with an isotropic antenna. As a result, antenna gains are 

weaker and meaningful information is more difficult to obtain. Parabolic dish antennas are fed 

from a feeding antenna at their focus, which is a common form of radar antenna. By 

mechanically pointing the antenna, the beam can be scanned in space. Phased-array antennas 

have also been used for radar. The antenna beam is scanned electronically using phase shifters 

connected to the elements in a phased-array antenna. By concentrating the signal, the antenna 

can narrow the beam to a particular preferred direction, and intercept the target echo signal 

from the same direction. Amplification of the weak energy is then accomplished by using a low 

noise receiver stage [2]. 

Indicator: A radar indicator or display visually presents the information contained in the 

radar echo signal in a way that can be interpreted and acted upon by the operator. You can either 

directly connect the display to the video output of the radar receiver or you can indirectly 

connect the display to the radar receiver. The radar receiver output of radars that provide more 

information per second than the operator can process is normally interpreted and compressed 

by automatic data processors. Radar displays are typically two-dimensional displays that show 

the target's location in relation to some reference point. Nonetheless, it can also take the form 

of a light which indicates a particular status, or a meter showing some value, such as a target's 

distance or antenna angle. A variety of some display formats are shown in Figure 2.2. For 
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surveillance radars and tracking radars, target information is displayed on CRT displays. Some 

of the commonly used radar indicators defined below: 

 

 

Figure 2. 2 Typical Radar Displays [2] 

 

a. A-Scope: It provides target range and signal power data. Deflector vertically deflects 

according to the target echoes' power, and horizontally in proportion to the range. 

Radars used to measure or collect data with the A-scope display do not employ the 

antenna to scan. It is also known as the "R-Scope indicator". 

b. B-Scope: Basically, it has a rectangular display with degrees indicated by horizontal 

coordinates and ranges indicated by vertical coordinates. Displays that display B-scope 

images are used extensively in ground and airborne radar systems, as well as short-range 

ground surveillance radars. 

c. C-Scope: In this rectangular display, vertical coordinates represent elevation angles, 

while horizontal coordinates represent azimuth angles. 

d. E-Scope: The rectangular display is either horizontally aligned with the range or 

vertically aligned with the elevation angle. 

e. Plan-position-indicator (PPI): A circular or polar display shows reflections from 

reflected targets shown by vector coordinates, and fields and angles indicated by polar 
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coordinates. It appears that maps are like these displays. Plan-position indicators are 

used in surveillance and weather radar applications to display 360-degree coverage. 

 

Generally, radars are classified as to the types of waveforms they send and, when they 

are pulsed, by the rate of transmission. Radiation from continuous wave radars is transmitted 

and received continuously using separate transmit and receive antennas in general. continuous 

wave is a high-energy waveform and could be used for long-range applications. Radial velocity 

and angular position may be accurately measured by unmodulated continuous wave radars 

using the Doppler shift of the reflection signal. Doppler shift is explained in section 2.1.3 

detailed. The range information can be acquired by using time-variant modulation, such as saw-

tooth modulation or triangular modulation. 

The types of radar systems may also be classified according to specific missions and 

applications. A variety of missions can be carried out by radars, such as air traffic control, radar 

for aircraft, radar for satellites, remote sensing, and radar for law enforcement for traffic control. 

There can also be a difference in radar classification based on the frequency of the radar. 

International institutions and organizations have named the frequency ranges of radio 

frequencies. This naming process has made things much easier in many projects and systems. 

The band names, it’s frequency ranges and general usage are illustrated in Table 2.1. 

Radar signals that are reflected by targets are commonly corrupted by unwanted external 

interference such as thermal noise, electromagnetic interference, atmospheric noise, etc. 

Whenever the desired signal exceeds the interfering signals, it is possible to acquire information 

about the target. An echo signal's delay contains information about the range of the returned 

signal. 

 

Table 2.1 Radar Frequency Bands and Usages [2] 

Band Frequency (GHz) Usage 
   
HF 0.003-0.03 Over-the-horizon surveillance 
VHF 0.03-0.3 Long range surveillance 
UHF 0.3 -1.0 Very long-range surveillance 
L 1.0-2.0 Long range military and air traffic control 
S 2.0-4.0 Ground-based shipboard search 
C 4.0-8.0 Fire control and weather detection radars 
X 8.0-12.5 Short range tracking, marine radars 
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𝐊𝐮 12.5-18.0 High resolution mapping, satellite altimetry 
K 18.0-26.5 Police speed measuring and airport surface detection 
𝐊𝒂 26.5-40.0 Very high-resolution mapping and airport surveillance 
MM-Wave 40.0-300.0 Optical targeting system and Laser range finders 

 

By varying the frequency shift, also known as the Doppler frequency, the target can be 

identified by its radial velocity. Azimuth and elevation of the radar target can be inferred from 

the direction in which the antenna is pointing for maximum reflected signal strength. 

Detection: The main function of radar is to detect whether the target exist or not. The 

radar cannot detect the weak signal due to the noise energy. Basically, interference and thermal 

noise corrupt the receiver signal. The majority of noise occurs in regions with low signal levels, 

such as weak echo signals that corrupt the desired signal in receivers. "The minimum detectable 

signal" is the weakest signal the radar receiver can detect. In threshold detection, the assumption 

is made that an object is present when a signal rises above a particular level to ensure that the 

envelope does not exceed the threshold if only noise is present, the threshold level should be 

set at an appropriate level. 

Range: Range is one of the most important parameters of radar systems. In most cases, 

the radar's chief feature is its ability to measure the reflection time of its signal in order to 

determine its range to a target.  Around feasible range, the precision of range could be 

approximately a few centimetres. Timing marks can either be short pulse signals (amplitude 

modulated signals) or frequency/phase modulated continuous waves. Range measurement’s 

accuracy depends on bandwidth of the radar signal. For more accurate results, bandwidth needs 

to be wider. This means that the radar signal bandwidth is one of the most important parameters 

for range accuracy [3]. Pulse radar will be investigated in Section 2.1.1, however, there must 

be some basic explanation of it. Figure 2.3 shows basic envelope of receiving signal of pulse 

radar.  

 

Figure 2. 3 Basic Envelope of Receiving Pulse Radar Signal [2] 
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Target A has been detected, and it's not a big deal because the receiver's output power is 

above threshold at targets A and B. It is apparent that the noise voltage accompanying the signal 

at C is large enough to comfortably exceed the threshold, but target D is not actually detected 

as a target due to the level of noise [2]. 

Radar Cross Section: An area equivalent to what is seen by a radar is called a radar cross 

section. In other words, it is the symbolic area intercepting that amount of power distributed 

evenly throughout all directions, which produces the same echo at the radar as the target does 

[4]. Mathematically, it is written as Equation 2.2: 

 𝜎 = lim
$→&

4𝜋𝑅'
|𝐸(|'

|𝐸)|'
 (2.2) 

Where: 

R: target and radar distance 

𝐸( : radar scattering strength 

𝐸) : strength of incident field at target 

 

Range Equation:  Wave propagation from transmitter to receiver is represented by radial 

equations as a result of transmission power. The radar equation can be used to calculate the 

power returning to the receiving antenna given the transmit power, the slant range, and the 

reflecting characteristics of the aim. By knowing the radar receiver's sensitivity, the radar 

equation can determine the theoretical maximum range that can be achieved by a given radar. 

As well, the radar equation can be used to estimate a radar system's performance [8]. Radar 

equations assume electromagnetic waves propagate under ideal circumstances, using an 

isotropic antenna, and can be modified to fit specific conditions.  In the scope of this thesis, the 

most general version of the radar equation used in distance calculations will be given. Other 

specific equations, equations involving the shape of the earth and the effects of the atmosphere 

will not be given. The radar equation is given in Equation 2.3 below. 

 𝑅 =	 $
𝑃!𝐺!𝐺"𝜆#𝜎
(4𝜋)$𝑆%&'

!
 (2.3) 

R: range 

𝑃* : transmitted power 
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𝐺*: transmit antenna gain 

𝐺$: received antenna gain 

𝜆 : radar signal wavelength 

𝜎 : radar cross-section 

𝑆+), : minimum detectable signal 

 

Range Resolution: Radar’s target resolution capability, it is capable of discriminating 

targets that are very close to it in either range or bearing. In weapons-control radars, for instance, 

which require high precision, targets can be distinguished by only yards or meters. Radar search 

is usually less precise and having ability to distinguish between targets only a few meters or 

even kilometres apart. 

Radar systems are capable of distinguishing between two or more targets at different 

ranges on the same bearing. There are various factors that contribute to the degree of range 

resolution, including pulse width, type and size of target, and receiver and indicator efficiency. 

Range resolution is primarily determined by pulse width. Radar systems that have been well-

designed are capable of separating targets separated by one half the pulse width duration τ.  

Based on Equation 2.4, we can determine the theoretical range resolution cell of radar system: 

 ∆𝑅 = 	
𝑐𝜏
2  (2.4) 

where, 

∆R: range resolution in meter 

c: propagation velocity of electromagnetic wave in m/s 

τ: bandwidth of pulse signal 

 

In this section, the definition of radar systems is defined and all components in a simple 

radar structure are briefly explained. Classification parameters of radar systems, the frequencies 

used in radar systems and their intended use were shown. Radar equation was given, and radar 

range resolution was explained. In the next section, pulse doppler radars will be briefly 

explained. Since Doppler radar is used in the dataset used within the scope of this thesis, the 

doppler radar is going to be explained in detail in Section 2.1.3. 

2.1.1. Pulse Doppler Radar 

An intense and short pulse is propagated by pulse radar. Receives the echo signals during 

the silent period. Transmitter power is shut off as soon as a measurement is completed in 
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continuous wave radar, unlike continuous wave radar. The radar pulse modulation used in this 

method is characterized by very short transmission pulses. Generally, transmit pulse is durations 

of τ ≈ 0.1, … , 1 µs. Between the transmit pulses are very large pulse pauses Τ >> τ, which are 

referred to as the receiving time and typically Τ ≈ 1 millisecond as shown in Figure 2.4. 

 

 

Figure 2. 4 Pulse Doppler Radar Illustration 

 

Reflecting objects are measured at runtime in order to determine how far they are from 

one another. The pulse radar transmits relatively high pulse power and is primarily used for 

long-range measurements. Pulse radars are similar to bats' techniques for detecting obstacles. 

bats send a sound signal to find obstacles in front of them. Based on the duration of the incoming 

sound signal, they can determine the distance to the target based on the reflected sound signals; 

pulse radars also work with this principle.  

The pulse radar differs from other radar methods because all processes within it must be 

controlled in time. Time is determined by the leading edge of the transmitted pulse during 

runtime measurement. When the echo signal's rising edge transitions to the pulse top, the pulse 

top ends. Calculating the distance requires correcting signal processing delays. Pulse radars are 

influenced by random deviations. 

2.1.2. Continuous Wave Radar 

Radar's first and modern versions are based on transmitting a continuous wave of 

electromagnetic energy and then receiving that reflected back by a moving target. Radar signals 

are shifted by an amount called Doppler shift if the target is changing spatial location relative 

to the radar, which is the basis for continuous wave radar. Besides indicating that a target is 

present, the returned echo also provides a measure of its distance, since the time elapsed 

between the transmission of the signal and receipt of the echo is measured. Depending on the 
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characteristics of the transmitted wave, it is possible to extract the amount of target information. 

The transmission of a signal can be modulated to detect targets based on its amplitude, 

frequency, or phase [2]. 

It was recognized early in the development of radar that continuous waves would be 

useful in measuring Doppler effects. The continuous wave radar's greatest advantage is that it 

is simple and capable of handling targets at all ranges and speeds without velocity ambiguity. 

As a rule of thumb, continuous wave  radar   has   all   the  advantages   without   corresponding 

disadvantages. In continuous wave radar, there is a major problem concerning direct leakage 

from the transmitter to the receiver. The use of pulsed radars or continuous wave radar depends 

on the application. There are several advantages of continuous wave radars over pulsed radars. 

It consists of simpler, lighter, and more compact hardware. A continuous wave radar transmits 

less power than a pulsed radar. In contrast to pulsed radars, continuous wave radar detects 

targets at shorter ranges. Due to the nature of continuous wave radars, an unmodulated 

continuous wave radar cannot measure target distance. When the signal is reflected back from 

the target; continuous wave signal cannot be used to obtain distance. Time stamps must 

accompany  continuous wave signals. Thus, continuous wave radars can be classified into two 

types: modulated and unmodulated. 

2.1.2.1. Frequency Modulated Continuous Wave (FMCW) Radar 

In continuous wave radar measurements, the Doppler frequency of the target can be 

measured, but not its range. Radar that uses frequency modulated continuous wavee(FMCW) 

measurements can determine both the target's range and its Doppler frequency. The FMCW 

radar transmitted its frequency according to a known time-dependent pattern. The figure 2.5(A) 

illustrates the principles of triangular FMCW ranging with no Doppler shift for a single target. 

Range can be determined by comparing the signal echo with the radar's current transmitting 

frequency [4]. In the absence of a Doppler frequency, the difference frequency's value is given 

by Equation 2.5: 

 𝑅 = 	
𝑐𝑇𝑓-
2𝐵  (2.4) 

where, 

𝑓-: frequency difference between the signal echoes and the current transmission 

R: range between transmitter and target 

B: transmitted signal bandwidth 
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c: speed of light 

T: period of modulation wave 

 

 

 

Figure 2. 5 Principle of Triangular FMCW Ranging [4] 

 

Figure 2.5(B) shows a frequency–time relationship if a Doppler shift is present.  

Differences in frequency exist on both sides: the upper frequency, 𝑓.(up), and the down 

frequency, 𝑓.(down). The frequency indicates range 𝑓- and the Doppler frequency 𝑓! can be 

finding out by Equation 2.5: 

 

𝑓- =
1
2 [𝑓.

(𝑢𝑝) 	+	𝑓.(𝑑𝑜𝑤𝑛)] 

𝑓! =
1
2 [𝑓.

(𝑑𝑜𝑤𝑛)	+	𝑓.(𝑢𝑝)] 

 

 

(2.4) 
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Radars based on FMCW technology are applicable to airborne applications. For instance, 

for measuring the height above Earth's surface, the aircraft can be equipped with an FMCW 

altimeter. FMCW radars are used in the system which measure relatively short distance 

predominantly. Self-driving cars is good example for application of the FMCW radar. FMCW 

radar is used for obstacle detection in self-driving cars instead of sonar radars and cameras, as 

it is not affected by weather conditions, darkness and many other factors [5]. 

 

2.1.3. Doppler Radar 

2.1.3.1. Doppler Effect 

Christian Doppler, an Austrian mathematician and physicist, described the coloured light 

effect of stars in 1842 [6]. Light sources appear different colours when they move; the colour 

of the light would appear bluer while moving away with respect to an observer, the light would 

appear redder. This phenomenon was first discovered as the Doppler effect [7]. Light sources 

are seen as having a frequency that depends on the motion of the source in relation to the 

observer. As a result of the motion of the source, waves at the front and the back of the source 

are compressed and stretched, respectively. 

Imagine an ambulance or police car with open sirens approaching you from the side. The 

siren sound will be different when the ambulance is approaching you versus when it is moving 

away from you. This example is valuable for the doppler effect in everyday life. Again, the 

doppler effect accounts for this difference. Doppler effect is illustrated in Figure 2.6. This 

electromagnetic wave source is motioning through to the observer, as can be seen in Figure 2.6. 

The wavelength of an EM wave, on the other hand, is larger than its exact wavelength when 

measured with respect to observer and smaller than its exact wavelength when measured with 

respect to source motion. Any wave propagating source would do, such as sound waves, 

electromagnetic waves, and so on. 
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Figure 2. 6 Doppler Effect Simulation 

Equation 2.5 shows the relationship between observed frequency and emitted frequency 

for a scatterer in the radar field of view moving with a velocity component.  

 𝑓 = 𝑓/(
𝑐 ±	𝑣-
𝑐	 ±	𝑣0

) (2.5) 

where, 

c: speed of light 

f/: emitted frequency 

F : observation frequency 

v1: speed of receiver 

v2: speed of source 

 

2.1.3.2. Doppler Effect in Radar 

In Doppler radar, electromagnetic waves with a specific frequency are sent up to the 

moving object. It is possible to use Doppler radar with a stationary target, but it is less useful if 

the target moves. Upon hitting the moving object, the electromagnetic radiation wave "bounces" 

back to the source, which contains both the original transmitter and a receiver. The relativistic 

Doppler effect, however, states that the wave is shifted whenever it reflects off of a moving 

object. Radar guns treat the wave that bounces back toward them as if it were an entirely new 

wave that came from the target that reflected it. The new wave basically originates from the 

target. Waves sent toward the target have a certain frequency, but when they are received at the 

gun, it has another frequency. Due to the fact that electromagnetic radiation has a exact 



 16 

frequency when it is transmitted and changes to a frequency when it returns, the velocity of the 

target can be calculated [9]. 

2.1.3.3. Micro-Doppler Effect 

In coherent laser radar systems, micro-Doppler was first introduced in [10].  Modulating 

a laser beam's amplitude, frequency, phase, and even polarization when transmitting and 

receiving electromagnetic waves, laser detection and ranging systems determine an object's 

range, velocity, and other properties by receiving the reflected or backscattered light waves. In 

high-frequency systems even with a low vibration rate or low vibration amplitude, phase shifts 

caused by Doppler shifts are readily detectable. 

Micromotion refers to oscillating activity occurring in an target or body element of the 

object. A micro motion defined here includes a broader definition of the "micro," and includes 

motions of objects other than bulk motion, such as oscillations within the stuff or structural 

aspects of the stuff. Another example of a micro motion source includes a rotating propeller or 

rotor blade, bird wings flapping, or a person walking and swinging arms and legs. In micro-

Doppler studies, human motion plays a significant role. Human bodies are capable of 

performing articulated motions by moving individual parts. The high articulation and flexibility 

result in a complex micromotion. Humans can articulate their motion through walking. During 

the transmitting of radar signals, micro activity induces frequency modulations alongside the 

carrier frequency. Periodically shifting the carrier frequency does not produce side-band 

Doppler motion but only a consummate periodical motion. According to the carrier frequency, 

shaking rate, and angle between the shaking direction and wave incidence, harmonic 

frequencies are included in the modulation. By modulating the frequency, it can be determined 

the kinematic properties of any object that interested in. There have been proposals to use 

propeller or rotor blade modulation to identify targets since a very long time. The research in 

[7] covers how to extract the kinematic information as well as the ways of representing the 

frequency modulation as a target signature. 

2.1.3.4. Micro-Doppler Analysis 

There is a correlation between the frequency band of the signal and the micro-Doppler effect. 

Micro-Doppler radars operate at high frequency bands using microwaves effect is detectable 

only if the target's oscillation rate and displacement are both high enough.  For an X band radar, 

vibration at the frequency of 15 Hz coupled with a displacement of 0.3 cm can cause a 

maximum micro-Doppler shift of 18.8 Hz.  The displacement requirement may be too large 

even with a 10-cm-wavelength radar operating in the L-band for the same micro-Doppler shift 
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of 18.8 Hz and vibration rate of 15 Hz, which implies the required displacement must be 1 cm. 

Consequently, in radar systems operating at lower frequencies, vibrations may not produce 

micro-Doppler shifts which can be detected. Causing by their longer rotary motion arms and 

quicker tip speeds, micro-Doppler shifts from rotating blades, such as those in rotor blades, may 

be detectable. Radar in the UHF band operates at frequencies ranging from 300 to 1,000 MHz, 

which is commonly used for foliage penetration detection (FOPEN). FOPEN radars are unable 

to detect the micro-Doppler shift when a target vibrates. Nevertheless, rotating blades or 

propellers can still be detected by micro-Doppler shifts.  Radar in the UHF band can detect the 

micro-Doppler shifts of helicopter rotor blades at 666 Hz if they rotate at 200 m/s and their 

frequency can be measured with a 0.6-m wavelength [7]. 

The signature of the object can be called a characteristic expression of the object or process. 

Micro-Doppler characteristics in an object provide evidence of its identity as a moving object 

when the Doppler phenomenon is observed. An object's movement can be distinguished from 

other movements by means of its micro-Doppler signature. An intricate frequency modulation 

that takes place almost simultaneously in same the time and the frequency of Doppler domains 

makes an object identifiable. As shown in Figure 2.7, a rotating air-launched cruise missile 

(ALCM) exhibits a micro-Doppler signature in simulation software [11, 12]. There are 6.4m of 

length and 3.4m of wingspan for the cruise missile. An X-band pulse radar burst of 1-s chirp 

simulation is presumed to be based on pulses the electromagnetic backscattering field. A total 

of eight thousand one hundred and twenty-two pulses are transmitted from the radar once over 

a period of 0.55 second to cover the full vision of the target of 360°. 
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Figure 2. 7 Micro-Doppler Signature of Simulated ALCM [7] 

 

It is possible to observe micro-Doppler phenomena in time-frequency domain, also in the 

domain of frequency of rotating ALCMs. As it can be seen in Figure 2.7(b), the rotating ALCM 

produces a time-frequency micro-Doppler signature. Figure 2.7(a) shows the conventional 

Fourier spectrum as a comparison. A rotation of 360° takes 0.55 seconds, so the missile rotates 

at a rate of 1.8 cycles per second. For the ALCM model, (1) themmissilemheadmtip, (2) head 

joint, (3mwingmjoint, m (4) turbine engine intake, (5) tail fin and tail plane, and (6) tail tip and 

engine exhaustmaremlocatedmat about −2.5m, −1.8m, 0.2m, 2.5m, 3.5m, and 4.2m, 

respectively, off the pivot point at 0 [7].  

2.1.3.4.1. Doppler Effect Due to Vibration 

The target's micro-Doppler signature can also be acquired iffit is composed of multiple 

parts, which might rotate or move independently from the bulk. When a vehicle is moving, the 

rotating elements can be the wheels; when a person is moving, the elements can be their arms 

or legs [13]. In the presence of these movements, Micro-Doppler effect can be utilized to extract 

a target's signature during measurement [14,15]. Radar signals may be extended to detect small 
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vibrations by extracting the micro-Doppler information contained in them [16,17].  A target's 

vibrations generate a phase modulation in the radar signal, and specific algorithms enable the 

phase information to be extracted. It can be referred to the discussion and the radar model in 

[20-22] to explain how micro-Doppler appears in the signal generated by vibrating targets.  

2.1.3.4.2. Doppler Effect Due to Human Motion 

In the late 1990s, researchers began studying the molecular signatures of human gaiting 

through radar [23,24]. Nonrigid bodies can be deformed, that is, the distance between two points 

in the body can change while the body moves, and as a result, the body shape can be altered. 

Nonrigid body motion and radar scattering, however, can be treated as the motion of multiple 

rigid bodies since the body can be modelled as joints or segments. 

The radar has demonstrated its ability to detect targets with small cross sections, including 

humans and animals. However, the methods for analysing dynamic characteristics in humans 

and animals and identifying movement patterns from radar returns are challenging.  Hence, 

many radars range-Doppler images have been observed to demonstrate Doppler modulation 

associated with a target's rotation, vibration, or motion In the range cells corresponding to the 

motion sources, these appear as characteristic Doppler frequency distributions. For example, 

rotating ship antennae, helicopter rotor blades, motioning arm and leg, or other rotationary 

motion characteristics may be detected.  Radar imagery of a moving target is produced by 

removing target translational motion and oscillatory motion components with motion 

compensation and image autofocusing algorithms for minimizing the induced Doppler 

distributions in the radar imagery.  

A human body's movement is articulated. A regular pattern of periodic movement can be 

observed in the human body's limbs. Humans walk with a highly coordinated pattern of 

muscles, joints, and nerves. Gait cycles are an example of an articulated human motion, and 

walking can be dissected into periodic motions. The human walking period is divided into two 

cases: swing and standing. Stepping is performed with the heel striking the ground and the toe 

off the ground. During the swing case, the foot is raised off the floor, either accelerating or 

decelerating. For gait analysis, methods include visual assessment, sensor measurement, and 

kinematic analysis that traces movement patterns and measures accelerations, displacements, 

and orientations of body segments and joints. Whenever a person walks, runs, jumps, or changes 

directions, their body movements change. Radar micro-Doppler signatures, since they do not 

suffer from distances, visible-light circumstances, and background divergency, can be used to 

guess the impact phase sequences, gait phases, and swing phases. [7]. 
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Walking is characterized by its periodicity. Walking in a cycle is illustrated in Figure 2.8. 

Standing comprises about half of the cycle, while swinging occupies the remaining half.  

Standing on one foot, swinging the leg, and preparing the next stride occurs in the swing phase. 

This cyclic movement is repeated over and over again. 

 

Figure 2. 8 Human Walking Movement in One Cycle [7] 

 

One-loop human gait is shown in Figure 2.8. In this walk, all parts of the human body 

move periodically. The speed of each moving part increases and decreases in a specific period, 

relative to a reference point. The graph showing the radial velocities of all parts is shown in 

Figure 2.9. Every part moving in the body has a Doppler signature due to their speed. The 

micro-doppler signature created by all parts come together to form the integral micro-doppler 

sign of that movement.  
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Figure 2. 9 Radial Velocity of Human Parts While Walking [7] 

 

The time domain view of micro-doppler radar signals reflected from the human body will 

be rather confusing. Although frequency domain views, that is, Fourier transform graphs, create 

a more meaningful graph compared to the time domain, it will be very difficult for radar 

operators to interpret. Micro-Doppler signals reflected from the human body go through many 

processes while processing and extracting meaningful data. Extracting meaningful information 

mostly depends on the competence of the operator but can contain a lot of error. Such situations 

can be improved and optimized using artificial neural networks. Within the scope of this thesis, 

it is discussed how to process the radar signal reflected off the body and from vehicles, using 

artificial neural networks to extract meaningful information from the processed data. In terms 

of the radar signal as being input to the ANN, it must first be processed. We can think of the 

micro-doppler signal as a time series signal. This signal includes both the time component and 

the frequency component. If these signals are transformed into a spectrogram with the correct 

parameters, we obtain an image in which the pixels in an axis representing the frequency and 

the time indicate the strength of the signal. 

Using the time-frequency transform (spectrogram) of the radar imaging range profile, a 

walking human's micro-Doppler signature is derived in Figure 2.10. As the Gait is completed 



 22 

by swinging both legs simultaneously, they appear as peaks in the micro-Doppler signature. 

The motion underneath the legs tend to have a slight saw-tooth shape because of the way the 

body speeds up and slows down while it swings.  

In figure 2.10 (a), the human is walking at a constant speed towards the fixed radar. In 

Figure 2.10 (b) its distance to the radar is given as pulse range profiles. Figure 2.10 (c), micro-

doppler spectrogram of radar signal is given. There is a periodic pattern on the spectrogram as 

expected. It is the movement of a body part relative to the radar receiver that creates every 

fluctuation in the pattern. Since the movements of the legs are greater during walking than other 

piece of human body, the micro-Doppler signal created by the legs is expressed in a wider 

frequency range (in other words, the speed relative to the radar changes more). As the 

movements of the tibia and the clavicle will be less compared to the leg and more than the torso, 

an expected situation is observed again. Finally, since the torso moves at a more constant speed 

than other body parts during walking, it is the part with the least frequency change in the pattern 

in the spectrogram. 

 

Figure 2. 10 (a) The orientation of a walking human in relation to a radar pulse, (b) the radar 
pulse-range profile, (c) and a walking human's micro-Doppler signature. [7] 
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Figure 2.11iillustrates examples of radar micro-doppler signatures detected by collected 

X-band radar data of humans running, crawling, and walking. In contrast to the micro-Doppler 

expression of a walking human in Figure 2.11 (a), the expression of a running human in Figure 

2.11 (b) has a higher Doppler frequency shift and a shorter gait cycle. Figure 2.11 (c) shows 

that the Dopplerffrequencysshift of a crawling person is much lower, as well as the maximum 

value of the Doppler shift. 

 

Figure 2. 11 (a) A walking person's micro-Doppler signature, (b) A running person micro-
Doppler Signature, and (c) signature of micro-Doppler [7] 

 

2.2. Machine Learning 

In computer science, machine learning (ML) is a subfield which focuses on creating 

algorithms based on examples of some phenomenon in order to be useful. An algorithm or a 

method can provide examples from nature, or by hand creating them. Another way to define 

machine learning is as a process of solving a practical problem by 1) collecting data, and 2) 

Using that dataset, build a statistical model algorithmically. We assume that to solve the 

practical problem, that statistical model will be used somehow. 
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Typically, as part of machine learning process, training data isuused to learn how 

topperform a particular task, where the objective is to achieve that task using the acquired 

experience. Data in machine learning is made up of samples. Attributes, features, variables, and 

characteristics are usually used to describe individual samples. There are several different types 

of features: nominal (list), binary, ordinal, and numeric (integer, real, etc.). Performance metrics 

are generally used for measuring machine learning model’s performance in a particular task, 

which improves with experience over time. For machine learning models and algorithms, a 

variety of mathematical and statistical models are employed. Training then results in the trained 

model predicting, classifying, or clustering new examples using the knowledge it acquired 

during the training process. Figure 2.12 shows that machine learning approach. 

 

Figure 2. 12 Machine Learning Approach 

 

Machine-learning tasks can be categorized broadly according to their learning 

methodology (supervised/unsupervised), their learning models (regression, clustering, 

classification) or the particular machines used for implementation of the task. There are two 

major categories of machine learning tasks: unsupervised and supervised learning, according to 

the learning signals of the learning systems. In terms of supervised learning, the training data 

is paired with the instance inputs and outputs, with aim of developing a universal rule mapping 

inputs to the outputs. There are often incomplete or only partial inputs and outputs in dynamic 

environments, with some missing or being only provided in a feedback loop (such as 

reinforcement-learning). A supervised approach employs expert knowledge to predict missing 

results for test data. Although supervised learning distinguishes between training and test sets, 

unsupervised learning does not. During processing, the learner seeks out hidden patterns [25].  

The goal of dimension reduction is to enhance the quality of a dataset while protecting as much 

of the original data as possible as a result of merging supervised and unsupervised learning 
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types. A dimension reduction algorithm is usually used before classification-model or 

regression-model is applied to stay away the effects of dimensionality [25]. There are a number 

of DR algorithms that are commonly used: 

• Principal-component analysis (PCA) [26] 

• Partial-least-squares regression [27] 

• linear-discriminant analysis [28] 

It has been limited to presenting the models of machine learning that have been used in the 

thesis. 

2.2.1. Regression 

Regression model is one of the supervised learning models that desire to predict an output 

variable based on known input variables. There are several popular algorithms for regression, 

including linear regression, logistic regression, and stepwise regression [29, 30]. Additionally, 

they have developed their own regression spline to make regression calculations more 

complicated [31], multivariate-adaptive-regression splines [32], multiplellinear regression, 

cubistt[33], andllocallyeestimatedsscatterplot smoothing [34]. 

2.2.2. Decision Trees 

A decision tree (briefly DT) could be considered as a classification or regression-based 

model on a tree structure [35]. DT organizes the dataset into increasingly smaller and 

homogeneous subpopulations, while simultaneously generating a tree graph. Throughout the 

tree structure, the inside node represents the result of different pairwise comparisons of a 

selected feature, while each branch tells us how the comparisons were made. The leaf points 

are the results of mapping the entire system (expressed in terms of a classification rule). 

Classification and regression trees are two of the most common learning algorithms in this 

category [36]. 

2.2.3. Clustering 

Clustering is widely used applications of unsupervised learning, namely, finding natural 

groupings of data [37]. Clustering techniques such as k-means [38], hierarchical clustering [39], 

and expectation maximization [40] have been used by researchers for decades. 

2.2.4. Bayesian Models 
Bayesian models (BMs) are statistical-based probabilistic graphic models within which the 

analyse to be performed using a Bayesian framework. The supervised learning category includes models 
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such as this one, which can be applied to supervised learning problems. Naive bayes [41], 

gaussianonaiveobayes, multinomialonaiveobayes, oBayesianonetworko [42], mixtureoofogaussians 

[43], andoBayesianobelief network [44] are illustradted most famous algorithms have been developed 

for different applications in literature. 

2.2.5. Support Vector Machines (SVM) 

By definition, support vector machines (short for SVMs) construct a linear hyperplane 

against which data examples are classified based on their characteristics. In traditional SVMs, 

the classification abilities can be significantly improved by Utilizing the kernel trick to create a 

higher-dimensional feature set from the original one. SVMs have been used for classification, 

regression, and clustering in literature. Developed on the basis of global optimization in high-

dimensional spaces, SVMs help overcome overfitting problems, making them applicable in a 

wide range of applications [45,46]. Some of the most popular SVM algorithms are, the support 

vector regression method [47] and least squares support vector machine [48]. 

2.3. Deep Learning 

Traditional Machine Learning (ML) is enhanced by deep learning (DL), which introduces 

additional complexity (depth) to the model and alters data using various functions that represent 

the input hierarchy. [49]. One of the most attractive aspects of deep learning is its ability to 

automatically extract features from raw data, where higher-level features are derived from 

lower-level ones [50]. In particular, deep learning solves complex problems well and quickly 

because the models used are more complex, which allows for massive parallelization. A deep 

learning model utilizes complex models to reduce errors in regression problems and enhance 

classification accuracy when enough data is available to represent the problem. Based on the 

network architecture are using, including such Unsupervised Pre-trained Networks, 

Convolutional Neural Networks, Recurrent Neural Networks, and Recursive Neural Networks, 

deep learning includes a variety separate aspect also including convolutions, pooling layers, 

fully connected layers, gates, memory cells, activation functions, encode/decode schemes, and 

so on. [51]. 
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Figure 2. 13 CaffeNet Architecture 

 

Video and image contour data have gained popularity in an array of applications using 

deep learning. It can process audio as well as voice and natural language, as well as abstract 

data like weather [52], soil chemistry [53], and population information [54]. Figure 2.3 

illustrates an instance of DL architecture, CaffeNet [55], which is comprised by convolutional-

layers and fully connected layers. 

Deep learning reduces the need for feature engineering in image processing, which is one 

of the most significant advantages of this method. Standard techniques used to classify images 

were affected by hand-engineered features, which affected the overall results. It is a time-

consuming and complex process to implement features; it must be adjusted every time the 

dataset or the problem changes. The time-consuming process of feature engineering, therefore, 

requires local knowledge and is unlikely to generalize beyond a narrow area [56]. In contrast, 

deep learning does not require the creation of features, but instead figures out which features 

are important through training. The training time for deep learning is usually longer than for 

other methods based on machine learning, but it is usually faster to test using machine learning 

than using other methods [57]. The models' complexity can also create optimization issues, as 

well as hardware limitations. Pre-trained models can also pose risks when used on small 

datasets or datasets with significant differences. 

2.3.1. Artificial Neural Networks 

Artificial neural networks (ANN) are divided two parts into: “Traditional ANNs” and 

“Deep ANNs”. An artificial neural network emulates the complex functions of the brain, such 

as pattern recognition, realization, and learning, and makes some decisions based on that 

information [58]. The brain is composed of billions of neurons that interact with one another 
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and process any information provided. A biochemical neural network, modelled loosely on the 

structure of an ANN, consists of interconnected units similar to ANN. Numerous nodes are 

present in the network arranged in multiple layers, such as: 

• Input layer, where data is used as input to the system, 

• It consists of one or more hidden layers where learning takes place. 

• Providing the decision/prediction in an output layer. 

In artificial neural networks, the learning process is supervised, and they are used to 

predict and classify data. They are also used for regression task. ANNs use various learning 

algorithms, including radial-basis-function networks [59], perceptron [60], back-propagation 

[61], and also resilient-back-propagation [62]. There have also been several ANN-based 

learning-algorithms proposed, including counter-propagation-algorithms [63] and neural fuzzy 

inference-systems [64], autoencoder and supervised-Kohonen-networks [65], as well as 

Hopfield-networks [66], multilayer-perceptron [67], self-organising-maps [68], extreme-

learning-machines [69], regression neural network [70], ensemble-neural-networks and self-

adaptive-learning-machines [71]. The majority of people refer to deep ANNs as deep neural 

networks (DNNs) [72]. Machine learning analysis is a relatively new field, where sanctionative 

models combining multiple layers of computation find out high abstraction levels for complex 

information representations. In some cases, AI-based deep learning performs the step of feature 

extraction by itself. This is one of the main advantages of deep learning. Many different sectors 

and industries, including agriculture, have greatly benefited from deep learning models. There 

are several different topologies of DNNs including supervised, semi supervised, or even 

unsupervised layers. Convolutional neural networks, in which feature maps are exploited for 

generating maps in the image domain, are a good example of a standard deep learning model. 

Comprehensive information is available on CNNs in the literature [73]. Other general deep 

learning architectures are Boltzmann-machines, deep-belief-networks [74], and auto encoders 

[75]. 

2.3.2. Convolutional Neural Networks 

Convolutional Neural Networks (briefly CNNs) are one of the famous subsection of 

artificial neural-networks that have shown tremendous performance in areas such as image-

classification. The CNNs are able to distinguish faces, objects, and traffic signs, in addition to 

supplying the power to autonomous vehicles and robots. Researchers have revealed that CNNs 

are effective in many Natural Language Processing tasks, including the classification of 
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sentences, the detection of emotions in text among others. The primary purpose of this thesis is 

not to develop an understanding of how Convolutional Neural Networks work. Accordingly, 

CNNs architecture, how it works and what is the parameters of CNNs are briefly explained in 

this section. 

 Neurons in ANNs tend to self-optimize through learning, just as traditional ANNs do, 

CNNs are composed of neurons. Each nerve cell can still receive associate degree input 

associate degreed perform an operation the idea of in numerous ANNs. Although each 

component of the network will have its own perceptual score function, whole perception scores 

will continue to come from a single weighting function. Loss functions associated with classes 

will be found in the last layer. It is only noteworthy that, unlike regular ANNs, CNNs are 

primarily used to recognize patterns within images.  The design may include options specific to 

specific image types, hence making the network more appropriate for image-based 

computations, whereas reducing the parameters necessary for lining up the model. 

 In CNNs, the input consists primarily of bunch-of-images. Consequently, the 

architecture should be set up to accommodate any particular data types that might be 

encountered. A major difference is that there are three dimensions to the CNN layers. These 

layers have neurons organized into three dimensions, and also, they have spatial spatiality 

(height, width, as well as depth) to the input. An activation volume is a volume within the 

ANN that is not related to the number of layers in the model. A layer of the ANN does not 

connect with a large area of the layer preceding it, unlike traditional ANNs. 

 In follow this way this means that for the instance has given earlier, the input will have 

a dimensionality of 224 × 224 × 3 (height, width, and depth), leading to a final output layer 

comprised of a dimensionality of 1 × 1 × k. Here in the dimensionality, “k” represents that the 

quantify of class. This will result in a smaller set of classes across depth depending on how the 

input dimensionality is condensed. 
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Figure 2. 14 Basic CNN Architecture [76] 

 

Convolutional Neural Networks are constructed of three kinds of layers. These are 

convolutional, pooling, and dense layers. In order to construct a convolutional neural network, 

these layers are stacked together. Using a convolutional neural network for classification on 

MNIST is depicted in Figure 2.14. A CNN with the basic functionality described above is 

divided into four sections: 

1.  An ANN's input layer normally consists of the layer that holds the pixel values. 

2.  In the convolutional layer, output of neurons associated with local areas of input is 

determined by the scalar product between their weights and input volume. As the output 

of an earlier layer is activated by a sigmoid activation function, a rectified linear unit 

commonly called a ReLu are used as an activation function. 

3. Pooling layer further reduces the number of parameters in the activation by sampling 

along the spatial dimensions of input. 

4.  Once the fully connected layers have been trained, they can then act constantly as 

artificial neural networks, retrieving score categories from activations that are used for 

classification. According to the authors, ReLU can be used between the fully connected 

layers, thereby improving performance. 

In this simple way, Convolutional neural networks are able to encrypt the initial computer 

files layer by layer, using techniques such as convolution and down-sampling to provide 

category scores. 
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2.3.3. Deep Generative Models 

 Deep generative models (DGMs) are one of the classes of neural networks that contains 

many hidden layers trained to mimic probability distributions of quite large number of samples 

in the certain dataset. When successfully trained, it can be used to estimate the possibility of 

each observation and to create new examples from the underlying distribution. Developing 

DGMs has emerged one of the most popular research topics in machine learning recently. 

DGMs are growing rapidly in the literature. Some DGMs have already become too interesting 

AI models. For example, the recent achieving is so fascinating in the field of generating realistic 

voices, images, or videos that called deep fakes. Notwithstanding these achieving, a lot of 

mathematical and practical issues limit the use of DGMs. The DGM models must be designed 

for specific dataset. It does not show same results on different dataset. It is even more 

challenging to understand that why there is not certain model and hyper-parameter for all 

datasets.  

 Applications of deep generative models (DGM), such as creating fake videos from 

famous images, have recently become popular. Although these fake images may already appear 

to pose ethical problems it also promises new useful technologies [77]. For example, in physics 

and computational chemistry, DGMs used as new scientific applications.  In the scope of this 

thesis, DGMs will be used to create new samples for radar dataset and will be evaluated its 

performance.  

 Deep generative models are neural organizations with many secret layers prepared to 

rough confounded, high-dimensional likelihood distributions. In brief, the driven objective in 

DGM preparing is to memorize an obscure or recalcitrant likelihood dissemination from a 

ordinarily little number of autonomous and indistinguishably dispersed samples. When trained 

successfully, that be able lie used the DGM in conformity with score the probability concerning 

a partial sample then to create recent samples so are similar after samples from the uncouth 

distribution.  These troubles bear been at the bottom of probability and statistics for decades 

however continue to be computationally difficult to solve, particularly into excessive 

dimension. DGMs can be used to augment small datasets. Generative Adversarial Networks 

(GAN), a type of DGM, are used in this thesis to augment relatively small dataset. Therefore, 

it will be more valuable to discuss about Generative Adversarial Networks at the rest of this 

section. 
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2.3.3.1. Generative Adversarial Networks 

Generative adversarial network (GAN) is an algorithm that uses two neural networks, 

which are combined in an adversarial race, New synthetic data should be created so that they 

can play the role of real data. In a study that published by Ian Goodfellow et al. at the University 

of Montreal, GANs were introduced as a tool for synthetic data generator such as image 

generation. Since GANsccanclearncto mimic any distribution of data, they have the potential 

to create worlds that are remarkably similar to be in any domain: images, any signals, songs 

and speeches. In a sense, they are robotic artists, with stunningly good output. But they could 

be utilized to create fake digital content as well, and they are behind of “Deepfakes”. For a 

better understanding of GANs, a comparison with discriminative algorithms is useful to 

understand how generative algorithms work. A discriminative algorithm tries to classify data; 

that is, given a set of features about the data, it identifies the category or label to which the data 

belongs Using a discriminative algorithm, a data instance of images of bikes and motorbikes 

could predict whether photos were "bikes" or "motorbikes.". An image of a bicycle is included 

as one of the labels, while the bag of images is part of the dataset. This problem can be expressed 

mathematically as y is the label, and x is the feature. The equation 𝑝(𝑦|𝑥) means “the 

probability of y given x”, that in this case would understand as “the probability that an image 

has bike inside of it.” 

As a result, Labels are assigned to features by discriminative algorithms. Only this 

correlation is of concern to them. A generative algorithm does the opposite of what a 

deterministic algorithm does. The process of predicting labels is done by looking at specific 

labels instead of certain characteristics. In generative algorithms, the question is: How likely 

are these features to appear in a bike image? In contrast to discriminative models, generative 

models are concerned with "how you get x?". In addition to being able to capture 𝑝(𝑦|𝑥), the 

probability of x given y, generative algorithms could be used as classifiers as well. Interestingly, 

they have ability to do more than categorize input data. In mathematical representation of GAN, 

here are two-player minimax games with the value function where Discriminator and Generator 

participate in Equation 2.6: 

 

 𝑚𝑖𝑛3 	𝑚𝑎𝑥4𝑉(𝐷, 𝐺) = 𝐸5~7!"#"(5)[𝑙𝑜𝑔𝐷(𝑥)] +	𝐸:~7$(:)[log	(1 − 𝐷(𝐺(𝑧))] (2.6) 
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A neural network, called the generator, is responsible for generating new data instances, 

while another, the discriminator, is responsible for evaluating if those examples belong to the 

underlying training dataset or not. At the same time, the generator creates new artificial images 

that it passes on to the discriminator. Even though they are fake, it tries to pass them off as real, 

hoping that they will be considered authentic as well. The generator's aim is to generate 

handwriting: “to lie without being caught”. A discriminator's aim is to recognize fake images 

generated from the generator. In terms of mathematical representation, D(x) need to be 

maximized and D(G(z)) need to be minimized in purpose for Discriminator network; D(G(z)) 

need to be maximized in purpose for Generator network. It is going to be clearer to explain 

working steps of GAN: 

1. It generates a fake input-label pair for the fake label by feeding noise from a random 

distribution to the Generator G. 

2. 2. This false pair is fed alternately to Discriminator D along with the real pair (label y = 

1). 

3. In the discriminator D, that uses a binary-classification neural network, these x values 

are combined into a loss known as the D loss as it calculates both fake and real values. 

4. It also calculates the noise level from the G generator as the G loss since each objective 

function is different. 

5. These two losses are sent back to their respective networks, which adjust their 

parameters based on the loss. 

6. The algorithm used can be Adam, Gradient Descent etc. and repeating this process for 

a desired number of epochs. 
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Figure 2. 15 Generative Adversarial Network Architecture [78] 

 

The discriminator network for the MNIST dataset [79] is a standard convolutional network that 

divides images into two groups, real or fake. Generators are inverse convolutional networks, 

basically: Rather than taking an image and down sampling it, these models using stochastic 

models, the noise vector is up sampled and used as an image. Using techniques such as 

maximum pooling, the first net discards data and the second one generates it. A zero-sum game 

is a situation in which each network tries to optimize a different objective function, or loss 

function. As the discriminator changes itself in terms of the discriminator loss, also the 

generator changes. The losses of each force-against each other. Very first architecture of GAN 

is shown in Figure 2.15. How GANs give results on MNIST data is shown in Figure 2.16. 
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Figure 2. 16 GAN, Variational Autoencoder (VAE), Deep Convolutional GAN (DCGAN) 
and Wasserstein GAN (WGAN) Results on MNIST Dataset. 

 

The ability of GANs to mimic on datasets is quite high. GAN structures have been used to 

reproduce data sets in many studies up to now. GAN structures can be trained not only on image 

data but also on audio, text, numeric, time series data. In the scope of this thesis, GAN structures 

will be used to reproduce the radar dataset and the results will be analysed. 

2.4. Related Works 

Radar is currently being used to detect and track people in highly dispersed environments 

in response to the growing demand for security and surveillance. With electromagnetic-based 

sensors, people can be located through walls and their activity can be recorded in real-time. 

There has been a noteworthy number of research to develop human activity detection and 

tracking. Using wide bandwidth for imaging radar signals at close range is arguably one of the 

most important approaches. In various studies, such as those mentioned in [81] and [82], 

building interior images have demonstrated the capability of detecting and tracking people 

indoors. Use of a Doppler radar is another way to achieve it. It is easy to detect movement using 

a Doppler-based radar during a background repression of clutters. The radar indicator screen 

contains "micro-Doppler" features when Doppler returns are being sent from humans. Using a 
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micro-Doppler radar, humans generate reflections from their non-rigid moving bodies. 

Information about human movements can be found in it. In the years since micro-Dopplers for 

human activity classification first appeared in [83], new research has taken place exploring their 

potential. For instance, Otero et al. [85] created a basic classifier to distinguish human gait using 

a spectral analysis. A study by Van Dorp et al. [84] used FMCW radar data to estimate the 

parameters of human gait. Humans, animals, and vehicles were distinguished by the use of 

Micro-Doppler features in [89] According to [86]– [88], several time-frequency analyses were 

used to extract micro-Doppler features from targets.  

P. van Dorp et al. [99] utilized conventional methods to classify radar signals. They did 

not utilize machine learning methods. Similarly, S. Groot et al. [100] did not use machine 

learning approach to classify. They applied particle filter to micro-Doppler radar signal’s 

spectrum. In [101], Authors applied Principal Component Analysis methods to classify human 

motions on micro-Doppler radar signal spectrograms. 

Youngwook et al. [90] used Support Vector Machine to classify doppler radar signal 

which measured 8 human activities. They extracted feature by using spectrograms of radar 

signals. They acquired %90 of classification accuracy. By using mel-cepstrum coefficients, Van 

Eden et al. [91] have been able to differentiate between animals and humans with a Gaussian 

mixture model and hidden Markov model. They compared their methods with current micro-

Doppler classification techniques. They illustrated that their technique has classification 

accuracy between %75 and %90. Micro-Doppler signatures can also be measured from the 

gyroidal blades on helicopters, the gyroidal antennas on ships, and the vibrational engines in 

vehicles [10], [21].  

Tivive et al. [92] investigated image-based approach by using time-

frequencyddomaindsignals. They consider that signal as image and applied Gabor-filters to 

extract feature such as edge, from signals. In [93] authors used high order spectral processing 

to extract meaningful features from reflected Doppler radar signals. These all method could be 

called as “conventional feature extraction method”. Conventional feature extraction methods of 

radar signal have many drawbacks. It requires meaningful features to classify radar signals. 

Additionally, adaptation of these methods to different domain is relatively difficult. To get rid 

of these difficulties, Convolutional Neural Networks get on the stage. The Convolutional Neural 

Network is one of the most widely used artificial neural networks for tasks in computer vision, 

such as, image recognition, image classification, object detection, etc. [94]. Classifying images 

involves taking images as inputs, analysing them for their probability of matching a particular 
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class, and then synthesizing the data based on the results, afterwards show in the classification 

probability as output. CNNs require much fewer image pre-processing compared to other 

classification algorithms. It generally involves convolutional layers to extract features, pooling 

layers to reduce size of images and fully connected layers to classify images. 

By combining different levels of abstracting, CNNs are able to extract and learn features 

automatically. It has been demonstrated that CNN-based approaches outperform conventional 

approaches in the classification of radar signals [90], [95], [96].  

The study by Y. Kim et al. [95] classified radar signals of humans with 97.6% accuracy 

using a pre-trained CNN method. Cars, dogs, and horses were the targets. Additionally, 90.9% 

of the predicted activities by their methods have been accurate, such as crawling, running and 

walking. 

In [102], R.P. Trommel et al. utilized DCNN to classify human gait by using micro-

Doppler radar-spectrograms. They acquire an overall 86.9% classification accuracy by using 

DCNN and significantly outperforming the 3-NN with 68.3% classification accuracy and SVM 

with 60.3% classification accuracy. 

B. K. Kim et al. [97] utilized the GoogleNet architecture which is pre-trained model and 

they obtained 100% accuracy. They classified two different kind of drones with using radar 

operates in Ku-band. They converted radar signals into spectrogram images and fed CNN with 

that spectrogram images for training CNN Model 

In [98], The doppler radar echoes of human activities were classified by J. Park et al. with 

a finetuned CNN model which is pre-trained. They attained 80.3% classification accuracy for 

five human activities. Additionally, t A feature-based approach generates 45% classification 

accuracy. A pre-trained CNN generates 66.7% accuracy with the radar dataset.  

According to papers that published in the literature, using CNNs are quite better for 

feature extraction of micro-Doppler radar signal spectrogram. E. Alhadhrami et al. [103] used 

CNN for classifying micro-Doppler radar signal spectrograms. Using Micro-Doppler radar 

signals spectrograms three CNNs were trained to extract feature representations which are 

AlexNet, VGG-16, and VGG-19 networks in a transfer learning mode. They utilized public 

RadEch dataset [104] to classify. Their method is superior to other methods which used same 

dataset for classification, with %99.95 accuracy. This study could consider as the state-of-art. 

However, they used conventional data augmentation techniques before training with 
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unbalanced dataset. They did not apply noise reduction methods to improve classification 

accuracy. Their data augmentation process did not make unbalanced RadEch dataset to be 

balanced. On the contrary, it made dataset more unbalanced. Unbalanced datasets are not well 

suited for deep learning models. When deep learning models are trained with unbalanced 

datasets, their generalization ability is low and could be misleading.  

In the scope of this thesis, RadEch dataset [104] is utilized to classify. Contrary to what 

E. Alhadhrami et al. [103] had done; this thesis shows the effect of transfer learning techniques 

on radar data sets in detail. Furthermore, in this thesis, both time series radar signal and 

spectrograms of radar signal are used to classify. Their results are compared and analysed in 

detail. Conventional data augmentation techniques have been applied to make the RadEch 

dataset more balanced. Not only conventional data augmentation techniques have been applied, 

but also learning based data augmentation techniques with using Generative Adversarial 

Networks (GANs) has been applied and results are analysed. Additionally, unlike what E. 

Alhadhrami et al. [103] did, noise reduction technique has been applied to dataset. The results 

illustrated that without any data augmentation, same CNN models which trained with noise 

reduced dataset, have same accuracy or superior to state-of-art studies. 
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3. METHODOLOGY 
 

Analysing various human body movements have attracted much attention in recent 

years. The most commonly used method for human movement analysis uses visual image 

sequences. However, moving parts of the human body are perceived differently depending on 

distance, variations in lighting, clothing conditions, and occlusion from distractions. Radar has 

been widely used for detecting, tracking, and imaging targets of interest due to its long-range 

capability, wonderful morning and evening performance, and ability to penetrate wall and 

ground. Thus, radar has become a tool for detecting and tracking humans and animals. Beside 

human body motion, animal motion is also an important nonrigid body motion. Compared to 

human bipedal motion, the four-legged animal’s motion has more choices for its feet striking 

the ground.  

In this section, the study of classification of human movements and some vehicles will 

be explained. Five different human movements, two different vehicle movements and one 

clutter will be classified. The classification process will be done over the reflections of the 

micro-Doppler radar signal. Within the scope of this thesis, Radech Database [104] was used 

for the classification process. To increase the classification accuracy, dataset’s noise will be 

reduced with using proposed method in this thesis. After the classification process, the results 

will be compared with the dataset without noise reduction. Conventional data augmentation 

methods will be utilized to enhance the classification success of the noise-reduced dataset. In 

addition to traditional data augmentation methods, learning-based data augmentation methods 

will also be applied by using Generative Adversarial Network. All results will be compared 

among themselves and with state-of-art publications. 

For classification all class in dataset, Convolutional Neural Networks will be used. If it 

is first considered the micro-Doppler radar data as time-series signals, it could be seen that these 

signals are suitable for one-dimensional CNN architecture. One-dimensional CNN 

architectures are used to classify one-dimensional data. It performs feature extraction with one-

dimensional convolutional filter on data set. In this study, the RadEch dataset was first classified 

with one-dimensional CNN and the classification success was recorded. The dataset was then 

converted into two-dimensional spectrograms and made suitable for two-dimensional CNN 

structures. Different convolutional neural networks were used to observe the classification 

successes on the same dataset. One of these CNNs is a simple multi-layer and two-dimensional 

CNN created specifically for this dataset. Hyper-parameters are tuned in accordance with the 
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dataset and the highest classification accuracy is tried to be achieved. Apart from the CNN 

specially designed for this dataset, it has been trained for classification in different architectures 

to compare the success of the designed architecture. One of the trained architectures is the 

VGG-16 and VGG-19 CNN architectures published by Simonyan et al. [105], which is 

successful in classifying relatively small-sized images as in the dataset used in this thesis. The 

difference between VGG-16 and VGG-19 is all about the depths of the architectures. VGG-19 

is a deeper CNN architecture than VGG-16. It shows higher classification success in relatively 

larger datasets. In Addition, within the scope of this thesis, transfer learning process was carried 

out using VGG-16 and VGG-19 architectures. Classification successes were compared with 

architectures without transfer learning. 

Generative Adversarial Networks [78] architecture’s been used in many areas in 

recently. It is one of the most used architectures in areas such as virtual image generation, virtual 

video generation, and natural language processing. In addition to such areas, generative 

adversarial networks are also useful in data set augmentation by imitating samples in data sets 

and producing new samples. This feature of architecture is not a frequently encountered field 

compared to other fields used in the literature. This situation can be explained by many reasons. 

most importantly, the training process of generative adversarial networks is quite challenging. 

They can be easily overfit, as well as it requires hyper-parameter tuning, which can even 

differentiate from class to class in the dataset. Finally, they need a large data set because they 

will learn the distribution in the dataset they are in and imitate it. Considering that artificial 

learning-based augmentation of an already large data set is also highly desirable, generative 

adversarial networks are not used much in the literature for data augmentation. Within the scope 

of this thesis, the success of the generative adversarial network in data set augmentation will be 

compared with the conventional data augmentation techniques, and then applied to the dataset 

augmented with traditional methods to reach the largest and most balanced dataset. RadEch 

dataset is going to be explained in detail in the next section 3.1.  

3.1. Dataset 

RadEch, a database developed by the Military Academy in Belgrade, Serbia, is available 

online [104]. For radars operating in the Ku-band, the Doppler frequencies on this carrier 

frequency are within the audio band, which means that, through headphones, the radar operator 

can hear the Doppler frequencies via an audio tone. When a ground moving target is heard for 

the first time, the sound is instantly recognizable. Data is collected using a pulse-Doppler 

ground-surveillance radar operates at 16.8 GHz. According to the radar's parameters, it has high 
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average power and pulse width, a range resolution of 150 meters, an elevation resolution 7.5 

degrees, and an azimuth resolution of 5 degrees. By using the radar for target detection and 

tracking, the target echo could be recorded continuously. The radar and target were set at a short 

distance (between 100 and 1000m). The moving targets were sighted in line-of-sight despite 

low vegetation and interference from the sky. All target movements were controlled. In each 

scenario, one target was recorded at a time. A sampling frequency of 4 kHz was used for the 

raw radar data with an amplitude of  ± 1V. There are .MAT files recorded in the database 

containing radar echoes from various targets. MAT-files are the data file format of MATLAB 

software.  

The large database of raw audio Doppler signals was created from more than 80 

different scenarios. Each scenario was recorded for at least 20 seconds. Approximately 453 real 

record 4-second interval were collected for each of the five target classes in the database. Data 

distributions and sample counts of the datasets are shown in Table 3.1. The flow diagram of the 

system designed within the scope of this thesis is shown in Figure 3.1. 

 

Figure 3. 1 Flow Diagram 

Table 3. 1: Dataset Distribution 

Class One 
personn 
walking 

One 
personn 
running 

One 
personn 
crawling 

 Groupn 
walking 

 Groupn 
running 

 Wheeledn Truck Clutter 

Samples 99 71 18 124 50 26 47 17 
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As it can be seen from Table 3.1, the sample numbers of the classes in the data set are 

quite unbalanced. For example, while the "Group Walking" class contains 124 samples; The 

"Clutter" class contains only 17 samples, 7 times less. RadEch dataset, which contains 452 

samples in total, can be considered relatively small for deep learning architectures. It is 

important to augment the sample distribution in the dataset so that it is balanced. 

In Figure 3.2 the dataset is shown with a simple tree diagram. It can be easily seen through this 

diagram which movements or vehicles are in which class. There are no subsections in “Clutter” 

class due to it contains only plants and trees reflections. 

 

Figure 3. 2 RadEch Database Tree Diagram 
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Figure 3. 3 Example of "One Person Walking" Class 

 

Figure 3. 4 Example of "One Person Running" Class 
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An example of the "One Person Walking" class is shown in Figure 3.3 Each sample in 

the dataset contains 16000 subsamples. Considering the sampling rate of the dataset is 4 KHz, 

these 16000 samples were recorded in approximately 4 seconds. Likewise, an example from 

the "One Person Running" class is shown in Figure 3.4. If examined carefully, it can be seen 

that the sample of the "One Person Running" class is more frequent between samples. This 

explains that the frequency of the signal is higher. A higher micro-Doppler frequency indicates 

that the reflected signal has a higher velocity of the reflected object. This is an expected 

situation, because a running person has a higher speed than a walking person.  

Section 3.2 will provide detailed information about the spectrograms presented in the 

dataset. It is relatively difficult to analyse or extract information from a time series signal over 

a time graph. Therefore, it is more appropriate to use spectrograms.  

3.2. Micro-Doppler Signals to Spectrograms Conversion 

In this section, micro-Doppler reflection signals will be converted to spectrograms using 

the short-time Fast Fourier Transform. First, all 452 samples were converted to .wav files. The 

conversion process was performed with Matlab software. 4 KHz was chosen as the sampling 

frequency, and 16 was selected as the bit resolution. 

As a result of the process, each sample has been converted into 4 second .wav files. 

Samples converted to .wav file are now ready to be converted to time-frequency domain 

spectrograms. Unlike .mat file files, .wav file audio files can be easily converted to 

spectrograms on many platforms. The .wav files were converted to spectrograms via “scipy” 

[106], an open-source python programming language library. It is also graphically displayed 

and recorded via “matplotlib”, which is an open-source python library as well. While creating 

the spectrograms, the non-uniform fast fourier transform (NFFT) value of 200 and the dots per 

inch (dpi) value of 100 were selected from the selected parameters. Choosing a higher dpi value 

will increase the image quality of the spectrogram, but the dpi value has been chosen at the 

optimum level since each higher resolution image will increase the training time. All 

spectrograms are saved as .png image format. 

Table 3.2 shows the process time spent for spectrogram conversion of each class. All 

operations are carried out on Apple M1 processor with 8 Gb ram and Apple M1 graphic card.  
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Table 3. 2: Spectrogram Conversion Processing Time 

Class One 
person 
walkin

g 

One 
person 
running 

One 
person 

crawling 

 Group 
walking 

 Group 
running 

 Wheeled Truck Clutter 

Processing 

time (s) 
14,20 10,31 2,56 17,86 7,19 3,76 6,79 2,50 

 

 

 

Figure 3. 5 Time Series Signal to Spectrogram 

 

In Figure 3.5, the time series graph and spectrogram of an example from the "One 

Person, Running" class are shown. Time is plotted on the x-axis, and micro-Doppler frequency 

is shown on the y-axis. The highest micro-Doppler frequency measured in the RadEch dataset 

was specified as 2 KHz [104]. The colours in the spectrogram indicate the strength of the signal. 

Yellow colour means it has higher power than dark blue colour. The yellow colour oscillating 

in a certain narrow frequency range for 4 seconds in the spectrogram shows the frequency of 

the micro-Doppler signal reflected from the running person. Within the oscillation frequency, 

there are all micro-Doppler signals reflected from the body, arms and legs of the human body. 

Therefore, it looks more like an oscillating line rather than a straight line. All in all, the speed 

of a running person's arms and legs are constantly changing at the time of running relative to a 

reference point.  
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Figure 3. 6 Spectrogram Examples 

 

Figure 3.6 shows examples of spectrograms for four different classes. The Clutter 

spectrogram was obtained as a result of measurements made in the empty field. It shows micro-

Doppler signals from various shrubs and trees. As expected, a high frequency micro-Doppler 

signal is not seen. There are micro-Doppler signs, which are reflected from the leaves and 

branches of the plants that move only from the wind and for various reasons, and which are 

seen intermittently in the spectrogram.  

One person walking and one person running spectrograms show micro-Doppler 

reflections when a person is walking and running. In the spectrogram of a running person, the 

micro-Doppler frequency is higher than a walking person because the person moves faster. 

Similarly, fluctuation is greater in the one person running class because the runner's arms and 

legs will move more frequently. The less fluctuation in the one person walking spectrogram can 

be explained by the fact that the arms and legs move less when walking compared to running.  

The truck spectrogram shows a four-second micro-Doppler reflection of a truck. The 

reason for having a higher micro-Doppler frequency, unlike other spectrograms, is that the truck 
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has a higher speed than the human walking and running. The spectrogram here shows a truck 

with a regularly increasing frequency for 4 seconds. one might interpret this truck as having 

increased acceleration in four seconds. As a result of truck moving, their signature has a 

predominant spectral component (Doppler frequency). Wheeled vehicles are compact targets, 

without sub reflectors moving, so they have a small spectral band around central Doppler 

frequency. Considering that the Doppler frequency for the target is about 1400 Hz, the car 

would be moving at about 12.5 m/s (45 km/h). 

 

Figure 3. 7 One Person Walking Spectrogram 

 

As mentioned earlier in this section, interpretations of human body movements can be 

extracted from spectrograms. In Figure 3.7, a spectrogram of the "One Person, Walking" class 

is examined. Again, as mentioned before, the yellow pixels on the spectrogram are micro-

Doppler radar signals reflected from the walking human body. These yellow pixels can be seen 

to oscillate periodically. The reason for this oscillation is the movement of the arms and legs of 

the human body while walking. If we imagine a walking person, the body moves at a more 

constant speed when looking at the overall movement, no matter how oscillating the arms and 

legs move. This is the explanation why the yellow pixels oscillating in spectrograms oscillate 

around a thicker line rather than a sinusoidal curve, that is, the movement of the human torso. 
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If the spectrograms given so far are carefully examined, it can be seen that there are 

reflections from sources other than the original source of the signals reflected to the receiver. 

These reflections can be seen as noise in the spectrograms. There may be various reasons for 

these reflections. During the measurement, there may be reflections from trees, moving leaves 

of plants, surrounding structures (which may cause a phase change in the signal), and other 

creatures such as cats and dogs, apart from the region of interest. This is generally undesirable. 

If we train the spectrograms as such, with deep learning architectures, the architecture will also 

learn the noise in the spectrogram. This may reduce the generalization ability of the architecture, 

as well as reduce the classification accuracy during testing. To avoid this situation, various 

noise reduction techniques can be applied to spectrograms. The noise reduction technique 

applied in this study is explained in detail in Section 3.3.  

3.3. Noise Reduction 

Noise can be seen as a big problem in image datasets. While noise in images is 

sometimes undesirable, sometimes it is artificially added to the image dataset so that the deep 

learning architecture does not overfit. Traditional noise reduction techniques are not suitable 

for every dataset. For example, image noise can be reduced by using Auto-Encoder. This may 

be a viable technique for images containing frames from everyday life, but it is not very suitable 

for datasets that require sensitive pre-processing such as micro-Doppler radar datasets, as it will 

cause information loss.  

Blurring images is another noise reduction technique. Although image blurring seems 

to be more suitable for micro-Doppler radar dataset than noise reduction with Auto-Encoder, 

its applicability to RadEch dataset is debatable. Considering that the spectrograms seen in 

Figure 3.6 are blurred, the data in the spectrogram carries will change. It will make the noise in 

the spectrograms more invisible by mapping them to neighbouring pixels, but the yellow pixels 

that carry the actual information will be mapped to the neighbouring pixels and their area will 

increase. This may cause the "One Person Walking" class to be confused with the "Group 

Walking" class. Because the "Group Walking" class contains micro-Doppler marks reflected 

from the bodies of multiple people when they move together, the yellow pixels in their 

spectrograms cover a larger area.  

The noise reduction technique proposed for the RadEch dataset in this study is averaging 

all class in the dataset. In other words, finding the average spectrogram of each class in the 

dataset and finding the difference between this average spectrogram image and each sample in 

the dataset. Due to the lack of much difference between spectrograms of the same class, besides 
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the information sections, this procedure is applied. Therefore, if all spectrograms in a class are 

averaged, the noise zones in the spectrograms will generally remain the same. Figure 3.8 shows 

where the noises are on the spectrograms. In these parts, the desired power is zero or close to 

zero. Adapting this to the spectrogram is that the noise zones are dark blue. 

 

 

Figure 3. 8 Noise Zone in the Spectrogram 

 

The average image of 71 spectrograms for the "One Person, Running" class was created 

and shown in Figure 3.9.  
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Figure 3. 9 Average Spectrograms of "One Person, Running" Class 

 

The average image of all spectrograms in the dataset was created. PIL [108] and NumPy 

[109] libraries, which are open-source python libraries, are used to get the average of the 

images. In the next step, the difference of each sample in all classes with the average image was 

taken from the actual spectrogram. The differences between the spectrograms and average 

spectrogram given in Figure 3.9 and the average spectrogram are shown in Figure 3.10.  
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Figure 3. 10 Spectrograms Subtraction with Average Spectrogram 

 

Belonging to the "One Person, Running" class given in Figure 3.9 and 3.10; The pixel-

by-pixel subtractions of Spectrogram 1, Spectrogram 2 and Spectrogram 3 are shown in Figure 

3.11. Thus, the noise reduced version of the dataset is obtained for each class. In Spectrogram 

2 and Spectrogram 3, it can be seen that the colour difference in the noise zones decreased and 

turned into a more stable green colour. In Spectrogram 1, this situation was less common than 

the others. The reason is that the noise scale of Spectrogram 1 is wider and more. Therefore, it 

can be deduced that the noise cannot be reduced much in the noise reduction process of the 

samples with large and high noise scale. Fortunately, not every sample in the dataset has such 

high noise as in Spectrogram 1. The few high noise samples in the dataset are negligible 

compared to the benefit of noise reduction. Noise reduction process is carried out for whole 452 

samples in the dataset. All noise reduced samples are saved as a new dataset and stored for the 

classification process in next sections.  
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In Section 3.4, dataset augmentation process will be explained. Apart from the noise 

reduction operations made in this section, traditional and learning-based data augmentation 

techniques will be applied to the raw dataset.  

 

 

Figure 3. 11 Regular and Noise Reduced Spectrograms 

 



 53 

3.4. Data Augmentation 

Deep learning tasks have attracted great interest since they were first used in the 

literature. Researchers have published many studies for years in order to develop deep learning 

models, and they have tried to find solutions about the problems encountered while training 

these models. One of the most important of these problems is the overfitting problem. 

Overfitting briefly means that the model loses its generalization ability and memorizes the 

dataset; While it has good classification accuracy on the dataset, it cannot show the same 

success on different datasets. Researchers have proposed many methods for preventing this 

situation. One of them is to finish the model training early; Another is to reduce the model 

depth-size or to reduce the number of neurons in the model. These recommendations are 

important for limited datasets. But the best way to avoid overfitting is to feed the model with 

more and more representative data. Finding data with this specification is quite time consuming 

and requires huge cost. At this point, researchers suggested data augmentation techniques.  

Data augmentation can reduce overfitting issue in training phase of deep learning 

models. There are many data augmentation techniques. These techniques can be basically 

divided into two: traditional data augmentation techniques and learning-based data 

augmentation techniques. The images in the dataset can be rotated at different angles, flipped 

vertically and horizontally, scaled, added noise, and manipulated in colour as well as other 

traditional techniques. Some of these techniques are suitable not only for image datasets, but 

also for time-series datasets and numeric datasets. Another data augmentation technique used 

in the literature is learning-based data augmentation. In this technique, the dataset is trained 

with Generative deep learning models and is expected to generate new data that mimics the 

dataset. These new data generated are added to the dataset and the dataset is augmented. 

Examples of deep learning models used in these techniques are Generative Adversarial Network 

and Auto-encoders which of these techniques can be applied to dataset are depending entirely 

on the dataset. While flipping and rotation are not suitable for some datasets, learning-based 

data augmentation techniques may be suitable for some datasets. Too much data augmentation 

can also cause overfitting problem. This trade-off should be fine-tuned. 

3.4.1. Time Series Data Augmentation 

Within the scope of this study, traditional data augmentation techniques suitable for 

RadEch dataset were applied. When the dataset is analysed as time-series, it is seen that it is a 

time-series dataset with 452 samples consisting of 4-second micro-Doppler recordings. Thus, 

flipping and shifting techniques seem appropriate for most of the classes in the dataset. Shifting 
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technique cannot be applied to "Truck" and "Wheeled" classes since they have samples with a 

speed that changes within four seconds, unlike other classes. The problems that will arise if 

these techniques are applied to these classes will be shared later in this section. 

Unlike Esra Alhadhrami et al. [103] study, data augmentation was used in this study by 

trying to equalize the number of samples contained in each class in the dataset. The imbalance 

in the dataset was tried to be balanced by doing data augmentation. Esra Alhadhrami et al. [103] 

shifted each class in the dataset at 15 different rates and flipped it once. This means that the 

number of samples contained in each class in the dataset has increased by 17 times. Although 

it may seem like a good situation at first, this will not handle the imbalance in the dataset, and 

that much a data augmentation may cause overfitting again. Shifting factors that used in study 

is shown in Table 3.3. 

Table 3. 3: Shifting Factors 

Class Shifting Factors Number of 

Samples 

Number of Samples 

after Augmentation 

Clutter 50, 100, 250, 400, 550, 

700, 850, 1000, 1150, 1300 

17 187 

Group, Running 250, 550, 850, 1150 50 250 

Group, Walking 400, 1000 124 372 

One Person, Crawling 50, 100, 250, 400, 550, 

700, 850, 1000, 1150, 1300 

18 198 

One Person, Running 400, 850, 1300 71 284 

One Person, Walking 400, 1000 99 297 

 

In Figure 3.12, a circular shifted time-series representation of 400, 850 and 1300 

samples of a sample belonging to the "One Person, Running" class is given, respectively. In 

Figure 3.13, the spectrograms of the signals shown as these time-series are shown in the same 

order. 
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Figure 3. 12 Sample Shifting 

 

If you look carefully at Figure 3.12 and Figure 3.13, the shifting process in the time 

domain can be seen. What should be considered here is the contribution of the shifting process 

to the model. The spectrograms in Figure 3.13 are actually micro-Doppler reflections of a single 

person running. As long as, we do not exaggerate the number of shifting operations, we can 

actually use it as if it belongs to four different people. But if we increase the number of shifting 

processes too much for the dataset to get bigger, we get a lot of shifted spectrograms of the 

same person at the same time. The point to be noted here is that although each person's running 

spectrogram has the same distribution to a certain extent, it also has a different pattern person 

by person. Shifting the spectrograms means shifting the noise in the spectrogram. In over 

augmented datasets, the model also learns these noises and may misinterpret spectrograms 

without noise with this pattern. As mentioned earlier in this section, the "Truck" and "Wheeled" 

classes are not shifted. The reason for this is that Truck and Wheeled vehicles have a much 

more compact structure compared to the human body; speed can change more according to 
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human movements. This velocity change corresponds to an unsteady yellow line in the 

spectrograms. 

 

 

Figure 3. 13 Sample Shifting Spectrogram 

 

If circular shifting is applied to such spectrograms, we get samples with a sharp jump 

from the micro-Doppler frequency in the time axis of the spectrogram. In reality, it means the 

speed of a Truck moving at a constant speed or with a certain acceleration decreases or increases 

by a certain amount in zero seconds. The spectrogram representation of this situation is shown 

in Figure 3.14. The first purpose of the data augmentation process was to increase the dataset 

with samples similar to the samples in the dataset and avoid overfitting. The first requirement 

of data augmentation is that all artificially generated samples are as realistic as possible. If 

samples unrelated to the dataset are generated and added to the dataset, only noise is added to 

the dataset and reduces the classification success. At this point, a situation like Figure 3.14 is 

not actually possible. Therefore, circular shift is not suitable for classes like "Truck" and 

"Wheeled". A different method was used to augment the "Truck" and "Wheeled" classes. When 
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the samples contained in these two classes are examined; It can be seen that it would be more 

appropriate to shift the spectrograms in the frequency axis rather than in the time axis. Samples 

within the "Truck" and "Wheeled" classes are generally those that do not have a very broad 

frequency spectrum, such as a tone signal. These tone signals represent micro-Doppler 

reflection signals. These signals contain information about the object's speed. If the 

spectrograms are shifted up in the direction of the frequency axis, a faster object can be 

obtained, and if they are shifted down, a slower object can be obtained. In terms of its real-life 

reflection, this situation is quite realizable. Figure 3.15 shows a sample of the "Truck" class, 

shifted up and down. 

 

 

Figure 3. 14 Instantaneous Frequency Jump on Spectrogram 
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Figure 3. 15 Spectrogram Up and Down Shift 

 

Figure 3.15 shows a sample of the "Truck" class, shifted up and down. The first 

spectrogram in Figure is the normal state of the sample. The second sample was shifted up to 

300 Hz. This means that the speed of the object is increased by approximately 9.6 km/h. The 

third spectrogram was shifted down by 200 Hz and finally the fourth spectrogram was shifted 

up by 400 Hz. As can be understood from these examples, samples belonging to the "Truck" 

and "Wheeled" class can be augmented with this technique. The final version of the augmented 

RadEch data is shown in Table 3.4. Finally, total number of samples reached 1953. All these 

augmented spectrograms were saved for classification in later sections. 

Table 3. 4: Number of Samples 

Class Shifting Factors Number of 

Samples 

Number of Samples 

after Augmentation 

Clutter 50, 100, 250, 400, 550, 

700, 850, 1000, 1150, 1300 

17 187 

Group, Running 250, 550, 850, 1150 50 250 
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Group, Walking 400, 1000 124 372 

One Person, Crawling 50, 100, 250, 400, 550, 

700, 850, 1000, 1150, 1300 

18 198 

One Person, Running 400, 850, 1300 71 284 

One Person, Walking 400, 1000 99 297 

Wheeled 200, 300, 400 Hz Up; 200 

Hz Down 

26 130 

Truck 200, 300, 400 Hz Up; 200 

Hz Down 

47 235 

 

 

3.4.2. Learning-Based Data Augmentation 

After time-series data augmentation was done in the previous section, data 

augmentation will be done with the generative deep learning model in this section. Generative 

Adversarial Networks is used in this section for data augmentation. Due to the relatively small 

size of the Raw dataset, it is actually not a very suitable dataset for GAN. However, GAN model 

will be trained experimentally, and the data obtained will be recorded for classification. The 

GAN architecture used in this thesis is shown in Figure 3.16 and Figure 3.17 respectively. The 

training of the GAN model will be done on a class basis. In other words, each class will be 

trained as if it is a single dataset, and new samples will be produced with the Generator at the 

end of the training.  

 

 

Figure 3. 16 Generator Architecture 
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Figure 3. 17 Discriminator Architecture 

 

The Generator architecture seen in Figure 3.16 starts production by inputting a random 

noise vector with a length of 500. The random noise vector passes through deconvolution layers 

of different sizes, respectively, and finally turns into a 64x64 image with 3 channels. This image 

enters the Discriminator network as an input, as seen in Figure 3.17, and is subjected to feature 

extraction by passing through the convolution layers. Finally, it is decided whether it is real or 

fake by coming to the sigmoid layer. A more detailed code-script summary of the Generator 

and Discriminator networks is given below: 

Generator ( 
  (main): Sequential( 
    (0): ConvTranspose2d(500, 512, kernel_size=(4, 4), stride=(1, 1), bias=False) 
    (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,track_running_stats=True) 
    (2): ReLU(inplace=True) 
    (3): ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) 
    (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 
    (5): ReLU(inplace=True) 
    (6): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) 
    (7): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 
    (8): ReLU(inplace=True) 
    (9): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) 
    (10): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 
    (11): ReLU(inplace=True) 
    (12): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) 
    (13): Tanh() 
  )) 
 
Discriminator ( 
  (main): Sequential( 
    (0): Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) 
    (1): LeakyReLU(negative_slope=0.2, inplace=True) 
    (2): Dropout(p=0.4, inplace=False) 
    (3): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) 
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    (4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 
    (5): LeakyReLU(negative_slope=0.2, inplace=True) 
    (6): Dropout(p=0.4, inplace=False) 
    (7): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) 
    (8): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 
    (9): LeakyReLU(negative_slope=0.2, inplace=True) 
    (10): Dropout(p=0.4, inplace=False) 
    (11): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) 
    (12): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 
    (13): LeakyReLU(negative_slope=0.2, inplace=True) 
    (14): Dropout(p=0.4, inplace=False) 
    (15): Conv2d(256, 1, kernel_size=(4, 4), stride=(1, 1), bias=False) 
    (16): Sigmoid() 
  )) 
 

The GAN architecture is built and trained using a PyTorch [110] a python library. The 

parameters that used during training of the architecture are given in Table 3.5. However, the 

parameters given in this table were not used in this way in the training of every class. There are 

parameters that differ greatly from class to class. Ultimately, training the GAN model is quite 

difficult as it is easily overfitted. Therefore, the parameters had to be fine-tune even when 

training different classes within the same dataset. Table 3.5 shows the hyper-parameters of the 

"One Person, Crawling" class. 

Table 3. 5: Hyper-parameters of GAN 

Quantity of workers for dataloader 2 

Batch size  4 

Spatial size of image 64 

Quantity of channels of image 3 

Size of latent vector 500 

Size of feature maps in Generator 64 

Size of feature maps in Discriminator 32 

Quantity of training epoch 150 

Learning rate for optimizer 0,0001 

Beta1 hyper-parameter for Adam optimizer 0,5 

 

After training the GAN model for each class, new samples were generated. The numbers 

of samples generated are shown in Table 3.6. 
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Table 3. 6: Number of Generated Samples 

Class Number of 

Samples 

Number of 

Generated Samples  

Clutter 17 160 

Group, Running 50 200 

Group, Walking 124 450 

One Person, Crawling 18 160 

One Person, Running 71 250 

One Person, Walking 99 350 

Wheeled 26 200 

Truck 47 200 

 

After the new samples were produced and imported into the class they belonged to, the 

dataset increased to a total of 2422 samples. A spectrogram sample of the "Truck" class is 

shown in Figure 3.18. In order to compare the similarity, 16 spectrograms produced for the 

"Truck" class are shown in Figure 3.19. 

 

 

Figure 3. 18 Spectrogram Example for Truck 
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Figure 3. 19 Generated Spectrograms for Class of Truck 

 

The GAN model used can produce 64x64 images. This size can be enlarged. But 

creating a higher size image will require more computational resources. Besides, the training 

time will increase considerably. Since the resolution of the spectrograms created in RadEch 

dataset is not very high and their size will be reduced by resizing during the classification 

process; 64x64 image size is considered sufficient. As can be seen from the spectrograms 

produced in Figure 3.19, the GAN model learned the distribution of the "Truck" class well and 

generated very similar but different samples. The samples are very similar to the samples 

contained in the raw RadEch dataset. The effect of the generated samples on classification 

accuracy will be explained in the following sections. In Figure 3.20, the change of the Loss 

parameter according to iteration during the training of the "Truck" class is shown for both the 

Generator and the Discriminator Network.  
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Figure 3. 20 Loss over Iteration Graph 

 

3.5. Network Architecture 
In this part of the thesis, deep learning models that will classify the pre-processed dataset 

will be explained in detail. Due to the relatively small size of the dataset, a very deep model 

was not needed. Training small datasets with large deep learning models takes time and requires 

computational cost. Also, small datasets trained with deep models are likely to be overfitting. 

Three different CNNs were used to classify the pre-processed dataset. One of them is the CNN 

network, which has five layers of Convolution and three fully connected layers, created for this 

dataset. The other two models are VGG-16 and VGG-19 [105] architectures. The VGG-16 and 

VGG-19 architectures are pre-trained models. Both these architectures are trained with 

ImageNet [111] database. The weights obtained after this training have been saved and are 

publicly accessible. In this thesis, VGG-16 and VGG-19 will be trained with both pre-trained 

weights and random weights. Thus, when the models, which are trained on ImageNet, are 

trained on the RadEch dataset with transfer learning, performance of transfer learning will be 

evaluated and compared. The CNN architecture used in this thesis is shown in Figure 3.21. 
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Figure 3. 21 Five Layer CNN Architecture 

 

Table 3.7 illustrates specifications of the Model shown in Figure 3.21. All spectrograms 

with and without pre-processing in the dataset have large image sizes. Training CNN with high 

size images increases computational cost. Feature extraction can be done by reducing the image 

sizes. For this reason, all spectrograms with different image sizes are rescaled before being 

given to the model for training. All spectrograms are rescaled to 224 x 224 x 3 size before 

feeding to the CNN model shown in Figure 3.21. In this metric, "224" represents the pixel 

height and width of the image, and "3" represents the image channel. By using rescaling, the 

need for lower computational cost is met and the features are extracted from the spectrograms. 

Rescaled spectrograms will be passing through a 5-layer convolution network for feature 

extraction. These 5 layers all contain convolution layers and max pooling layers. In convolution 

layers, convolutions of spectrograms are taken through convolution filters. Each convolution 

filter extracts an image from the result of the convolution process. This means that for each 

spectrogram, there are as many images as the number of filters in each layer. While larger 

features of the spectrograms are extracted in the first layers of the model, smaller features are 

extracted towards the last layers.  

 

Table 3. 7: CNN Architecture Specifications 

Layer  Output Shape  Number of Parameters 

Rescaling_1 224 x 224 x 3 0 

Conv2d_1 224 x 224 x 16 448 

Max Pooling_1 112 x 112 x 16 0 

Dropout_1 112 x 112 x 16 0 
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Conv2d_2 112 x 112 x 32 4640 

Max Pooling_2 56 x 56 x 32 0 

Dropout_2 56 x 56 x 32 0 

Conv2d_3 56 x 56 x 64 18496 

Max Pooling_3 28 x 28 x 64 0 

Dropout_3 28 x 28 x 64 0 

Conv2d_4 28 x 28 x 128 73856 

Max Pooling_4 14 x 14 x 128 0 

Conv2d_5 14 x 14 x 256 295168 

Max Pooling_5 7 x 7 x 256 0 

Flatten_1 12544 0 

Dense_1 256 3211520 

Dense_2 128 32896 

Dense_3 8 1032 

 

"Max pooling" layers reduce the size of images by a process called "pooling" in 

response to the increasing number of images in layers of model. The pooling process in this 

model can be thought of as taking one of the maximum pixel values of each neighbouring 2x2 

pixel in the image and reducing it to a single pixel. An image with a size of 224 x 224 will turn 

into 112 x 112 after passing through the max pooling layer in this model. The dropout layer in 

the first three layers is there to prevent the model from being overfitted. After each back-

propagation operation, the model cuts the connections between different layers; and actually, 

prevents overfitting. After passing through the last max pooling layer, the spectrograms are 

combined into a single vector in the flatten layer. As such, each sample is ready to be trained in 

a fully connected layer. In the "Dense_3" layer, which is the last layer of the model, 

classification is done for 8 classes.  

Other architectures used to classify RadEch dataset are VGG-16 and VGG-19. VGG16 

is a convolutional neural network model proposed by K. Simonyan et al. [112]. In an ImageNet 

dataset consisting of 14 million images belonging to 1000 classes, the model achieves 92.7% 

accuracy in its top-5 tests. It is one of the very famous models presented at ILSVRC-2014. It is 

also based on CNNs. When compared with AlexNet [113], major improvements of VGG 

include the use of either a large kernel-size filter (size 11 in the case of VGG) or multiple (3*3) 

kernel-size filters one after another. 
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Figure 3. 22 VGG-16 Network Architecture [112] 

 

As an architecture, the dimensions are set by the image size, (224 × 244). As part of pre-

processing, each pixel in an image is subtracted from its mean RGB value. After completing 

the pre-processing step, a stack of convolutional layers with small receptive-field filters (3x3) 

are used. A filter of (1x1) size is used occasionally, which can be described as a linear transform 

of the input channels (followed by nonlinearity). During a convolution operation, the stride is 

fixed to 1. Several convolutional layers follow the five pooling layers to perform the spatial 

pooling. In max-pooling, the length of each stride is fixed to 2. The window size for the pooling 

is (2 * 2) pixels. All fully connected layers are configured the same way; the first and second 

layers each consist of 4096 channels, the third layer performs a 1000-way ILSVRC 

classification, therefore, contains 1000 channels, one for each class). The final layer is the 

softmax layer. A ReLu activation function follows all the hidden layers for the VGG network. 

Figure 3.23 shows all VGG configurations published in the study of Simonyan et al. [112]. The 

size of the architectures increases from (A) to (E). Although all configurations are successful, 

the most popular are D and E configurations with 16 and 19 layers. They called VGG-16 and 

VGG-19. 
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Figure 3. 23 VGG Configurations [112] 

 

There are no architectural differences between the configurations. From 11 weight 

layers in network A that contains 8 convolutional and 3 fully connected layer, to 19 weight 

layers in network E that contains 16 convolutional and 3 fully connected layer. Each 

convolutional layer starts with 64 channels, and after every max-pooling layer, the number 

doubles, increasing by two more to 512; the convolutional layers have relatively few channels. 

Gradient descent coupled with backpropagation optimized the objective function of a 

multinomial logistic regression model, completing the entire training procedure. The batch size 

and the momentum are set to 256 and 0.9, respectively. There has been added a dropout ratio 
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of 0.5 to the first two fully connected layers in order to smooth out the dropouts. The learning 

rate was initially set at 0.001, but when the validation set accuracy stopped improving, it 

dropped by a factor of 10. 

As in ILSVRC-2012 [114] as well as ILSVRC-2013 [114], In comparison to the 

previous generation of models, VGG16 significantly outperformed. When VGG network is 

used, there are two important drawbacks to consider. In the first place, the training process takes 

a long time and requires a lot of computing power. Secondly, the weights associated with 

network architectures are quite large. VGG16 is over 500MB in size since the model is so deep 

and contains so many fully connected nodes.  

As can be seen from Figure 3.23, there is no architectural difference between VGG-16 

and VGG-19. They differ only in the number of parameters they contain due to their depth. 

Within the scope of this thesis, VGG-16 and VGG-19 models will be trained with RadEch 

dataset in order to see the effects of the size of deep learning models on classification accuracy 

regardless of the dataset.  

3.6. Training Stage 

All dataset pre-processing described in Sections 3.2, 3.3 and 3.4 will be classified in 

Section 4. Specifications of training process are explained in this section. Three different CNN 

models described in Section 3.5 will be used for the classification process. These three models 

will be trained with all pre-processed datasets. At the end of the training, parameters such as 

classification accuracy and training duration will be taken into consideration and a comparison 

will be made. Considering the models to be used for training and the size of the dataset, it would 

make sense to do all the training on the GPU (Graphics Processing Unit). Since GPU 

technologies can perform parallel processing, they can complete model training in a shorter 

time than CPUs (Central Processing Unit). The Google Colaboratory platform was used to train 

the models on the GPU. Colaboratory, as known as “Colab”, is a product of Google Research. 

It is especially well suited for machine learning, data analysis and educational applications. 

Anyone can write and run arbitrary python code through the browser with Colab. A more 

detailly definition of Colab is a hosted Jupyter notebook service that offers free access to 

computing resources, such as GPUs, without the need for any installation. The Google Colab 

platform is open to everyone and free of charge. However, the training time of the models is 

limited to 12 hours. Google Colab offers users 12 GB NVIDIA Tesla K80 GPU in its free 

version. In this thesis, Google Colab Pro version, which is the paid version of Google Colab, 

was used. Google Colab Pro version offers users faster GPU, longer runtime, and more RAM 
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memory. The hardware specifications that Google Colab provided, which the three CNN 

models to be trained are given in Table 3.8. 

 

Table 3. 8: Hardware Specifications 

GPU NVIDIA Tesla P100 

GPU Memory 16,2 Gb 

CUDA Architecture Applicable 

RAM Memory 27,3 Gb 

 

Raw version, noise reduced version, traditional augmented version, and learning-based 

augmented versions of RadEch dataset will be classified with three different CNN models. The 

results will be compared both within themselves and with state-of-art studies in the literature. 

The specifications of the datasets are given in Table 3.9. 

 

Table 3. 9: Dataset Specifications 

Dataset Type Number of Samples 

RadEch Raw Dataset .mat files 452 

RadEch Dataset Raw Spectrogram .png files 452 

RadEch Dataset Noise Reduced 

Spectrogram 

.png files 452 

RadEch Dataset Traditional 

Augmented 

.png files 1953 

RadEch Dataset Learning-Based 

Augmented 

.png files 2422 

 

3.7. Evaluation Metrics 

As it examined the CNN results, there is a set of well-known measurements that can be 

utilized as benchmarks to evaluate how efficient the model is. These measures included the 

recall, precision, accuracy, and F1-score it is used to evaluate the proposed classification model.  
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A famous measure used to solve classification problems is the confusion matrix. Both 

binary classification and multiclass classification issues can be addressed by this technique. The 

confusion matrix given in Table 3.10 illustrates binary classification by confusion. 

 

Table 3. 10: Confusion Matrix for Binary Classification 

  Predicted 
 Negative Positive 

Real 
Negative TN FP 

Positive FN TP 

 

A confusion matrix is a count of predicted values versus real values. The output "TN" 

means “True Negative”, which indicates how many examples were correctly classified as 

negative. As well, "TP" means “True Positive”, which refers to the number of correctly 

classified positive examples. The term "FP" represents False Positives, which are actual 

negative examples classified as positives. "FN" stands for False Negatives, which are actual 

positive examples classified as negatives. While performing classification, accuracy is 

commonly used as a metric. A model's accuracy is determined by calculating its confusion 

matrix with using the Equation 3.1. 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 (3.1) 

 

Accuracy is the number of correctly classified objects that determines the accuracy of 

the method. With imbalanced datasets, accuracy can be misleading, and In addition to confusion 

matrix metrics, there are other performance measures that can be used. Within the scope of this 

thesis, all evaluations were made with the "Accuracy" metric. "Accuracy" was used as the 

evaluation metric in related works of this thesis. 

The "precision" is measured by the ratio between true positives and false positives. In 

the Precision analysis, it is looked at how many false positives in the results. In the absence of 
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False Positives, the model had 100% precision. A model's precision is determined by 

calculating its confusion matrix with using the Equation 3.2. 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (3.2) 

 

A recall rate is also called a sensitivity rate or a true positive rate. The definition is as 

follows in Equation 3.3: 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (3.3) 

 

In ideally good classification models, recall should be 1 (high). Numerator and 

denominator must be equal for recall to be 1, i.e., TP = TP + FN, which means that FN is 0. In 

a decreasing FN, the denominator value becomes larger than the numerator and the recall value 

decreases (which is not desirable). The ideal precision and recall in a classifier are both 1, 

meaning FP and FN are both zero. F1-score is a metric that takes into account both precision 

and recall and is defined as follows in Equation 3.4: 

 

 𝐹1	𝑆𝑐𝑜𝑟𝑒 = 	2	𝑥	
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑥	𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

(3.4) 

 

Precision and recall must both be 1 for F1 Score to be 1. When precision and recall are 

both high, the F1 score becomes high. F1 score is the arithmetic mean of precision and recall, 

which is a superior measure to accuracy. 

In addition to all these evaluation metrics, there is also the stage of deciding how much 

of the data set will be allocated for training and how much for testing. The process of separating 

this data set, which is one of the most important stages of any deep learning model, can be done 

in many ways. The higher the training set is set, the better the learning process will be because 

the model will be fed with more data. On the other hand, keeping the training set high will mean 

reducing the validation set. Lower amounts of validation sets, no matter how well the model is 
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trained, will render the model's evaluation results inaccurate as its ability to represent the whole 

data is reduced. Studies published in the literature are generally divided into 15% validation set 

and 85% training set. 

In this thesis, a data separation method called cross-validation was used. A cross-

validation method is a way of estimating how well machine learning models perform (or how 

accurate they are). Especially when limited data is available, it protects against overfitting a 

predictive model. Cross-validation involves folding a fixed number of data sets, analysing each 

fold, and averaging the error estimate on the average. One of the cross-validation methods 

widely used in the literature is the "Holdout" method. It is a rather basic and simple approach 

where we separate our dataset into two parts, the training data and the testing data. Training is 

carried out on training data, and the results are then evaluated on the testing set. Typically, 

training data is bigger than testing data, so the data is split in the ratio 85:15 or 80:20.  

 

 

Figure 3. 24 Holdout Method of Validation [115] 

 

The holdout method is shown in Figure 3.24. The data is initially shuffled randomly 

before it is split according to this method. Every time we train the model, it can give different 

results because it's training on a different combination of data, and this can cause instability. 

Additionally, it is not possible to ensure that the train set selected represents the whole dataset. 

Also, when a dataset is not very large, there is a chance that some important information 
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contained in the testing data might be lost since the model is not trained on the testing set. The 

hold-out method is good to use when using a very large dataset.  

Holdout method can be improved by using K-fold cross validation. By using this 

method, it is ensured that the score of the model is not affected by how it is chosen the training 

and testing sets. In a nutshell, k number of subsets are created, and then k number of holdout 

methods are applied. Here is step of this method below: 

1. Dividing your dataset into k number of folds (subsets) at random 

2. Create a model based on k - 1 folded folds of your dataset per fold. Then, test the model 

to determine its effectiveness for kth fold 

3. Continue to do this until all the k-folds have been tested 

4. In cross-validation, the average accuracy of your obtained k samples will be used as a 

performance metric. 

The training and test sets can have any observation from the original dataset since it 

ensures that every observation is included. The model produced by this method is generally less 

biased than those produced by other methods. Using this method has the disadvantage that the 

training algorithm must be the same each time, so that it requires k times as much computing 

power to evaluate the algorithm. The k-fold cross-validation method is shown in Figure 3.25 

 

 

Figure 3. 25 5-Fold Cross-validation 
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4. RESULTS 
 

Training and classification of the augmented datasets obtained in the previous sections 

with the deep learning models described in the previous sections will be explained in this 

section. The training process will be explained in three different titles according to the three 

deep learning models used in the thesis. In each topic, that is, each deep learning model will be 

trained with 5 different datasets. The results obtained will be displayed in the section of each 

deep learning model with graphs and tables. 

4.1. CNN with 5-Layer  

Raw RadEch spectrograms and datasets that augmented in previous sections will be 

trained with 5-layer CNN. This CNN architecture is shown in Figure 3.21. The specifications 

of training process are shown in table 4.1. 

Table 4. 1: Training Specifications 

Batch Size 8 

Cross Validation 5-Fold Cross Validation 

Image Size 224 x 224 x 3 

Epoch 50 

Model Optimizer Adam optimizer 

Learning Rate 0,001 

Loss Function Categorical Cross-entropy 

Evaluation Metric Accuracy 

Activation Function of 

Classification Layer 

Sigmoid Function 

 

4.1.1. Raw RadEch Spectrograms 

Raw RadEch Spectrograms contains 452 samples. The dataset is trained with 50 Epochs. 

The results obtained as a result of the training are shown in Table 4.2. Additionally, Training 

and validation accuracy over epoch graphs and training and validation loss over epoch graph 

are shown in Figure 4.1 and 4.2 respectively. 
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Table 4. 2: Training Results 

Training Accuracy 99,45% 

Validation Accuracy 91,11% 

Training Loss 0,022 

Validation Loss 0,197 

Training Time 269,53 seconds 

 

 

Figure 4. 1 Accuracy over Epoch 
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Figure 4. 2 Loss over Epoch 

 

 

4.1.2. Noise Reduced RadEch Spectrograms 

Noise Reduced RadEch Spectrograms contains 452 samples. Training epochs are 

selected as 50. The results obtained as a result of the training are shown in Table 4.3. 

Additionally, Training and validation accuracy over epoch graphs and training and validation 

loss over epoch graph are shown in Figure 4.3 and 4.4 respectively. 

 

Table 4. 3: Training Results 

Training Accuracy 99,19% 

Validation Accuracy 99,12% 

Training Loss 0,005 

Validation Loss 0,003 

Training Time 161,56 seconds 
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Figure 4. 3 Accuracy over Epoch 

 

 

Figure 4. 4 Loss over Epoch 
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4.1.3. Traditional Augmented RadEch Dataset 

Traditional Augmented RadEch Dataset contains 1953 samples. Training epochs are 

selected as 50. It is important to note that no augmented data were used in the testing process. 

It has only been validated with real spectrograms. The results obtained as a result of the training 

are shown in Table 4.4. Additionally, Training and validation accuracy over epoch graphs and 

training and validation loss over epoch graph are shown in Figure 4.5 and 4.6 respectively. 

 

Table 4. 4: Training Results 

Training Accuracy 99,88% 

Validation Accuracy 99,76% 

Training Loss 0,039 

Validation Loss 0,021 

Training Time 1204,09 seconds 

 

 

Figure 4. 5 Accuracy over Epoch 
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Figure 4. 6 Loss over Epoch 

 

4.1.4. Learning-Based Augmented RadEch Dataset 

Learning-Based Augmented RadEch Dataset contains 2422 samples. The samples are 

generated by GAN. Training epochs are selected as 50. It is important to note that no augmented 

data were used in the testing process. It has only been validated with real spectrograms. The 

results obtained as a result of the training are shown in Table 4.5. Additionally, Training and 

validation accuracy over epoch graphs and training and validation loss over epoch graph are 

shown in Figure 4.7 and 4.8 respectively.  

 

Table 4. 5: Training Results 

Training Accuracy 98,99% 

Validation Accuracy 94,07% 

Training Loss 0,011 

Validation Loss 0,156 

Training Time 379,43 seconds 
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Figure 4. 7 Accuracy over Epoch 

 

 

Figure 4. 8 Loss over Epoch 
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In this section, trained results of all datasets created in this thesis with 5-Layer CNN are 

shown in tables and graphs. In the next section, the same datasets will be trained with the VGG-

16 model. 

4.2. VGG-16 without Transfer Learning 

Raw RadEch spectrograms and datasets that augmented in previous sections will be 

trained with VGG-16 network. This CNN architecture is shown in Figure 3.22. The 

specifications of training process are shown in Table 4.6. In fact, the VGG-16 network has been 

trained and weighted with a dataset of more than 15 million images called ImageNet that 

explained in Section 3.5. Datasets will be trained without using these weights, that is, without 

transfer learning. 

 

Table 4. 6: Training Specifications 

Batch Size 8 

Cross Validation 5-Fold Cross Validation 

Image Size 224 x 224 x 3 

Epoch 50 

Model Optimizer Adam optimizer 

Learning Rate 0,001 

Loss Function Sparse Categorical Cross-entropy 

Evaluation Metric Accuracy 

Activation Function of 

Classification Layer 

Softmax Function 

 

4.2.1. Raw RadEch Spectrograms 

Raw RadEch Spectrograms contains 452 samples. The dataset is trained with 50 Epochs. 

The results obtained as a result of the training are shown in Table 4.7. Additionally, Training 

and validation accuracy over epoch graphs and training and validation loss over epoch graph 

are shown in Figure 4.9 and 4.10 respectively. 

 

Table 4. 7: Training Results 

Training Accuracy 99,99% 
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Validation Accuracy 94,44% 

Training Loss 2,96e-5 

Validation Loss 0,279 

Training Time 409,71 seconds 

 

 

Figure 4. 9 Accuracy over Epoch 

 



 84 

 

Figure 4. 10 Loss over Epoch 

 

4.2.2. Noise Reduced RadEch Spectrograms 

Noise Reduced RadEch Spectrograms contains 452 samples. Training epochs are 

selected as 50. The results obtained as a result of the training are shown in Table 4.8. 

Additionally, Training and validation accuracy over epoch graphs and training and validation 

loss over epoch graph are shown in Figure 4.11 and 4.12 respectively. 

Table 4. 8: Training Results 

Training Accuracy 99,99% 

Validation Accuracy 98,89% 

Training Loss 1,926e-5 

Validation Loss 0,058 

Training Time 343,63 seconds 
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Figure 4. 11 Accuracy over Epoch 

 

 

Figure 4. 12 Loss over Epoch 
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4.2.3. Traditional Augmented RadEch Dataset 

Traditional Augmented RadEch Dataset contains 1953 samples. Training epochs are 

selected as 50. It is important to note that no augmented data were used in the testing process. 

It has only been validated with real spectrograms. The results obtained as a result of the training 

are shown in Table 4.9. Additionally, Training and validation accuracy over epoch graphs and 

training and validation loss over epoch graph are shown in Figure 4.13 and 4.14 respectively. 

 

Table 4. 9: Training Results 

Training Accuracy 100,00% 

Validation Accuracy 99,77% 

Training Loss 2,62e-9 

Validation Loss 0,011 

Training Time 1857,00 seconds 

 

 

Figure 4. 13 Accuracy over Epoch 
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Figure 4. 14 Loss over Epoch 

 

4.2.4. Learning-Based Augmented RadEch Dataset 

Traditional Augmented RadEch Dataset contains 1953 samples. Training epochs are 

selected as 50. It is important to note that no augmented data were used in the testing process. 

It has only been validated with real spectrograms. The results obtained as a result of the training 

are shown in Table 4.10. Additionally, Training and validation accuracy over epoch graphs and 

training and validation loss over epoch graph are shown in Figure 4.15 and 4.16 respectively. 

 

Table 4. 10: Training Results 

Training Accuracy 99,60% 

Validation Accuracy 94,65% 

Training Loss 1,28e-4 

Validation Loss 0,200 

Training Time 559,54 seconds 
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Figure 4. 15 Accuracy over Epoch 

 

 

Figure 4. 16 Loss over Epoch 
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4.3. VGG-16 with Transfer Learning 

Raw RadEch spectrograms and datasets that augmented in previous sections will be 

trained with VGG-16 network. This CNN architecture is shown in Figure 3.22. The 

specifications of training process are shown in Table 4.11. In fact, the VGG-16 network has 

been trained and weighted with a dataset of more than 15 million images called ImageNet that 

explained in Section 3.5. Datasets will be trained with using these weights that is, with transfer 

learning. So that the results of transfer learning on micro-Doppler radar data can also be seen. 

Table 4. 11: Training Specifications 

Batch Size 8 

Cross Validation 5-Fold Cross Validation 

Image Size 224 x 224 x 3 

Epoch 50 

Model Optimizer Adam optimizer 

Learning Rate 0,001 

Loss Function Sparse Categorical Cross-entropy 

Evaluation Metric Accuracy 

Activation Function of 

Classification Layer 

Softmax Function 

 

4.3.1. Raw RadEch Spectrograms 

Raw RadEch Spectrograms contains 452 samples. The dataset is trained with 50 Epochs. 

The results obtained as a result of the training are shown in Table 4.12. Additionally, Training 

and validation accuracy over epoch graphs and training and validation loss over epoch graph 

are shown in Figure 4.17 and 4.18 respectively. 

 

Table 4. 12: Training Results 

Training Accuracy 71,12% 

Validation Accuracy 65,22% 

Training Loss 0,582 

Validation Loss 0,775 

Training Time 270,72 seconds 
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Figure 4. 17 Accuracy over Epoch 

 

 

Figure 4. 18 Loss over Epoch 
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4.3.2. Noise Reduced RadEch Spectrograms 

Noise Reduced RadEch Spectrograms contains 452 samples. Training epochs are 

selected as 50. The results obtained as a result of the training are shown in Table 4.13. 

Additionally, Training and validation accuracy over epoch graphs and training and validation 

loss over epoch graph are shown in Figure 4.19 and 4.20 respectively. 

Table 4. 13: Training Results 

Training Accuracy 99,17% 

Validation Accuracy 97,78% 

Training Loss 0,035 

Validation Loss 0,066 

Training Time 281,50 seconds 

 

 

Figure 4. 19 Accuracy over Epoch 
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Figure 4. 20 Loss over Epoch 

 

4.3.3. Traditional Augmented RadEch Dataset 

Traditional Augmented RadEch Dataset contains 1953 samples. Training epochs are 

selected as 50. It is important to note that no augmented data were used in the testing process. 

It has only been validated with real spectrograms. The results obtained as a result of the training 

are shown in Table 4.14. Additionally, Training and validation accuracy over epoch graphs and 

training and validation loss over epoch graph are shown in Figure 4.21 and 4.22 respectively. 

 

Table 4. 14: Training Results 

Training Accuracy 100,00% 

Validation Accuracy 99,77% 

Training Loss 6,993e-8 

Validation Loss 0,022 

Training Time 1902,37 seconds 
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Figure 4. 21 Accuracy over Epoch 

 

 

Figure 4. 22 Loss over Epoch 
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4.3.4. Learning-Based Augmented RadEch Dataset 

Traditional Augmented RadEch Dataset contains 1953 samples. Training epochs are 

selected as 50. It is important to note that no augmented data were used in the testing process. 

It has only been validated with real spectrograms. The results obtained as a result of the training 

are shown in Table 4.15. Additionally, Training and validation accuracy over epoch graphs and 

training and validation loss over epoch graph are shown in Figure 4.23 and 4.24 respectively. 

 

Table 4. 15: Training Results 

Training Accuracy 99,05% 

Validation Accuracy 95,72% 

Training Loss 6,263e-5 

Validation Loss 0,131 

Training Time 632,96 seconds 

 

 

Figure 4. 23 Accuracy over Epoch 
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Figure 4. 24 Loss over Epoch 

 

4.4. VGG-19 without Transfer Learning 

Raw RadEch spectrograms and datasets that augmented in previous sections will be 

trained with VGG-16 network. This CNN configuration is shown in Figure 3.23. The 

specifications of training process are shown in Table 4.16. In fact, the VGG-19 network has 

been trained and weighted with a dataset of more than 15 million images called ImageNet that 

explained in Section 3.5. Datasets will be trained without using these weights, that is, without 

transfer learning. 

Table 4. 16: Training Specifications 

Batch Size 8 

Cross Validation 5-Fold Cross Validation 

Image Size 224 x 224 x 3 

Epoch 50 

Model Optimizer Adam optimizer 

Learning Rate 0,001 

Loss Function Sparse Categorical Cross-entropy 

Evaluation Metric Accuracy 
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Activation Function of 

Classification Layer 

Softmax Function 

 

4.4.1. Raw RadEch Spectrograms 

Raw RadEch Spectrograms contains 452 samples. The dataset is trained with 50 Epochs. 

The results obtained as a result of the training are shown in Table 4.17. Additionally, Training 

and validation accuracy over epoch graphs and training and validation loss over epoch graph 

are shown in Figure 4.25 and 4.26 respectively. 

 

Table 4. 17: Training Results 

Training Accuracy 99,99% 

Validation Accuracy 91,11% 

Training Loss 1,059e-5 

Validation Loss 0,330 

Training Time 402,60 seconds 

 

 

Figure 4. 25 Accuracy over Epoch 
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Figure 4. 26 Loss over Epoch 

 

4.4.2. Noise Reduced RadEch Spectrograms 

Noise Reduced RadEch Spectrograms contains 452 samples. Training epochs are 

selected as 50. The results obtained as a result of the training are shown in Table 4.18. 

Additionally, Training and validation accuracy over epoch graphs and training and validation 

loss over epoch graph are shown in Figure 4.27 and 4.28 respectively 

Table 4. 18: Training Results 

Training Accuracy 100,00 % 

Validation Accuracy 100,00 % 

Training Loss 1,135e-6 

Validation Loss 2,315e-4 

Training Time 339,72 seconds 
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Figure 4. 27 Accuracy over Epoch 

 

 

Figure 4. 28 Loss over Epoch 
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4.4.3. Traditional Augmented RadEch Dataset 

Traditional Augmented RadEch Dataset contains 1953 samples. Training epochs are 

selected as 50. It is important to note that no augmented data were used in the testing process. 

It has only been validated with real spectrograms. The results obtained as a result of the training 

are shown in Table 4.19. Additionally, Training and validation accuracy over epoch graphs and 

training and validation loss over epoch graph are shown in Figure 4.29 and 4.30 respectively. 

 

Table 4. 19: Training Results 

Training Accuracy 100,00% 

Validation Accuracy 99,77% 

Training Loss 2,62e-9 

Validation Loss 0,011 

Training Time 1857,00 seconds 

 

 

Figure 4. 29 Accuracy over Epoch 
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Figure 4. 30 Loss over Epoch 

 

4.4.4. Learning-Based Augmented RadEch Dataset 

Traditional Augmented RadEch Dataset contains 1953 samples. Training epochs are 

selected as 50. It is important to note that no augmented data were used in the testing process. 

It has only been validated with real spectrograms. The results obtained as a result of the training 

are shown in Table 4.20. Additionally, Training and validation accuracy over epoch graphs and 

training and validation loss over epoch graph are shown in Figure 4.31 and 4.32 respectively. 

 

Table 4. 20: Training Results 

Training Accuracy 99,60% 

Validation Accuracy 94,65% 

Training Loss 1,28e-4 

Validation Loss 0,200 

Training Time 559,54 seconds 
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Figure 4. 31 Accuracy over Epoch 

 

 

Figure 4. 32 Loss over Epoch 

4.5. VGG-19 with Transfer Learning 

Raw RadEch spectrograms and datasets that augmented in previous sections will be 

trained with VGG-19 network. This CNN configuration is shown in Figure 3.23. The 
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specifications of training process are shown in Table 4.21. In fact, the VGG-16 network has 

been trained and weighted with a dataset of more than 15 million images called ImageNet that 

explained in Section 3.5. Datasets will be trained with using these weights that is, with transfer 

learning. So that the results of transfer learning on micro-Doppler radar data can also be seen. 

 

Table 4. 21: Training Specifications 

Batch Size 8 

Cross Validation 5-Fold Cross Validation 

Image Size 224 x 224 x 3 

Epoch 50 

Model Optimizer Adam optimizer 

Learning Rate 0,001 

Loss Function Sparse Categorical Cross-entropy 

Evaluation Metric Accuracy 

Activation Function of 

Classification Layer 

Softmax Function 

 

4.5.1. Raw RadEch Spectrograms 

Raw RadEch Spectrograms contains 452 samples. The dataset is trained with 50 Epochs. 

The results obtained as a result of the training are shown in Table 4.22. Additionally, Training 

and validation accuracy over epoch graphs and training and validation loss over epoch graph 

are shown in Figure 4.33 and 4.34 respectively. 

 

Table 4. 22: Training Results 

Training Accuracy 81,57% 

Validation Accuracy 74,77% 

Training Loss 0,355 

Validation Loss 0,532 

Training Time 269,73 seconds 
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Figure 4. 33 Accuracy over Epoch 

 

 

Figure 4. 34 Loss over Epoch 
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4.5.2. Noise Reduced RadEch Spectrograms 

Noise Reduced RadEch Spectrograms contains 452 samples. Training epochs are 

selected as 50. The results obtained as a result of the training are shown in Table 4.23. 

Additionally, Training and validation accuracy over epoch graphs and training and validation 

loss over epoch graph are shown in Figure 4.35 and 4.36 respectively. 

Table 4. 23: Training Results 

Training Accuracy 93,81% 

Validation Accuracy 90,44% 

Training Loss 0,128 

Validation Loss 0,149 

Training Time 214,72 seconds 

 

 

Figure 4. 35 Accuracy over Epoch 
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Figure 4. 36 Loss over Epoch 

 

4.5.3. Traditional Augmented RadEch Dataset 

Traditional Augmented RadEch Dataset contains 1953 samples. Training epochs are 

selected as 50. It is important to note that no augmented data were used in the testing process. 

It has only been validated with real spectrograms. The results obtained as a result of the training 

are shown in Table 4.24. Additionally, Training and validation accuracy over epoch graphs and 

training and validation loss over epoch graph are shown in Figure 4.37 and 4.38 respectively. 

 

Table 4. 24: Training Results 

Training Accuracy 90,49% 

Validation Accuracy 83,17% 

Training Loss 0,230 

Validation Loss 0,274 

Training Time 1311,30 seconds 
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Figure 4. 37 Accuracy over Epoch 

 

 

Figure 4. 38 Loss over Epoch 
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4.5.4. Learning-Based Augmented RadEch Dataset 

Traditional Augmented RadEch Dataset contains 1953 samples. Training epochs are 

selected as 50. It is important to note that no augmented data were used in the testing process. 

It has only been validated with real spectrograms. The results obtained as a result of the training 

are shown in Table 4.25. Additionally, Training and validation accuracy over epoch graphs and 

training and validation loss over epoch graph are shown in Figure 4.39 and 4.40 respectively. 

 

Table 4. 25: Training Results 

Training Accuracy 93,56% 

Validation Accuracy 90,42% 

Training Loss 0,141 

Validation Loss 0,153 

Training Time 379,83 seconds 

 

 

Figure 4. 39 Accuracy over Epoch 
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Figure 4. 40 Loss over Epoch 
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5. DISCUSSION 
In Section 4, Raw RadEch dataset and pre-processed datasets are trained with three 

different deep learning models. Their results are shown with tables and graphs. In this section 

these results, and graphs are going to be evaluated. Table 5.1 shows 5-Layer CNN results, Table 

5.2 shows VGG-16 without Transfer learning results, Table 5.3 shows VGG-16 with transfer 

learning results, Table 5.4 shows VGG-19 without transfer learning results and Table 5.5 shows 

VGG-19 with transfer learning results. 

Table 5. 1: 5-Layer CNN Results 

 Raw RadEch 

Spectrograms 

Noise Reduced 

Spectrograms 

Traditional 

Augmented 

Spectrograms 

Learning-

Based 

Augmented 

Spectrograms 

Training 

Accuracy 

99,45% 99,19% 99,88% 98,99% 

Validation 

Accuracy 

91,11% 99,12% 99,76% 94,07% 

Training Loss 0,022 0,005 0,039 0,011 

Validation Loss 0,197 0,003 0,021 0,156 

Training Time 269,53 

seconds 

161,56 seconds 1204,09 

seconds 

379,43 seconds 

 

Table 5. 2: VGG-16 without Transfer Learning Results 

 Raw RadEch 

Spectrograms 

Noise Reduced 

Spectrograms 

Traditional 

Augmented 

Spectrograms 

Learning-

Based 

Augmented 

Spectrograms 

Training 

Accuracy 

99,99% 99,99% 100,00% 99,60% 

Validation 

Accuracy 

94,44% 98,89% 99,77% 94,65% 

Training Loss 2,96e-5 1,926e-5 2,62e-9 1,28e-4 

Validation Loss 0,279 0,058 0,011 0,200 
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Training Time 409,71 

seconds 

343,63 seconds 1857,00 

seconds 

559,54 seconds 

 

Table 5. 3: VGG-16 with Transfer Learning Results 

 Raw RadEch 

Spectrograms 

Noise Reduced 

Spectrograms 

Traditional 

Augmented 

Spectrograms 

Learning-

Based 

Augmented 

Spectrograms 

Training 

Accuracy 

71,12% 99,17% 100,00% 99,05% 

Validation 

Accuracy 

65,22% 97,78% 99,77% 95,72% 

Training Loss 0,582 0,035 6,993e-8 6,263e-5 

Validation Loss 0,775 0,066 0,022 0,131 

Training Time 270,72 

seconds 

281,50 seconds 1902,37 

seconds 

632,96 seconds 

 

Table 5. 4: VGG-19 without Transfer Learning Results 

 Raw RadEch 

Spectrograms 

Noise Reduced 

Spectrograms 

Traditional 

Augmented 

Spectrograms 

Learning-

Based 

Augmented 

Spectrograms 

Training 

Accuracy 

99,99% 100,00 % 100,00% 99,60% 

Validation 

Accuracy 

91,11% 100,00 % 99,77% 94,65% 

Training Loss 1,059e-5 1,135e-6 2,62e-9 1,28e-4 

Validation Loss 0,330 2,315e-4 0,011 0,200 

Training Time 402,60 

seconds 

339,72 seconds 1857,00 

seconds 

559,54 seconds 
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Table 5. 5: VGG-19 with Transfer Learning Results 

 Raw RadEch 

Spectrograms 

Noise Reduced 

Spectrograms 

Traditional 

Augmented 

Spectrograms 

Learning-

Based 

Augmented 

Spectrograms 

Training 

Accuracy 

81,57% 93,81% 90,49% 93,56% 

Validation 

Accuracy 

74,77% 90,44% 83,17% 90,42% 

Training Loss 0,355 0,128 0,230 0,141 

Validation Loss 0,532 0,149 0,274 0,153 

Training Time 269,73 

seconds 

214,72 seconds 1311,30 

seconds 

379,83 seconds 

 

The first comment that can be made according to the results is that the transfer learning 

process using the VGG-16 and VGG-19 architectures did not give very successful results with 

the RadEch dataset. This situation can be explained by domain adaptation. VGG-16 and VGG-

19 architectures are trained with a dataset called ImageNet [111]. This dataset contains many 

images from daily life. Trees, cars, airplanes, balloons and strawberries are examples of these 

images. Since these images in ImageNet do not resemble micro-Doppler radar spectrograms, it 

is quite normal that the weights of a model trained with this dataset will not be very successful 

in spectrogram classification. First of all, they have different domains. Therefore, using a deep 

learning architecture trained with ImageNet to classify micro-Doppler radar spectrograms 

would not be correct.  

Another interpretation to be drawn from the results is that the classification success of 

Raw RadEch spectrograms is lower than noise reduced and augmented spectrograms. Noise 

reduced spectrograms are relatively noise-reduced spectrograms, so deep learning models do 

not have to learn noises. Based on this, the classification success of noise reduced spectrograms 

is expected to be higher than Raw Spectrograms. Augmented spectrograms, on the other hand, 

are expected to have higher classification success since they have more samples. Augmented 

spectrograms also protect deep learning models from overfitting. 
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When comparing traditional augmented and Learning-based augmented spectrograms, 

it can be seen that traditional augmented spectrograms have higher classification success. At 

this point, it should be considered that Generative Adversarial Networks used for learning-

based augmentation need a lot of data in their training, otherwise they can easily be overfitted. 

Considering that the RadEch dataset is a relatively small dataset, it is quite normal that these 

GAN augmented spectrograms do not mimic the dataset well. For this reason, learning-based 

augmentation has had lower classification success than traditional data augmentation. It can be 

seen from the tables that the learning-based augmentation class is trained in shorter times 

compared to the traditional augmentation class. This can be explained by the fact that the 

dimensions of the spectrograms produced with GAN are 3 x 64 x 64. Although it is increased 

to 3 x 224 x 224 during classification, it will take much less time to learn this information as it 

contains less information. 

Considering all the results, the highest classification success is 100% in noise reduced 

spectrograms trained with VGG-19 architecture, without transfer learning. Moreover, this result 

was obtained using only 452 samples. This result surpasses the results of E. Alhadhrami et al 

[103], a state-of-art study using the RadEch dataset. 

E. Alhadhrami et al. In their early work [116], they achieved 99.9% classification 

success by increasing 452 samples to a total of 7684 samples using traditional augmentation. in 

their next study [103], they achieved 98.51% classification success with 452 samples. 

Table 5. 6 Results Comparison 

Study Number of 

Sample for 

RadEch Dataset 

Feature 

Extraction 

Method 

Classifier Classification 

Accuracy 

[93] 452 TFD SVD-FT SVM 93,00 % 

[103] 452 VGG-19 Softmax 98,51 % 

[116] 7681 AlexNet Softmax 99,90 % 

This Study 452 VGG-19 Softmax 100,00 % 

 

5.1. Future Works 

 Since we achieved the main goal of this solution, there is some parts of the solution 

needs further work and development. In order to increase the generalization ability of the 

models, it is necessary to collect more micro-Doppler radar data at first. After more data is 
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obtained, depending on the number of samples, training with GAN and augmenting the data 

with better quality results and retraining with this augmented data. After acquiring more data 

and augmenting it with GAN, applying noise reduction to the entire dataset and observing the 

results. In order to increase the generalization ability rather than model performance, this dataset can 

be trained using the model previously trained with the micro-Doppler radar dataset. In this case, the 

transfer learning success of two different datasets with compatible domains on the same model can be 

compared. 
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6. CONCLUSION 
 

The aim of this study is to classify micro-Doppler radar data, pre-process it before 

classification, augment the dataset due to its small size, and compare all these results first within 

themselves and then with state-of-art studies.  

In this context, using various deep learning architectures, first the raw dataset, then the 

noise reduced dataset and then the augmented dataset are classified. As a result of the 

classification, the classification success of 100.00% was obtained as the highest success in the 

training of the noise reduced dataset, which has 452 samples, with the VGG-16 architecture. 

While training the dataset, 5-fold Cross-validation technique was applied. The results showed 

that traditional data augmentation methods produce these and better results than learning-based 

data augmentation methods. In order for the learning-based data augmentation method to be 

better, the dataset must be very large. Otherwise, the GAN will not be able to learn the correct 

distribution.  

The VGG-16 and VGG-19 models have a domain incompatible with the RadEch 

dataset, as they are trained with a huge dataset called ImageNet, which contains many examples 

from everyday life. Since there is a domain adaptation problem, the models trained with transfer 

learning showed lower classification success in this dataset than the models trained without 

transfer learning. 
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