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Abstract

Generating audio captions is a new research area that combines audio
and natural language processing to create meaningful textual descriptions
for audio clips. To address this problem, previous studies mostly use the
encoder-decoder based models without considering semantic information.
To fill this gap, we present a novel encoder-decoder architecture using
bi-directional Gated Recurrent Units (BiGRU) with audio and semantic
embeddings. We extract semantic embedding by obtaining subjects and
verbs from the audio clip captions and combine these embedding with
audio embedding to feed the BiGRU-based encoder-decoder model. To
enable semantic embeddings for the test audios, we introduce a Multi-
layer Perceptron classifier to predict the semantic embeddings of those
clips. We also present exhaustive experiments to show the efficiency of
different features and datasets for our proposed model the audio caption-
ing task. To extract audio features, we use the log Mel energy features,
VGGish embeddings, and a pretrained audio neural network (PANN) em-
beddings. Extensive experiments on two audio captioning datasets Clotho
and AudioCaps show that our proposed model outperforms state-of-the-
art audio captioning models across different evaluation metrics and using
the semantic information improves the captioning performance.

Keywords: Audio captioning; PANNs; VGGish; GRU; BiGRU.

1 Introduction

Audio captioning is a newly proposed task to describe the content of an audio
clip using natural language sentences . The purpose of creating captions is not
only finding the objects, events, or scenes in the given audio clip but also find-
ing relations between them and generating meaningful sentences. It has great
potential for real-life applications such as assisting hearing impaired people and
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Figure 1: A sample scene (a) from audio-enabled video surveillance [5] and its
partial sound wave (b). Without audio, there are only buildings on the scene.
We can also capture the siren sound by using audio modality.

understanding environmental sounds. Additionally, since smart audio-based and
video surveillance systems use audio signals, audio signal analysis is a critical re-
search area for surveillance systems. These systems can be used for recognizing
activities, detecting events, anomalies and finding semantic relations between
video and audio for child-care centers, nursing homes, smart cities, elevators,
etc. .

In the field of audio signal processing, a number of tasks, such as audio
event classification/detection [5], acoustic scene recognition [6}7], and audio
tagging [8] have received much attention over the past few years. In the audio
event detection task, the main aim is to identify (overlapping) sound events
occurring in the audio clip along with their starting and ending times. The
audio tagging task assigns predefined labels to a given audio segment, whereas
the acoustic scene recognition task concerns the understanding of the acoustics
of the environment and assigns labels to it. However, audio captioning is quite
a higher level of abstraction of these tasks in the sense of generating descriptive
sentences in a natural language. In audio-enabled video surveillance systems,
these sentences can be used for the understanding of video scenes and possible
abnormality detection within them, as well as indexing and retrieval of video
(Figure 1).

Captioning is firstly used for describing images and numerous studies have
been conducted @ This is followed by the video captioning task, which
alms to generate captions for video clips . Audio captioning task is first
described in . Drossos et al. propose an encoder-decoder model with three
Bi-directional Gated Recurrent Unit (BiGRU) layers in the encoder and two
Gated Recurrent Unit (GRU) layers in the decoder to generate audio captions
by means of an attention mechanism. They use the log Mel energies as audio
features and a commercial dataset ProSound Effects in their experiments.
ProSound Effects dataset includes a set of keywords as audio captions. Although
this study achieves generating audio captions from the audio clips, the results
are not proper sentences. Wu et al. present another attempt in the field
of audio captioning. Their model is an encoder-decoder model with one GRU



layer in the encoder and one GRU layer in the decoder. Also, they introduce a
new audio captioning dataset for the Chinese language. This model can produce
audio captions but the model tends to produce repetitive sentences. An encoder-
decoder model with semantic attention for generating captions for audios in
the wild is presented by Kim et al. to produce semantically meaningful audio
captions and to improve audio captioning performance. They contribute a large-
scale dataset AudioCaps of 46K audio clips [15]. For semantic attention, they
extract the words from the captions and apply the nearest neighbor approach
to the AudioSet [16] dataset to retrieve the nearest labels as attribute words.
These attributes are added to the model as semantic information. Drossos et
al. introduce a publicly available audio captioning dataset called Clotho [17]
and present the results with the method in [1]. Cakir et. al presents new results
using the Clotho dataset on the audio captioning task [18]. They proposed
a model to capture the words that are used infrequently but informative. A
multi-task regularization method is applied to solve the distribution of words
problem in the audio captions. Nguyen et al. propose another model using a
temporal sub-sampling to the audio input sequence [19]. Bi-directional RNN-
based encoder is used as the model architecture. They present their results on
the Clotho dataset.

Semantic information is previously studied to improve the performance of
the image and video captioning tasks [20121]. In the audio captioning task, the
semantic attributes are firstly used in [15]. They use AudioSet |16] labels as
semantic attributes by using the labels of the nearest video clip.

Since most existing approaches in the audio captioning task use the encoder-
decoder model without semantic concepts, our motivation is to improve audio
captioning recognition performance by using semantic information along with
the audio embeddings. To address this problem, we add semantic concepts
using subject-verb embeddings. We propose a novel model using the Pretrained
Audio Neural Networks (PANNSs) [22] as a feature extractor for audio feature
embedding and Word2Vec [23] for word embedding since their performance is
shown in audio classification tasks [24]. The preliminary results of this study
has been published in [25]. The extensions and the core contributions of our
study are as follows:

e We present a novel encoder-decoder model, namely RNN-GRU-EncDec for
the audio captioning task. Audio and semantic embeddings are extracted
and added to the proposed model to improve captioning performance.

e Different from the previous studies in the audio captioning tasks, we ex-
tract subjects and verbs from the captions in the datasets to obtain se-
mantic embeddings.

e We present exhaustive experiments to show the contribution of different
audio features such as the log Mel energies, VGGish embeddings |25], and
PANNs embeddings. To the best of our knowledge, this is the one of the
earliest papers [26] employing the PANNs as a feature extractor in the
audio captioning field.



e We demonstrate our results on two new audio-captioning datasets to val-
idate the effectiveness of our proposed model.

The organization of the paper is as follows. Section 2 introduces our proposed
method. We present our experimental results and evaluations in Section 3.
Finally, we give concluding remarks and possible future directions in Section 4.

2 Proposed Method

Our main aim is to generate meaningful captions for a given audio clip. Math-
ematically:

0* = argmaleogp(c\A; 0) (1)
0
A,c

We aim to maximize the probability of the caption ¢ for a given audio clip A
according to model parameters 6. Since captions are vectors of words, ¢ refers
to the caption of a given audio clip.

N
logp(c|A) = Z logp(ct) A, coy ooy i) (2)
t=0
where, N is the number of words and ¢( to c;—; is the words in the given caption.

The overall structure of our proposed model is given in Figure 2. The overall
architecture consists of the following modules: The audio embedding extractor,
subject-verb embedding extractor, and sequence modeling which is based on
RNN-GRU encoder-decoder (RNN-GRU-EncDec).

In RNN-GRU-EncDec, first the log Mel energy features are extracted. In
the encoder phase, the log Mel energy features and partial captions are encoded
separately. In the decoder phase, the output of the encoder is decoded in a GRU
layer. The decoder outputs a probability distribution of the unique words in
the related dataset. The word that has maximum probability is selected as the
predicted word and added to the partially predicted caption until the <eos>
token is captured as the predicted word.

In the proposed model with PANNs features and subject-verb embeddings,
we first extract PANNs audio embeddings from each audio signal. Afterward,
subject-verb embeddings are extracted from the captions for each audio clip.
Then audio embeddings and subject-verb embeddings are concatenated. In the
encoder phase, these concatenated embeddings and partial captions are encoded
separately. In the decoder phase, the output of the encoder is decoded in a GRU
layer. The decoder outputs a probability distribution of the unique words in
the related dataset. The word that has maximum probability is selected as the
predicted word and added to the partially predicted caption until the <eos>
token is captured as the predicted word. The details of these modules are
described in Section 2.1, 2.2, 2.3, and 2.4.



Encoder Decoder singing

Y
singing Y
playing ging .
005 08
predicted
word

4 Log Mel energy

input audia

Gy
Layer

" Panns
—>  restwe  f—— ingi
"f * e Encoder singing
aying singing

Input Audio

Layer

ping an
singing while cars are
passing

[l

almlaln|n]e

audio pass
caption

play

9
extracting Ferta
subject-verb aptior
Embeddings

(b)

Figure 2: The architecture of the proposed encoder-decoder model RNN-GRU-
EncDec with the log Mel energy features (a) and the architecture of the proposed
model with PANNs features and subject-verb embeddings (b).

2.1 Awudio Features
2.1.1 Acoustic Content

We extract the log Mel energy features using 96 ms Hamming window with 50%
overlap and obtain 64 log Mel energies for each frame similar to [17]. We set
the frequency band to 125-7500 Hz. The log Mel energy features denoted as
x = [21,...,x7], 7 € R% | where 2, is a vector that contains 64 features of the
audio clip and T is the number of audio frames.

2.1.2 Audio Embeddings
We use the VGGish model and PANNs embeddings to extract audio features.



VGGish model is pre-trained on the AudioSet |16]. The AudioSet is a large-
scale audio event dataset and contains 2,084,320 human-labeled 10-second sound
clips representing 632 audio event classes. The video clips are in different lengths
but the labels represent a 10-second interval of the video clips.

Previous studies show that VGGish embeddings achieve good results com-
pared with hand-crafted audio features in audio classification tasks [24,[27]. In
order to extract audio embedding, we first extract the log Mel spectrograms
from audio clips. The length of the clips varies between 15 to 30 seconds. Since
the length of the longest audio record is 30 seconds, we apply zero-padding
to the audio records which are shorter than 30 seconds. We resample them
to 16 Khz. We choose window-size of 96 milliseconds (ms) with 50% overlap.
We set the number of Mel filters to 64 similar to [17] and frequency band to
125-7500 Hz. VGGish model extracts 128-dimensional feature vector for each
second. After applying VGGish model, we obtain audio features denoted as
x = [21,...,o7], 7 € R'?®  where x; is a vector that contains 128 features of the
audio clip and T is the number of audio frames according to 96 ms window-sizes
and 50% overlaps.

Similarly, the PANNs are pre-trained on the AudioSet |16]. The PANNs
explore the presence probability of the AudioSet sound classes for the given
audio record. The PANNSs extract audio features denoted as x = [x1, ...,x7|,T €
R2948 where 2048 is the feature for an audio clip. Among the different PANNS
architectures, we use Wavegram-Logmel-CNN14 model as a feature extractor.

2.2 Subject-Verb Embedding

The subjects and verbs are informative entities within a sentence and we believe
that using those entities as semantic embedding is important to better capture
the content of a sentence. To form those embeddings, we use audio captions in
the training datasets.

For extracting semantic embeddings, the subject-verb embedding vectors are
obtained separately for each dataset. First, each audio caption of each audio
record is processed by Stanford Parser and the subject and verbs of the captions
are extracted. To reduce the dimension, we use the root forms of the subjects
and verbs. Then, subjects and verbs are collected by eliminating repeated words
and the subject-verb embedding list is created. The algorithm for extracting
subject-verb embeddings is given in Algorithm 1.

Let y; = [yj1,--»yji] € {0,1}X is the subject-verb vector of the related
dataset where K depends on the size of the subject-verb embeddings, j is the
4t audio clip. The subject-verb embedding vector is calculated for each audio
clip in the training dataset. If j** audio clip contains Yjk, then y;,=0, otherwise
Yir=1.

During the test phase, we need to predict the subject-verb embeddings. This
multilabel classification task stage is conducted through a multilayer perceptron
(MLP). In this stage, firstly the PANNs features of the test audio clips are
extracted. We designed a six hidden layered architecture, empirically. Batch-
size is chosen as 64 and the dropout rate is chosen as 0.5 for input connections,



Algorithm 1 Extracting Subject-Verb Embedding
Input: Sets of c; € C, where C refers to the Caption List in given dataset,

c; refers to the caption of given audio in Caption List
Output: Subject-Verb Embedding (SVE) of the dataset
1: SVE < 0;

2: subjectVerbCorpus <« 0;
3: J < Number of Captions in Caption List
4: for j=1,...,J do

5: Get subjects of c;
6

7

8

9

if subjectVerbCorpus does not contain subjects of c; then
add subjects of c¢; to subjectVerbCorpus

Get verbs of c;
if subjectVerbCorpus does not contain verbs of c; then
10: add verbs of c¢; to subjectVerbCorpus

11: K « subjectVerbCorpus.size

12: for j=1,...,J do

13: for k=1,...,K do

14: if c; contains subjectVerbCorpus[k] then SVE[j] [k]=1
15: else SVE[j] [k]1=0

experimentally. ReLU activation function is used for every hidden layer.

For each test audio clip, the subject-verb embedding vector y; = [y;1, ..., Y k]
is predicted using MLP. Let ¥; = [¥;1, .-, U] be probabilities of each subject-
verb set for j** test audio clip. We find Y; = MLP(x;) where x; represents
the audio features of j** audio clip. The subject-verb embeddings extraction
architecture of the test audio clips is given in Figure 3. We trained the MLP on
the training split of the corresponding dataset for 100 epochs. The minimum
validation error is obtained in the 90" epoch for the MLP model. The loss and
validation loss graph is presented in Figure 4.

Finally, the subject-verb embedding vector and audio feature embeddings
are concatenated for each audio clip to feed the encoder.

2.3 Encoder

The encoder model takes three inputs for the encoding stage which are audio
embeddings, subject-verb embeddings, and partial captions. Encoding audio
and subject-verb embeddings are the first part of the encoder. We concatenate
audio embeddings and subject-verb embeddings before the encoding stage.

We use GRU to learn dependencies between audio frames and subject-verb
embeddings in a given audio clip and sequences of words in captions since it
reduces the number of parameters in the model [28]. The GRU reads the whole
sequence and produces one output. The formulation of a GRU cell in our model
is given as:

P A(e)) (3)
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Figure 3: Extracting Subject-Verb Embeddings for the test audio clips. Firstly,
PANNS features of the test audio records are extracted. Then, the previously
trained MLP model is used to predict subject-verb embeddings. Blue cells
present the active neurons and grey cells present the randomly omitted neurons
(dropout).

re = o(Wr([hi—1,24])) (4)
hy = tanh(W ([re = he—1, 24])) (5)
he=(1—2) % hoy + 2% Iy (6)

where z; is the update gate at time step t, x4 is the input for time step t. W
represents the weights, o is the sigmoid function, and h; is the hidden state in
time step t.

In order to obtain text embeddings, we extract word embedding using the
Word2Vec model due to its superiority compared with the one-hot-encoding
representation [23]. We train the Word2Vec model using the captions in the
training/development split of the utilized dataset. As a result, we generate
E = ley, ..., e;] to represent each word vector in the dataset vocabulary, where
e; € R?56 and 256 is the feature dimension of word embedding of each word. We
use these pre-trained embeddings to initialize weights in the embedding layer of
our model. It is not used in the testing phase.

Unlike feed-forward GRU, BiGRU is able to capture information not only
from the past and the current state but the sequence is also reversed in time.
Since an audio signal is composed as temporal sequences of frames, we use
BiGRU to learn the relationship between audio time steps. We use two BiIGRU
layers in our design. In the encoding stage of our model, the first BIGRU layer
has 32 cells and the second has 64 cells, which are selected empirically. For
text encoding, Word2Vec model weights are used to initialize our model’s word
embedding layer. This embedding is given to the first GRU layer which has 128
cells. This GRU is used to learn word sequences. In order to combine encoded
audio and text, we use the concatenation method.
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2.4 Decoder

The decoder predicts the partial caption word by word using encoded audio,
subject-verb embeddings, and previous partial captions. GRU is used to decode
audio and text representations. The proposed GRU layer consists of 128 cells.
We use the Softmax after the fully connected layer. The decoder performs the
prediction word by word and a sequence of the predicted words gives the caption.
Our proposed RNN-GRU-EncDec training algorithm is given in Algorithm 2.

3 RESULTS

In this section, we conduct our experiments on two publicly available audio
captioning datasets, namely AudioCaps [15] and Clotho [17]. To compare our
results with existing methods, BLEU [29], METEOR [30], CIDEr [31], and
ROUGEL [32] metrics are used for the evaluations.

3.1 Datasets

AudioCaps is a large-scale dataset from AudioSet [16]. It contains 46K 10-
second video clips. For our experiments, we first extract audio files from the
videos and build dataset splits for development, validation, and test splits, re-
spectively. We have 45080 audio clips for development split, 487 audio clips
for validation split, and 870 audio clips for test split. In the development split,
every audio clip has one caption, but in the other splits, there are five captions
for each clip. The word vocabulary size is 4364.

In the Clotho dataset, only development and evaluation parts are published.
The development and the evaluation sets of the dataset contain 2893 and 1043
audio clips, respectively. Both of the sets have 5 captions for each audio clip.
The length of the audio clips is 15 to 30 seconds in duration and captions are



Algorithm 2 Training process of RNN-GRU-EncDec

Input: Sets of x; € A, where A refers to the audio features in given dataset,
x; refers to the features of 4t audio clip. Sets of c; € C, where C refers to
the Caption List in given dataset, c; refers to the caption of j'* audio clip in
Caption List. numFEpoch number of epoches. batchSize number of batch size.
wy to w;_1 are the partial caption words and w; is the target word based on
partial caption(previous) words.

Output: w; is the target word based on previous words

1: J < Number of Captions in Caption List

2: numEpoch < Number of epochs

3: batchSize < Number of batch size

4: for j=1,...,J do

5: Convert all words to lowercase in c;

6: Remove all punctuation in c;

7 Remove all words that are one character in length in c;
8: Remove all words with numbers in c;

9: represent C with Word2Vec

10: for index=1,...,numEpoch do

11: for indexBatchSize=1, ... ,batchSize do

12: 1. Sample a mini batch of audio features x

13: 2. Compute pg(wiwi,...,wi—1,%;)

14: 3. Update O by taking loss function on mini-batch loss

according to the predicted partial caption.

8 to 20 words. We used the data splits as in [17]. We use evaluation split for
testing purposes. The word vocabulary size is 4366.

We use each audio clip five times with one assigned caption from the caption-
list based on the best practice in [17] for the Clotho dataset. For instance, let a;
is an individual audio clip with captions S = [s1, s2, .., $5], then we use this audio
clip instance as 5 separate instances: < a;,s1 >, < a;,S2 >,.., < a;, S5 > in the
training. We conduct a similar method for using five captions for validation split
on the AudioCaps. To find the start and end of the sequences of the captions,
we add special < sos > and < eos > in the beginning and end of the captions
in both of the datasets.

3.2 Training Details

Our model has approximately 2,500,000 parameters. Adam optimizer and LeakyRelu
activation function are used in the training. Batch-size is set to 64. We use a
dropout rate of 0.5 for input connections. Batch-size and dropout rate are se-
lected experimentally. Batch normalization [33] is used after each BiIGRU and
GRU layer in the encoding and decoding phases. The loss function is categorical-
cross entropy since it is widely used in the literature [34]. It is given by

10
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Figure 5: The train-validation loss of the model

T
L(©) = =) _logpe(wilwn, ... w;—1) (7)
t=1
where w; is the target word based on previous words.

To prevent gradient vanishing problem, LeakyReLU activation function is
chosen empirically:

xr x>0
a x<0

LeakyReLU (z) = { (8)
where « is chosen 0.3 in this study which is the default value of LeakyReLU in
Keras [35]. It uses a small gradient when the cell is not active.

The final hyperparameters such as the batch-size, dropout rate, and activa-
tion functions used in the study are chosen based on minimum validation loss
in our several experiments. We implemented the system using Keras framework
and run on a computer with GPU GTX1660Ti in a system Linux Ubuntu 18.04
and Python 3.6. The model is run for 50 epochs. In the experiments, 1 epoch
with log-Mel energy features takes approximately 4 hours whereas 1 epoch with
the PANNSs features take only 5 minutes according to the given configurations.
The minimum validation error is obtained in the 30** epoch for the PANNs
model given in Figure 5.

3.3 Evaluation

We perform our evaluations on two public performance datasets AudioCaps
and Clotho and compare our performance with the literature. We evaluate

11



our experiments with widely used metrics in machine translation tasks: BLEU,
METEOR, CIDEr, and ROUGEL.

We compare our results with the previous studies that we have introduced
in detail in the Introduction section.

The metric BLEU,, calculates the precision for n-grams. To calculate preci-
sion, the matching words in the actual sentence and the predicted sentence is
calculated. BLEU does not consider the context of the word in the sentence.
The metric range is between [0,1]. If the actual sentence and the predicted
sentence are totally the same, then the score is 1. BLEU-1 (B-1) represents
1-gram, whereas BLEU-4 (B-4) represents 4-grams. METEOR calculates re-
call and precision together and takes a harmonic mean score. It creates an
alignment between actual and predicted sentences and makes mapping between
them. CIDEr also uses n-gram model and it calculates cosine-similarity be-
tween the actual and predicted sentences. It also considers the Term Frequency
Inverse-Document Frequency. ROUGE[ calculates Longest Common Subse-
quences which considers the sequence of the words in the actual and predicted
sentences.

3.4 Results

Our experimental results are presented in Table 1 and Table 2. Figure 6 and
Figure 7 show our proposed methods outperform the state-of-the-art.

The results show that our proposed model RNN-GRU-EncDec with the log
Mel features on the Clotho dataset has better results than the literature. The
proposed model with the VGGish and the PANNs embeddings provides better
results also it’s training time is less than log Mel features. This is an expected
result since the VGGish and PANNs are pretrained models. Also, training on
the log Mel features consumes much more time. PANNs provide best results
and training performance in terms of time and memory usage.

Similarly, PANNs show best results on the AudioCaps dataset than the VG-
Gish embeddings and log-Mel features. The RNN-GRU-EncDec architecture
with the log Mel energies has lower performance than the previous study [15]
on AudioCaps dataset since previous models on the AudioCaps dataset use
pretrained VGGish embeddings. The RNN-GRU-EncDec architecture with the
VGGish embeddings has comparable performance with the studies in the lit-
erature. Some of the metrics have lower values since the previous studies use
semantic information in their model. When we add subject-verb embedding to
our model as semantic information, our model outperforms the state-of-the-art.

Since the number of training data on the AudioCaps dataset is much more
than the number of training data on the Clotho dataset, the AudioCaps dataset
gives higher scores for all of our proposed models.

The inclusion of subject-verb embeddings yields better results on both of the
datasets. Our results show that the inclusion of SVE improves the results on the
AudioCaps dataset and provides more improvement on the Clotho dataset. The
reason is that the Clotho dataset includes 5 sentences (labels) for each audio clip
whereas the AudioCaps dataset has only one sentence (label) for each audio clip

12
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Table 1: Performance comparison of the proposed method with the Clotho
Dataset. RNN-GRU-EncDec is the proposed encoder-decoder based architec-
ture for sequence modeling. (SVE: Subject-Verb Embeddings)

Method Metric
B-1 | B-2 | B-3 | B-4 | CIDEr | METEOR | ROUGE,
Clotho [17] 0.42 | 0.14 | 0.06 | 0.02 0.10 0.09 0.27
Temporal sub-sampling (M=16) |19] 0.43 | 0.15 | 0.06 | 0.02 0.09 0.09 0.27
CWR-WL-CAPS |18 0.41 0.16 | 0.07 | 0.03 0.11 0.09 0.28
Proposed RNN-GRU-EncDec + Log Mel Energy [36] | 0.45 | 0.21 | 0.16 | 0.08 0.11 0.17 0.34
Proposed RNN-GRU-EncDec + VGGish |36] 0.51 | 0.28 | 0.22 | 0.12 0.18 0.19 0.40
Proposed RNN-GRU-EncDec + PANNs 0.57 | 0.34 | 0.25 | 0.14 0.28 0.21 0.44
Proposed RNN-GRU-EncDec + PANNs + SVE 0.59 | 0.35 | 0.26 | 0.14 0.28 0.22 0.45

Table 2: Performance comparison of the different methods with the AudioCaps
dataset. RNN-GRU-EncDec is the proposed encoder-decoder based architecture
for sequence modeling. (SVE: Subject-Verb Embeddings)

Method Metric
B-1 B-2 B-3 B-4 CIDEr | METEOR | ROUGE,
TempAtt-VGGish (C3)-LSTM [15] 0.612 | 0.441 | 0.303 | 0.209 0.523 0.190 0.437
TopDown-VGGish (FC2,C4)-LSTM |[15] 0.629 | 0.451 | 0.315 | 0.214 0.577 0.199 0.448
TopDown-AlignedAtt (INN) [15] 0.614 0.446 | 0.317 | 0.219 0.593 0.203 0.450
Proposed RNN-GRU-EncDec + Log Mel Energy | 0.566 | 0.343 | 0.258 | 0.148 0.275 0.225 0.482
Proposed RNN-GRU-EncDec + VGGish 0.604 0.380 | 0.286 | 0.168 0.412 0.241 0.512
Proposed RNN-GRU-EncDec + PANNSs 0.710 | 0.491 | 0.375 | 0.231 0.730 0.271 0.579
Proposed RNN-GRU-EncDec + PANNs + SVE 0.711 | 0.493 | 0.376 | 0.232 0.750 0.287 0.587

in the dataset. Though the improvement is minor on the AudioCaps dataset,
our preliminary results show us the SVE can improve the results when multiple
labels are used for each clip. We believe that using the SVEs may enhance
success, especially when considered the subjectivity of the multi-labels of audio
clips.

The predicted sentences show that our model can generally predict the main
content of the audio clip. For instance, our model predicts “People are talking
and laughing” whereas the ground truth is “People are talking and laughing
with loud person mear the end”. It predicts the sentence in the correct order
but shorter than the ground truth.

In our proposed model, similar concepts are also predicted. To illustrate,
our model predicts “Rain is falling heavily and thunder is booming” while the
ground truth is “Passing windstorm outside and something is striking against
another harder object”. Actually, they are similar concepts but according to
BLEU, it is not assessed as a successful instance because the metric is based
on calculating precision on exactly the same words. As another example, our
model predicts the caption as “Bicycle is coasting down road slowly” whereas
the ground truth is “The engine of vehicle is driving down the road”. In this
example, our model does not differentiate the bicycle and engine sounds. Some
other predicted captions are given below to show our model’s performance for
the Clotho and AudioCaps datasets.
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Clotho Dataset Examples:

Actual-1: Blowing horn is followed by the siren from an emer-—
gency vehicle then the vehicle passes.

Actual-2: Police siren warns in four short bursts and then
wails loudly as people are talking.

Actual-3: Siren beeps many times then begins to wail con-
stantly as it moves into the distance.

Actual-4: Siren beeps several times then wails constantly
as it moves into the distance.

Actual-5: Siren of car started blaring and the car drove
off

Prediction: Siren is being played while people are talk-
ing in the background.

Actual-1: The footsteps of person are echoing as they are
walking inside

Actual-2: Heavy footsteps resound in quiet open space.

Actual-3: The quiet of place is disturbed by thudding foot-
steps.

Actual-4: The woman in high heels stomps across the stage
before rustling papers.

Actual-5: Person is walking inside with an echo footsteps.

Prediction: Someone is walking on the floor with the boots
and echoing.

AudioCaps Dataset Examples:

Actual-1: Group of men speaking as cannons fire while rain
falls and water splashes followed by thunder roaring.

Actual-2: Man speaks then sudden explosion which is fol-
lowed by smaller explosions and thunder.

Actual-3: Male yelling and multiple gunshots.

Actual-4: Gunfire is ongoing and water is splashing adult
males are shouting in the background and an adult male speaks
in the foreground.

Actual-5: Loud gunshots and explosions with men speaking
water splashing wind blowing and thunder roaring.

Prediction: Man speaks followed by loud explosion and then
man talking.

Actual-1: Rustling pigeons coo.

Actual-2: Birds cooing and rustling.

Actual-3: Pigeons coo and rustle.

Actual-4: Group of pigeons cooing.

Actual-5: Pigeons are making grunting sounds and snapping
beaks.

Prediction: Pigeons coo and flap wings.
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4 CONCLUSION

In this paper, we present a novel encoder-decoder model, namely RNN-GRU-
EncDec that combines text and audio features to predict audio captions using
semantic and audio embeddings. We use the VGGish and PANNs audio em-
beddings to provide a smaller feature dimension compared to the raw audio
features such as the log Mel band energies while preserving the performance.
The subject-verb embeddings are used to show the semantic information contri-
bution to audio captioning task. The results show that semantic information can
improve audio captioning performance and audio embeddings bring us better
training performance.

The predicted captions show that our model is able to predict audio captions.
We observe that, the generated captions are more general and shorter than the
ground truths. Also, the proposed model does not very good at differentiating
perceptually similar sounds such as “bus” and “engine” sounds. It can explicitly
be stated that we can obtain better results if we have a larger dataset and train
it for more on the powerful GPUs. Additionally, improving the language model
and adding semantic information may increase the performance.

According to these results, our future research direction is to strive for im-
proving language modeling and to use data augmentation techniques in an at-
tempt of enhancing the performance of our model. Getting better results on
audio captioning can yield improvement in audio analysis. Additionally, multi-
modal models can be researched to improve the performance of video applica-
tions such as video captioning, video retrieval, and surveillance systems which
are mainly composed of audio and video analysis.
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