• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Fakülteler / Faculties
  • Tıp Fakültesi / Faculty of Medicine
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Fakülteler / Faculties
  • Tıp Fakültesi / Faculty of Medicine
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Systematic identification of cancer-specific MHC-binding peptides with RAVEN

Thumbnail
Göster/Aç
Systematic identification of cancer specific MHC binding peptides with RAVEN.pdf (4.326Mb)
Tarih
2018
Yazar
Ozen, Ozlem
Baldauf, Michaela C.
Gerke, Julia S.
Kirschner, Andreas
Blaeschke, Franziska
Effenberger, Manuel
Schober, Kilian
Rubio, Rebeca Alba
Kanaseki, Takayuki
Kiran, Merve M.
Dallmayer, Marlene
Musa, Julian
Akpolat, Nurset
Akatli, Ayse N.
Rosman, Fernando C.
Sugita, Shintaro
Hasegawa, Tadashi
Sugimura, Haruhiko
Baumhoer, Daniel
Knott, Maximilian M. L.
Sannino, Giuseppina
Marchetto, Aruna
Li, Jing
Busch, Dirk H.
Feuchtinger, Tobias
Ohmura, Shunya
Orth, Martin F.
Thiel, Uwe
Kirchner, Thomas
Gruenewald, Thomas G. P.
Üst veri
Tüm öğe kaydını göster
Özet
Immunotherapy can revolutionize anti-cancer therapy if specific targets are available. Immunogenic peptides encoded by cancer-specific genes (CSGs) may enable targeted immunotherapy, even of oligo-mutated cancers, which lack neo-antigens generated by protein-coding missense mutations. Here, we describe an algorithm and user-friendly software named RAVEN (Rich Analysis of Variable gene Expressions in Numerous tissues) that automatizes the systematic and fast identification of CSG-encoded peptides highly affine to Major Histocompatibility Complexes (MHC) starting from transcriptome data. We applied RAVEN to a dataset assembled from 2,678 simultaneously normalized gene expression microarrays comprising 50 tumor entities, with a focus on oligo-mutated pediatric cancers, and 71 normal tissue types. RAVEN performed a transcriptome-wide scan in each cancer entity for gender-specific CSGs, and identified several established CSGs, but also many novel candidates potentially suitable for targeting multiple cancer types. The specific expression of the most promising CSGs was validated in cancer cell lines and in a comprehensive tissue-microarray. Subsequently, RAVEN identified likely immunogenic CSG-encoded peptides by predicting their affinity to MHCs and excluded sequence identity to abundantly expressed proteins by interrogating the UniProt protein-database. The predicted affinity of selected peptides was validated in T2-cell peptide-binding assays in which many showed binding-kinetics like a very immunogenic influenza control peptide. Collectively, we provide an exquisitely curated catalogue of cancer-specific and highly MHC-affine peptides across 50 cancer types, and a freely available software (https://github.com/JSGerke/RAVENsoftware) to easily apply our algorithm to any gene expression dataset. We anticipate that our peptide libraries and software constitute a rich resource to advance anti-cancer immunotherapy.
Bağlantı
https://www.tandfonline.com/doi/pdf/10.1080/2162402X.2018.1481558?needAccess=true&
http://hdl.handle.net/11727/3148
Koleksiyonlar
  • PubMed İndeksli Yayın Koleksiyonu [81]
  • Scopus İndeksli Yayın Koleksiyonu [102]
  • Tıp Fakültesi / Faculty of Medicine [1997]
  • Wos İndeksli Yayınlar Koleksiyonu [155]

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 

  • Politika

Politika
Kullanıcı Rehberi
Başkent Üniversitesi Kütüphanesi
Başkent Üniversitesi

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre Görexmlui.ArtifactBrowser.Navigation.browse_languagexmlui.ArtifactBrowser.Navigation.browse_publicationcategoryBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre Görexmlui.ArtifactBrowser.Navigation.browse_languagexmlui.ArtifactBrowser.Navigation.browse_publicationcategory

Hesabım

GirişKayıt

İstatistikler

Kullanım İstatistiklerini Göster

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV