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Using a new metric for generating rotating solutions, we derive in a general fashion the solution of an
imperfect fluid and that of its conformal homolog. We discuss the conditions that the stress–energy
tensors and invariant scalars be regular. On classical physical grounds, it is stressed that conformal fluids
used as cores for static or rotating solutions are exempt from any malicious behavior in that they are
finite and defined everywhere.
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1. Introduction

The quest for rotating solutions has always been a fastidious
task. It took more than two decades to discover the rotating solu-
tion of Van Stockum [1] and more than forty years to derive that of
Kerr [2] since the foundation of General Relativity in 1916. Several
partial methods have been put forward to construct rotating so-
lutions [1–15] but no general method seems to be available. This
work is no exception and presents a novel partial method for gen-
erating rotating solutions from static ones. However, the method
will allow us (1) to generate rotating solutions without appeal-
ing to linear approximations [16] and (2) to apply the matching
methods [17–19] to regular black hole cores as well as to worm-
hole cores [15,20,21]. The excellent paper by Lemos and Zanchin
offers an up-to-date classification of the existing matching meth-
ods, discusses the types of regular black holes derived so far and
presents new electrically charged solutions with a regular de Sitter
core [19]. The present method reduces the task of finding a ro-
tating solution to that of finding a two-variable function that is a
solution to two second order partial differential equations.

We work with Rμ
νρσ = −∂σ Γ μ

νρ +· · · (μ = 1 → 4) and a met-
ric gμν with signature (+,−,−,−). We make all necessary con-
ventions such that the field equations take the form Gμν = Tμν .

We consider a fluid without heat flux, the stress–energy tensor
(SET) of which admits the decomposition

T μν = εuμuν + p2eμ
2 e

ν
2 + p3eμ

3 e
ν
3 + p4eμ

4 e
ν
4 (1)

where ε is the mass density and (p1, p2, p3) are the compo-
nents of the pressure. We have preferred the notation uμ , instead
of eμ

1 , which is the four-velocity of the fluid. The four-vectors are
mutually perpendicular and normalized: uμuμ = 1, eμ

i eiμ = −1
(i = 2 → 4). If the fluid is perfect, p2 = p3 = p4 ≡ p, then the com-
http://dx.doi.org/10.1016/j.physletb.2014.01.041 
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pleteness relation, gμν = uμuν − (eμ
2 e

ν
2 + eμ

3 e
ν
3 + eμ

4 e
ν
4 ), leads to

T μν = (ε + p)uμuν − pgμν .
Given a static spherically symmetric solution to the field equa-

tions in spherical coordinates:

ds2 = G(r)dt2 − dr2

F (r)
− H(r)

(
dθ2 + sin2 θ dφ2) (2)

we generate a stationary rotating solution, the metric of which,
written in Boyer–Lindquist (B–L) coordinates, we postulate to be
of the form

ds2 = G(F H + a2 cos2 θ)Ψ

(
√

F H + a2
√

G cos2 θ)2
dt2 − Ψ

F H + a2
dr2

+ 2a sin2 θ

[ √
F
√

G H − F G H

(
√

F H + a2
√

G cos2 θ)2 

]
Ψ dt dφ

− Ψ dθ2 − Ψ sin2 θ

{
1

+ a2 sin2 θ

[
2
√

F
√

G H − F G H + a2G cos2 θ

(
√

F H + a2
√

G cos2 θ)2 

]}
dφ2, (3)

by solving the field equations for Ψ (r, θ), which depends also on
the rotating parameter a. More on the derivation and general-
ization of (3) will be given elsewhere [22]. For fluids undergo-
ing only a rotational motion about a fixed axis (the z axis here),
Trθ ≡ 0 leading to Grθ = 0, which is one of the very two equa-
tions to solve to obtain Ψ (r, θ). From now on, we use the follow-
ing conventions and notation: μ : 1 ↔ t,2 ↔ r,3 ↔ θ,4 ↔ φ and
(u, e2, e3, e4) = (u, er, eθ , eφ).

2. The solutions

To ease the calculations, we use the algebraic coordinate y =
cos θ and replace dθ2 by dy2/(1 − y2) in (3). For the sake of
unded by SCOAP3.
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subsequent applications (to regular black holes and wormholes),
we will assume H �= r2 unless otherwise specified. Setting K (r) ≡√

F H/
√

G and using an indexical notation for derivatives: Ψ,ry2 ≡
∂2Ψ/∂r∂ y2, K,r ≡ ∂ K/∂r, etc., the equation Grθ = 0 yields

(
K + a2 y2)2

(3Ψ,rΨ,y2 − 2Ψ Ψ,ry2) = 3a2 K,rΨ
2. (4)

This hyperbolic partial differential equation may possess different
solutions, but a simple class of solutions is manifestly of the form
Ψ (r, y) = g(K + a2 y2) where g(z) is solution to

2z2 gg,zz − 3z2 g,z
2 + 3g2 = 0 (5)

where z = K (r) + a2 y2. A general solution depending on two con-
stants is derived setting A(z) = g′/g and leads to Ψgen = c2z/(z2 +
c1)

2. However, this solution does not exhaust the set of all possi-
ble solutions of the form g(z) to (5) which, being nonlinear, admits
other more interesting power-law solutions g(z) ∝ zn leading to

Ψ1 = K (r) + a2 y2 or Ψ2 = [
K (r) + a2 y2]−3

(6)

where Ψ2 is included in Ψgen taking c1 = 0 and c2 = 1. A consis-
tency check of the field equations Gμν = Tμν and the form of Tμν

[Eq. (1)] yields the partial differential equation

Ψ
[

K,r
2 + K (2 − K,rr) − a2 y2(2 + K,rr)

]
+ (

K + a2 y2)(4y2Ψ,y2 − K,rΨ,r
) = 0, (7)

which is solved by Ψ1 (but not by Ψ2) provided K = r2 + p2 where
p2 is real. We have thus found a simple common solution to both
Eqs. (4) and (7) given by

Ψ = r2 + p2 + a2 y2. (8)

We do not know the set of all possible solutions to Eqs. (4)
and (7), however, we can still distinguish two families of rotating
solutions. Depending on G(r), F (r) and H(r), a rotating solution
given by (3) is called a normal fluid, Ψn , if the static solution (2) is
recovered from the rotating one in the limit a → 0: This implies
lima→0 Ψ = H . Otherwise the rotating solution is called a con-
formal fluid, Ψc . Given G(r), F (r) and H(r), the normal ds2

n and
conformal ds2

c fluids are conformally related

ds2
c = (Ψc/Ψn)ds2

n. (9)

Now, since lima→0 Ψc �= H (by definition) and lima→0 ds2
n = ds2

stat
[Eq. (2)], this implies that lima→0 ds2

c �= ds2
stat, and thus lima→0 ds2

c
is a new static metric conformal to ds2

stat.
For the remaining part of this work, we shall explore the prop-

erties of both the normal (Section 3) and conformal (Section 4)
rotating solutions that can be constructed using the unique simple
solution Ψ available to us, which is given by (8). From now on, we
shall use the prime notation to denote derivatives of functions.

3. Physical properties of the model-independent normal interior
core: G = F

The constraints G = F and K = r2 + p2 yield H = K , so we deal
with a normal fluid since lima→0 Ψ = H [Eq. (8)]. The invariants R
and Rμναβ Rμναβ are proportional to ρ−6 and ρ−12, respectively,
with ρ2 ≡ K + a2 y2 = H + a2 y2. Thus, the static and rotating so-
lutions (3) are regular if H(r) is never zero (p2 �= 0), which is
the case for wormholes and some type of regular phantom black
holes [15,21]. If H = r2 (p2 = 0), then the rotating solution (3)
may have a ring singularity in the plane θ = π/2 (y = 0) at r = 0
(more details are given in [22]). As we shall see below, there are
cases where the numerators of R and Rμναβ Rμναβ also vanish for
r = 0 and θ = π/2 to the same order, leading to a ring-singularity
free solution (3). When this is the case, the components of the SET
as well as the two invariants remain finite, but undefined, on the
ring ρ2 = 0.

Setting 2 f (r) ≡ K − F H , �(r) ≡ F H + a2 and Σ ≡ (K + a2)2 −
a2� sin2 θ , the solution (3) reduces to

ds2
n =

[
1 − 2 f

ρ2

]
dt2 − ρ2

�
dr2 + 4af sin2 θ

ρ2
dt dφ

− ρ2 dθ2 − Σ sin2 θ

ρ2
dφ2 (10)

= �

ρ2

(
dt − a sin2 θ dφ

)2 − sin2 θ

ρ2

[
a dt − (

K + a2) dφ
]2

− ρ2

�
dr2 − ρ2 dθ2. (11)

We fix the basis (u, er, eθ , eφ) by

uμ = (K + a2,0,0,a)√
ρ2�

, eμ
r =

√
�(0,1,0,0)√

ρ2
,

eμ
θ = (0,0,1,0)√

ρ2
, eμ

φ = − (a sin2 θ,0,0,1)√
ρ2 sin θ

. (12)

The components of the SET are expressed in terms of Gμν as: ε =
uμuν Gμν , pr = −grr Grr , pθ = −gθθ Gθθ , pφ = eμ

φ eν
φGμν . We find:

ε = 2(r f ′ − f ) − p2

ρ4
+ 2p2(3 f − a2 sin2 θ)

ρ6
, (13)

pr = −ε − 2p2�

ρ6
, pθ = −pr − f ′′

ρ2
,

pφ = pθ + 2p2a2 sin2 θ

ρ6
. (14)

Thus, for wormholes and some type of regular phantom black
holes [15,21] where always ρ2 > 0 (H never vanishes), the compo-
nents of the SET are finite in the static and rotating cases. Eqs. (13)
and (14) will be used in [22] to derive the rotating counterpart
of the stable exotic dust Ellis wormhole emerged in a source-free
radial electric or magnetic field [29]. If H = r2, corresponding to
regular as well as singular black holes, the above expressions re-
duce to those derived in [6,18]: ε = −pr = 2(r f ′ − f )/ρ4, pθ =
pφ = ε − f ′′/ρ2. In this case the components of the SET diverge on
the ring ρ2 = 0 unless f ∝ r4 as r → 0, resulting in (1 − F ) ∝ r2 as
r → 0, which corresponds to the (anti) de Sitter case and to regu-
lar black holes. In fact, most of regular black holes derived so far
have de Sitter-like behavior near r = 0 [17,19,20].

From the third equality in Eq. (14), one sees that the tangen-
tial pressures, (pθ , pφ ), are generally nonequal and are equal only
if p2 = 0 or/and if a = 0 (the static case). Hence, in the general
rotating case, the tensor T μν has four different eigenvalues repre-
senting thus a totally imperfect fluid.

It is straightforward to verify the validity of the continuity
equation: (εuμ);μ = 0, where the semicolon denotes covariant
derivative. The conservation equation, T μν ;ν = 0, is consistent with
uμ;νuν �= 0 which shows that the motion of the fluid elements is
not geodesic. This is attributable to the nonvanishing of the r- and
θ -components of the pressure gradient.

The purpose of constructing rotating and nonrotating solutions
with negative pressure components, as might be the case in (13)
to (14), is, as was made clear in [18], two-fold, in that, following a
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suggestion by Sakharov and Gliner [23,24], (1) the core of collaps-
ing matter, with high matter density, should have a cosmological-
type equation of state ε = −p, (2) the problem of the ring singu-
larity, which characterizes Kerr-type solutions, could be addressed
if the interior of the hole is fitted with an imperfect fluid of the
type derived above. Fitting the interior of the hole with a de Sit-
ter fluid is one possible solution to the ring singularity [18,19].
Another possibility is to consider a regular core or a conformal
regular one as we shall see in the case G �= F (Section 4).

3.1. Rotating imperfect Λ-fluid—de Sitter rotating solution

Instances of application of (3) to re-derive the Kerr–Newman
solution from the Schwarzschild solution and to generate a rotating
imperfect Λ-fluid (IΛF) from the de Sitter solution are straightfor-
ward. To derive the Kerr–Newman solution, we take F = G = 1 −
2m/r + q2/r2 and H = r2, the solution is then given by (10) with
2 fKN = 2Mr − q2, �KN = r2 + a2 − 2Mr + q2, ρ2

KN = r2 + a2 cos2 θ

and ΣKN = (r2 + a2)2 − a2�KN sin2 θ .
Consider the de Sitter solution

ds2
Λ = (

1 − Λr2/3
)

dt2 − (
1 − Λr2/3

)−1
dr2

− r2(dθ2 + sin2 θ dφ2) (15)

where F = G = 1 −Λr2/3 and H = r2. The metric ds2
Λ of the rotat-

ing IΛF is given by (10) with 2 fΛ = Λr4/3, �Λ = r2 + a2 − Λr4/3,
ρ2

Λ = r2 + a2 cos2 θ and ΣΛ = (r2 + a2)2 − a2�Λ sin2 θ . Except
from a short description made in [25], the rotating IΛF has never
been discussed deeply in the scientific literature. The compo-
nents of the SET are ε = Λr4/ρ4

Λ , pr = −ε , pθ = pφ = −Λr2(r2 +
2a2 cos2 θ)/ρ4

Λ . The limit a → 0 leads to de Sitter solution where
the fluid is perfect with ε = Λ and pr = pθ = pφ = −Λ.

The rotating IΛF is only manifestly singular on the ring ρ2
Λ = 0

[(θ, r) = (π/2,0) or (y, r) = (0,0)]. In fact, the curvature and
Kretchmann scalars

R = − 4Λr2

r2 + a2 y2
,

Rμναβ Rμναβ

= 8Λ2r4(r8 + 4a2 y2r6 + 11a4 y4r4 − 2a6 y6r2 + 6a8 y8)

3(r2 + a2 y2)6
(16)

do not diverge in the limit (y, r) → (0,0). Despite the fact that
the limits do not exist, we can show that they do not diverge.
Let C : r = ah(y) and h(0) = 0 be a smooth path through the
point (y, r) = (0,0) in the yr plane. We choose a path that reaches
(y, r) = (0,0) obliquely or horizontally but not vertically, that is,
we assume that h′(0) is finite [for paths that may reach (y, r) =
(0,0) vertically we choose a smooth path y = g(r)/a and g(0) = 0
where g′(0) remains finite]. On C , the limits of the two scalars as
y → 0 read

− 4Λh′(0)2

1 + h′(0)2
,

8Λ2h′(0)4[6 − 2h′(0)2 + 11h′(0)4 + 4h′(0)6 + h′(0)8]
3[1 + h′(0)2]6

, (17)

which are nonexisting [for h′(0) depends on the path] but they re-
main finite. Thus, the rotating IΛF is regular everywhere, however,
the components of the SET are undefined on the ring ρ2 = 0. Paths
of the form: y = g(r)/a and g(0) = 0, where g′(0) remains finite,
lead to the same conclusion. The other scalar, Rμν Rμν , behaves in
the same way as the curvature and Kretchmann scalars.
Notice that the Kerr solution (q = 0) and the rotating IΛF
one are derived from each other on performing the substitution
2M ↔ Λr3/3, so that most of the Kerr solution properties, where
no derivations with respect to r are performed, are easily car-
ried over into the rotating IΛF properties. For instance, the static
limit, which is the 2-surface on which the timelike Killing vector
tμ = (1,0,0,0) becomes null, corresponds to gtt(rst, θ) = 0 lead-
ing to 2Λr2

st = 3 + √
9 + 12Λa2 cos2 θ . Thus, observers can remain

static only for r < rst. Similarly, the cosmological horizon, which
sets a limit for stationary observers, corresponds to �Λ(rch) = 0
leading to 2Λr2

ch = 3 + √
9 + 12Λa2. Hence, the static limit is en-

closed by the cosmological horizon and intersects it only at the
poles θ = 0 or θ = π (in contrast with the Kerr solution where the
static limit encloses the event horizon).

The four-velocity of the fluid elements may be expressed, in
terms of the timelike tμ and spacelike φμ = (0,0,0,1) Killing
vectors, as uμ = N(tμ + Ωφμ), with N = (r2 + a2)/

√
ρ2�Λ and

Ω = a/(r2 + a2) is the differentiable (Ω �= constant) angular veloc-
ity of the fluid. Since the norm of the vector tμ + Ωφμ , 1/N2, is
positive only for �Λ > 0, which corresponds to the region r < rch,
the fluid elements follow timelike world lines only for r < rch. As
r → rch, Ω approaches the limit a/(r2

ch + a2) that is the lowest
angular velocity of the fluid elements which we take as the angu-
lar velocity of the cosmological horizon: Ωch = a/(r2

ch + a2). At the
cosmological horizon, tμ + Ωφμ becomes null and tangent to the
horizon’s null generators, so that the fluid elements are dragged
with the angular velocity Ωch.

4. Physical properties of the conformal interior core: G �= F

In this case H �= K = r2 + p2, unless p2 = 0, leading to
lima→0 Ψ �= H . With Ψ = K + a2 y2 [Eq. (8)], the conformal ro-
tating solution ds2

c is again given by (10) to (11) and the basis
(u, er, eθ , eφ) by (12) but this time ρ2 ≡ K + a2 y2 �= H + a2 y2. The
components of the SET are different due to the non-covariance of
the field equations under conformal transformations [26]. The SET
related to ds2

c is only partly proportional to that related to metric
ds2

n and includes terms involving first and second order deriva-
tives of the conformal factor (K +a2 y2)/(H +a2 y2), which are the
residual terms in the transformed Einstein tensor. Finally, the SET
related to ds2

c takes the form

ε = p2[6 f − r2 − p2 − a2(2 − cos2 θ)]
ρ6

+ 2(r f ′ − f )

ρ4
,

pr = −ε − 2p2(r2 + p2 + a2 − 2 f )

ρ6
, (18)

pθ = −2(r2 + a2 cos2 θ) f

ρ6
+ p2 + 2r f ′

ρ4
− f ′′

ρ2
,

pφ = pθ + 2a2 p2 sin2 θ

ρ6
(19)

which is finite and defined everywhere if p2 �= 0. If p2 = 0, the
SET if finite, but undefined on the ring ρ2 = 0, if f ∝ r4 as r → 0
((anti) de Sitter behavior for F �= G). The curvature scalar

R = 2{p2[r2 + p2 + a2(2 − cos2 θ)] − 2p2 f }
ρ6

− 2 f ′′

ρ2
(20)

is also finite for all p2. The Kretchmann scalar is certainly finite
everywhere for all p2. Conclusions made earlier concerning the
continuity and conservation equations apply to the present case
of the conformal fluid.
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4.1. Examples of static and rotating conformal imperfect fluids

Consider a static regular black hole or a wormhole of the
form (2) where G = F are finite at r = 0 and H(r) = r2 + q2. In
the (t, u, θ,φ) coordinates, where u is the new radial coordinate,
G(u) = G(r(u)), F (u) = G(u)/r′(u)2 and H(u) = r(u)2 + q2. Since
we want K (u) = u2 + p2 [Eq. (8)], we have to solve the differential
equation: dr/du = [r(u)2 + q2]/(u2 + p2), yielding

r(u) = q tan
[
(q/p)arctan(u/p)

]
(21)

where p2 �= 0 and q2 �= 0. In (t, u, θ,φ) coordinates, the equivalent
static solution takes the form

ds2
(s) = G(u)dt2 −

(
r(u)2 + q2

u2 + p2

)2 du2

G(u)

− [
r(u)2 + q2](dθ2 + sin2 θ dφ2). (22)

While metrics (2) and (22) are equivalent, their rotating coun-
terparts are not. The metric ds2

c of the conformal rotating core
fluid, that is the rotating counterpart of (22), is given by (10) with
2 f(s) = u2 + p2 − F (u)H(u), F (u)H(u) = (u2 + p2)2G(u)/[r(u)2 +
q2], �(s) = F (u)H(u) + a2, ρ2

(s) = u2 + p2 + a2 cos2 θ and Σ(s) =
(r2 + p2 + a2)2 − a2�(s) sin2 θ . Since p �= 0 the SET and curvature
scalar, given by (18) to (20) on replacing r by u, f by f(s) and ρ
by ρ(s) , are finite everywhere. One can thus follow one of the pro-
cedures in the literature [17–20], as the one performed in [18], to
match the rotating metric ds2

c to the Kerr black hole.
It is straightforward to check that lima→0 ds2

c does not yield
ds2

(s); rather, the limit yields a new static, conformal imperfect
fluid, solution.

5. Conclusion

A master metric in B–L coordinates that generates rotating so-
lutions from static ones has been put forward. The final form of
the generated stationary metric depends on a two-variable func-
tion that is a solution to two partial differential equation ensuring
imperfect fluid form of the source term in the field equations. Only
one simple solution of the two partial differential equations has
been determined in this work and appears to lead to stationary, as
well as static, normal and conformal imperfect fluid solutions.

On applying the approach to the de Sitter static metric and to a
static regular black hole or a wormhole, two regular rotating, im-
perfect fluid cores, normal and conformal respectively, with equa-
tion of state nearing ε = −p in the vicinity of the origin (r → 0),
have been derived.

Conformal fluid cores have everywhere finite components of the
SET and of the curvature and Kretchmann scalars.

We have not examined any energy conditions and related con-
straints on the mass density since even violations of the weak
energy condition, not to mention the strong one, have become
custom to issues pertaining to regular cores [18,27,28]. These
violations worsen in the rotating case as was concluded in [18].
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