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Abstract. In this paper we introduce the classes Tn (p,λ,A,B) and Kn (p,λ,µ,m,A,B) and derive
distortion inequalities of the functions belonging to class Kn (p,λ,µ,m,A,B). Further we apply
to the (n,δ)− neighborhoods of functios in the class Kn (p,λ,µ,m,A,B).
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1. INTRODUCTION AND DEFINITIONS

Let Tn(p) denote the class of functions f (z) normalized by

f (z) = zp−
∞

∑
k=n+p

akzk (ak ≥ 0; n, p ∈ N := {1,2,3, · · ·}) (1.1)

which are analytic and p-valent in the open unit disk U = {z ∈ C : |z|< 1} on the
complex plane C.

Let f and F be analytic functions in the unit disk U. A function f is said to be
subordinate to F, written as f ≺ F or f (z)≺ F (z), if there exists a Schwarz function
ω : U→ U with ω(0) = 0 such that f (z) = F

(
ω(z)

)
. In particular, if F is univalent

in U, we have the following equivalence:

f (z)≺ F (z)⇐⇒ [ f (0) = F (0)∧ f (U)⊆ F (U)] .

Following the earlier investigations by Goodman [11] and Ruscheweyh [15] (see
also [1–3,5,6,9,13]), we define the (n,δ)−neighborhoods of functions f ∈ Tn(p) by

Nn,δ ( f ;g) =

{
g ∈ Tn(p) : g(z) = zp−

∞

∑
k=n+p

bkzk and
∞

∑
k=n+p

k |ak−bk| ≤ δ

}
.

(1.2)
Let S ∗ and C be the usual subclasses of functions which members are univalent,
starlike and convex in U, respectively.
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A function f ∈ Tn(p) is called p-valently starlike of order γ if it satisfies the con-
ditions

ℜ

(
z f
′
(z)

f (z)

)
> γ (1.3)

and ∫ 2π

0
ℜ

(
z f
′
(z)

f (z)

)
dθ = 2pπ (1.4)

for 0 ≤ γ < p, p ∈ N and z ∈ U. We denote by S ∗n (p,γ) the class of all p-valently
starlike functions of order γ. Furthermore, a function f ∈ Tn(p) is called p-valently
convex of order γ if it satisfies the conditions

ℜ

(
1+

z f
′′
(z)

f ′ (z)

)
> γ (1.5)

and ∫ 2π

0
ℜ

(
1+

z f
′′
(z)

f ′ (z)

)
dθ = 2pπ (1.6)

for 0 ≤ γ < p, p ∈ N and z ∈ U. We denote by Cn (p,γ) the class of all p-valently
convex functions of order γ.

Clearly, S ∗ := S ∗1 (1,0) and C := C1 (1,0) . We note that

f (z) ∈ Cn (p,γ)⇔ f
′
(z)
p
∈ S ∗n (p,γ) (1.7)

The classes S ∗n (p,γ) and Cn (p,γ) were introduced by Patil and Thakare [14].
Therefore, various subclasses of p-valent functions in U was studied by Altıntaş et

al. in [8], Nunokawa et al. in [12] and Srivastava et al. in [16, 17].
A function f ∈ Tn(p) is called Janowski p-valently starlike if it satisfies the condi-

tion
z f
′
(z)

f (z)
≺ p

1+Az
1+Bz

(1.8)

for −1 ≤ A < B ≤ 1, p ∈ N and z ∈ U. We denote by S ∗n (p,A,B) the class of all
Janowski p-valently starlike functions.

Also, a function f ∈ Tn(p) is called Janowski p-valently convex if it satisfies the
condition

1+
z f
′′
(z)

f ′ (z)
≺ p

1+Az
1+Bz

(1.9)

for −1 ≤ A < B ≤ 1, p ∈ N and z ∈ U. We denote by Cn (p,A,B) the class of all
Janowski p-valently convex functions.

We note that, S ∗n (p,γ) := S ∗n (p,1−2γ,−1) , S ∗ := S ∗1 (1,1,−1) and Cn (p,γ) :=
Cn (p,1−2γ,−1) , C := C1 (1,1,−1).
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Let Tn (p,λ,A,B) denote the subclass of Tn(p) consisting of functions f (z) which
satisfy the following inequality:

z f
′
(z)+λz2 f

′′
(z)

λz f ′ (z)+(1−λ) f (z)
≺ p

1+Az
1+Bz

(1.10)

where 0 ≤ λ ≤ 1, −1 ≤ A < B ≤ 1, p ∈ N, z ∈ U. The class Tn (p,λ,A,B) was
introduced and studied by Altıntaş in [3, 7].

Clearly, we have the following relationships:

S ∗n (p,A,B) := Tn (p,0,A,B) and Cn (p,A,B) := Tn (p,1,A,B) .

We note that these classes are studied in [10].
Recently, we have defined and studied in [1, 2, 4–6] the following second order

differential equation:

z2 d2w
dz2 +2(µ+1)z

dw
dz

+µ(µ+1)w = (p+µ)(p+µ+1)g (1.11)

where w = f (z) ∈ Tn(p) , g = g(z) satisfy the following inequality:

ℜ
zg
′
(z)+λz2g

′′
(z)

λzg′ (z)+(1−λ)g(z)
> α (1.12)

where 0≤ λ≤ 1, 0≤ α < 1, p ∈ N, µ >−p, z ∈ U.

Definition 1. The following non-homogenous Cauchy-Euler differential equation
of order 3 is

z3 d3w
dz3 +3(µ+2)z2 d2w

dz2 +3(µ+1)(µ+2)z
dw
dz

+µ(µ+1)(µ+2)w

= (p+µ)(p+µ+1)(p+µ+2)g (1.13)

where w = f (z) ∈ Tn(p) , g = g(z) ∈ Tn (p,λ,A,B) and µ >−p.
This differential equation is defined and studied in [3].

Definition 2. The following non-homogenous Cauchy-Euler differential equation
of order m is

zm dmw
dzm +

(m
1
)
(µ+m−1)zm−1 dm−1w

dzm−1 + . . .+
(

m
r
)m−1

∏
j=r

(µ+ j)zr drw
dzr +

. . .+
(

m
m
)m−1

∏
j=0

(µ+ j)w =
m−1

∏
j=0

(p+µ+ j)g (1.14)

where w= f (z)∈ Tn(p) , g= g(z)∈ Tn (p,λ,A,B), m∈N∗ := {2,3, · · ·} and µ>−p.

Finally Kn (p,λ,µ,m,A,B) denote the subclass of the class Tn(p) consisting of
functions f (z) , satisfying the equation (1.14) in Definition 2.

In this paper, we obtain coefficient bounds, distortion inequalities and (n,δ)−
neighborhoods of functions f ∈ Tn(p) in the class Kn (p,λ,µ,m,A,B) .
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2. COEFFICIENT BOUNDS AND DISTORTION INEQUALITIES

For proving the main results in this paper, we will use the following lemmas.

Lemma 1 ([3]). Let the function Tn(p) be defined by (1.1). Then f (z) is in the
class Tn (p,λ,A,B) if and only if

∞

∑
k=n+p

(k− p− pA+ kB)(λk−λ+1)ak ≤ p(B−A)(λp−λ+1) (2.1)

where 0≤ λ≤ 1 ,−1≤ A < B≤ 1, p ∈ N.
The result is sharp for the function f (z) given by

f (z) = zp− p(B−A)(λp−λ+1)
[(n+ p)(1+B)− p(1+A)] [λ(n+ p)−λ+1]

zn+p. (2.2)

Lemma 2 ([3]). Let the function f (z) ∈ Tn(p) defined by (1.1) be in the class
Tn (p,λ,A,B). Then, we have

∞

∑
k=n+p

ak ≤
p(B−A)(λp−λ+1)

[(n+ p)(1+B)− p(1+A)] [λ(n+ p)−λ+1]
(2.3)

and
∞

∑
k=n+p

kak ≤
p(B−A)(λp−λ+1)(n+ p)

[(n+ p)(1+B)− p(1+A)] [λ(n+ p)−λ+1]
. (2.4)

The distortion inequalities for functions in the class Kn (p,λ,µ,m,A,B) are given by
Theorem 1 below.

Theorem 1. If a function f ∈ Tn(p) is in the class Kn (p,λ,µ,m,A,B), then

| f (z)| ≤ |z|p+

p(B−A)(λp−λ+1)∏
m−1
j=0 (p+µ+ j)

(m−1) [(n+ p)(1+B)− p(1+A)] [λ(n+ p)−λ+1]∏m−2
j=0 (n+ p+µ+ j)

|z|n+p (2.5)

and

| f (z)| ≥ |z|p−

p(B−A)(λp−λ+1)∏
m−1
j=0 (p+µ+ j)

(m−1) [(n+ p)(1+B)− p(1+A)] [λ(n+ p)−λ+1]∏m−2
j=0 (n+ p+µ+ j)

|z|n+p . (2.6)

Proof. We first suppose that a function f ∈ Tn(p) is in the class
Kn (p,λ,µ,m,A,B) . Let the function g(z) = zp−∑

∞
k=n+p bkzk ∈ Tn (p,λ,A,B) occur-

ring in the non-homogenous Cauchy-Euler differential equation of order m in (1.14)
with, of course,

bk ≥ 0 (k = n+ p,n+ p+1, . . .) .
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Then, we readily find from (1.14) that

ak =
∏

m−1
j=0 (p+µ+ j)

∏
m−1
j=0 (k+µ+ j)

bk (k = n+ p,n+ p+1, . . .) . (2.7)

so that

f (z) = zp−
∞

∑
k=n+p

∏
m−1
j=0 (p+µ+ j)

∏
m−1
j=0 (k+µ+ j)

bkzk. (2.8)

Since g ∈ Tn (p,λ,A,B) , the first assertion (2.3) of Lemma 2 yields the following
inequality:

bk ≤
p(B−A)(λp−λ+1)

[(n+ p)(1+B)− p(1+A)] [λ(n+ p)−λ+1]
. (2.9)

Together with (2.8) and (2.9) yields that

| f (z)| ≤ |z|p+

|z|n+p p(B−A)(λp−λ+1)
[(n+ p)(1+B)− p(1+A)] [λ(n+ p)−λ+1]

∞

∑
k=n+p

∏
m−1
j=0 (p+µ+ j)

∏
m−1
j=0 (k+µ+ j)

(2.10)

and using the following identity that
∞

∑
k=n+p

1

∏
m−1
j=0 (k+µ+ j)

=
1

(m−1)!

∞

∑
k=n+p


(

m−1
0
)

k+µ
−

(
m−1
1
)

k+µ+1
+ · · ·+(−1)m−1

(
m−1

m−1
)

k+µ+m−1


=

1
m−1

1

∏
m−2
j=0 (n+ p+µ+ j)

(2.11)

where µ ∈ R \ {−n− p,−n− p−1, . . .} . The assertion (2.5) of Theorem 1 follows
at once from (2.10) with (2.11). The assertion (2.6) of Theorem 1 can be proven by
similarly. �

Corollary 1 ([3]). If f ∈Kn (p,λ,µ,2,A,B), then we have

| f (z)| ≤ |z|p + p(B−A)(λp−λ+1)(p+µ)(p+µ+1)
[(n+ p)(1+B)− p(1+A)] [λ(n+ p)−λ+1] (n+ p+µ)

|z|n+p

and

| f (z)| ≥ |z|p− p(B−A)(λp−λ+1)(p+µ)(p+µ+1)
[(n+ p)(1+B)− p(1+A)] [λ(n+ p)−λ+1] (n+ p+µ)

|z|n+p .
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Corollary 2. If f ∈ Kn (p,λ,µ,3,A,B), then we have

| f (z)| ≤ |z|p+
p(B−A)(λp−λ+1)(p+µ)(p+µ+1)(p+µ+2)

2 [(n+ p)(1+B)− p(1+A)] [λ(n+ p)−λ+1] (n+ p+µ)(n+ p+µ+1)
|z|n+p

and

| f (z)| ≥ |z|p−
p(B−A)(λp−λ+1)(p+µ)(p+µ+1)(p+µ+2)

2 [(n+ p)(1+B)− p(1+A)] [λ(n+ p)−λ+1] (n+ p+µ)(n+ p+µ+1)
|z|n+p .

3. NEIGHBORHOODS FOR THE CLASS Kn (p,λ,µ,m,A,B)

In this section, we determine inclusion relations for the class Kn (p,λ,µ,m,A,B)
concerning the (n,δ)−neighborhoods defined by (1.2).

Theorem 2. If f ∈ Tn(p) is in the class Kn (p,λ,µ,m,A,B), then

Kn (p,λ,µ,m,A,B)⊂ Nn,δ (g; f ) (3.1)

where g(z) is given by (1.14) and

δ :=
p(B−A)(λp−λ+1)(n+ p)

[(n+ p)(1+B)− p(1+A)] [λ(n+ p)−λ+1][
1+

∏
m−1
j=0 (p+µ+ j)

(m−1)∏
m−2
j=0 (n+ p+µ+ j)

]
. (3.2)

Proof. Suppose that Kn (p,λ,µ,m,A,B) . Then, upon substituting from (2.7) into
the following coefficient inequality:

∞

∑
k=n+p

k |bk−ak| ≤
∞

∑
k=n+p

kbk +
∞

∑
k=n+p

kak (ak ≥ 0, bk ≥ 0) (3.3)

we obtain that
∞

∑
k=n+p

k |bk−ak| ≤
∞

∑
k=n+p

kbk +
∞

∑
k=n+p

∏
m−1
j=0 (p+µ+ j)

∏
m−1
j=0 (k+µ+ j)

kbk. (3.4)

Since g ∈ Tn (p,λ,A,B) , the second assertion (2.4) of Lemma 2 yields that

kbk ≤
p(B−A)(λp−λ+1)(n+ p)

[(n+ p)(1+B)− p(1+A)] [λ(n+ p)−λ+1]
(k = n+ p,n+ p+1, ...) .

(3.5)
In the right hand side of (3.4), we obtain the assertion (3.2) using (3.5) and (2.11),
respectively.
Thus, by Definition 2 with g(z) interchanged by f (z) , we conclude that

f ∈ Nn,δ (g; f ) .
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This completes the proof of Theorem 2. �

Corollary 3 ([3]). If f ∈Kn (p,λ,µ,2,A,B), then

Kn (p,λ,µ,2,A,B)⊂ Nn,δ (g; f )

where g(z) is given by (1.14) for m = 2 and δ is given by

δ :=
p(B−A)(λp−λ+1)(n+ p)

[(n+ p)(1+B)− p(1+A)] [λ(n+ p)−λ+1]

[
1+

(p+µ)(p+µ+1)
n+ p+µ

]
.

Corollary 4. If f ∈Kn (p,λ,µ,3,A,B), then

Kn (p,λ,µ,3,A,B)⊂ Nn,δ (g; f )

where g(z) is given by (1.14) for m = 3 and δ is given by

δ :=
p(B−A)(λp−λ+1)(n+ p)

[(n+ p)(1+B)− p(1+A)] [λ(n+ p)−λ+1][
1+

(p+µ)(p+µ+1)(p+µ+2)
2(n+ p+µ)(n+ p+µ+1)

]
.
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[4] O. Altıntaş, H. Irmak, S. Owa, and H. M. Srivastava, “Coefficient bounds for some families of
starlike and convex functions of complex order.” Appl. Math. Lett., vol. 20, no. 12, pp. 1218–
1222, 2007, doi: 10.1016/j.aml.2007.01.003.
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