dc.contributor.author | Kilicoglu, Seyda | |
dc.contributor.author | Yurttancikmaz, Semra | |
dc.date.accessioned | 2023-09-14T08:08:49Z | |
dc.date.available | 2023-09-14T08:08:49Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 0354-9836 | en_US |
dc.identifier.uri | https://doiserbia.nb.rs/img/doi/0354-9836/2022/0354-983622559K.pdf | |
dc.identifier.uri | http://hdl.handle.net/11727/10643 | |
dc.description.abstract | There are many ways to approximate cosine curve. In this study we have examined the way how the cosine curve can be written as any order Bezier curve. As a result using the Maclaurin series we have examined cosine curve as the 4(th) and the 6(th) order Bezier curve based on the control points with matrix form in E-2. We give the control points of the 4(th) and the 6(th) order Bezier curve based on the coefficients. Also we give the coefficients based on the the control points of the 4(th) and the 6(th) order Bezier curve too. | en_US |
dc.language.iso | eng | en_US |
dc.relation.isversionof | 10.2298/TSCI22S2559K | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | cosine curve | en_US |
dc.subject | 4(th) order Bezier curve | en_US |
dc.subject | 6(th) order Bezier curve | en_US |
dc.subject | Maclaurin series | en_US |
dc.title | How to Approximate Cosine Curve with 4(Th) and 6(Th) Order Bezier Curve in Plane? | en_US |
dc.type | article | en_US |
dc.relation.journal | THERMAL SCIENCE | en_US |
dc.identifier.volume | 26 | en_US |
dc.identifier.issue | Supplement 2 | en_US |
dc.identifier.startpage | S559 | en_US |
dc.identifier.endpage | S570 | en_US |
dc.identifier.wos | 000921231700007 | en_US |
dc.identifier.eissn | 2334-7163 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | en_US |