Show simple item record

dc.contributor.authorGuney, Selda
dc.contributor.authorErdas, Cagatay Berke
dc.date.accessioned2020-10-15T13:09:56Z
dc.date.available2020-10-15T13:09:56Z
dc.date.issued2019
dc.identifier.isbn978-1-7281-1864-2en_US
dc.identifier.urihttp://hdl.handle.net/11727/4917
dc.description.abstractSince 1990s, activity recognition effectual field in machine learning literature. Most of studies that relevant activity recognition, use feature extraction method to achieve higher classification performance. Moreover, these studies mostly use traditional machine learning algorithms for classification. In this paper, we focus on a deep (Long Short Term Memory) LSTM neural network for feature free classification of seven daily activities by using raw data that collected from three-dimensional accelerometer. Based on the results, the proposed deep LSTM approach can classify raw data with high performance. The results show that the proposed deep LSTM approach achieved 91.34, 96.91, 88.78, 87.58 as percent classification performance in terms of accuracy, sensitivity, specificity, F-measure respectively.en_US
dc.description.sponsorshipIEEE Reg 8; IEEE Hungary Sect; IEEE Czechoslovakia Sect & SP CAS COM Joint Chapter; Sci Assoc Infocommunicat; Brno Univ Technol, Dept Telecommunicat; Budapest Univ Technol & Econ, Dept Telecommunicat & Media Informat; Czech Tech Univ Prague, Dept Telecommunicat Engn; Isik Univ, Dept Elect & Elect Engn,; Istanbul Tech Univ, Elect & Communicat Engn Dept; Josip Juraj Strossmayer Univ Osijek, Fac Elect Engn Comp Sci & Informat Technol; Karadeniz Tech Univ, Dept Elect & Elect Engn; Natl Taiwan Univ Sci & Technol, Dept Elect & Comp Engn; Seikei Univ, Grad Sch & Fac Sci & Technol, Informat Networking Lab; Slovak Univ Technol Bratislava, Inst Multimedia Informat & Commun Technologies; Escola Univ Politecnica Mataro, Tecnocampus; Tech Univ Sofia, Fac Telecommunicat; Univ Paris 8, UFR MITSIC, Lab Informatique Avancee Saint Denis; Univ Politehnica Bucharest, Ctr Adv Res New Mat Prod & Innovat Proc; Univ Ljubljana, Lab Telecommunicat; Univ Patras, Phys Dept; VSB Tech Univ Ostrava, Dept Telecommunicat; W Pomeranian Univ Technol, Fac Elect Engnen_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectActivity Recognitionen_US
dc.subjectClassificationen_US
dc.subjectDeep LSTMen_US
dc.titleA Deep LSTM Approach for Activity Recognitionen_US
dc.typeProceedings Paperen_US
dc.relation.journal2019 42ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP)en_US
dc.identifier.startpage294en_US
dc.identifier.endpage297en_US
dc.identifier.wos000493442800065en_US
dc.contributor.orcID0000-0002-0573-1326en_US
dc.contributor.orcID0000-0003-3467-9923en_US
dc.contributor.researcherIDAAC-7404-2020en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record