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ABSTRACT 

EXPERIMENT RETRIEVAL IN GENOMIC DATABASES 

Duygu DEDE ŞENER 

Başkent University Institute of Science and Engineering 

Department of Computer Engineering 

Genomic data can be found in different formats such as experimental 

measurements, sequences, networks. Due to the rapid growth of such data in 

genomic repositories, retrieving relevant experiments has become an important 

issue to be addressed by researchers. To search an experiment through the 

databases, users generally use textual meta-data such as organism name, 

description, author, but this type of search is insufficient to represent the overall 

content of the experiment. Content-based search strategy has become an 

alternative solution for retrieving relevant experiments from huge data collections. 

This thesis study aims to develop retrieval models for different data types to find 

relevant experiments in genomic databases. The study has two main parts: time-

series experiment retrieval framework and whole-metagenome sequencing sample 

retrieval framework. In the first part, different fingerprinting techniques and 

comparison metrics were used to retrieve relevant time-series experiments. The 

originality of this part consists in its attempt for taking gene expression profiles 

over the entire time points as a query and retrieving relevant samples from the 

data repository. The second part consists of developing a content-based retrieval 

framework for whole-metagenome sequencing samples. The framework involves 

different fingerprinting, feature selection methods and similarity measurements for 

a given data set. The main contribution of the study is extracting fingerprints based 

on two text mining methods. The experimental results showed that the proposed 

models have been successful in finding relevant experiments for genomic data in 

different formats. Experimental results also encourage the use of the proposed 

models in current database implementations.  

KEYWORDS: Genomic database; gene expression database; time-series; content 

based search; information retrieval; fingerprinting; Arabidopsis; whole-

metagenome sequencing. 

Advisor: Prof. Dr. Hasan OĞUL 
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ÖZ 

GENOMİK VERİ TABANLARINDA DENEY GERİ GETİRİMİ 

Duygu DEDE ŞENER 

Başkent Üniversitesi Fen Bilimleri Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

Genomik veri; deneysel ölçüm, sekans verileri, ağ yapıları gibi farklı formatlarda 

saklanmaktadır. Genomik veri tabanlarında saklanan bu tür verilerin son yıllardaki 

hızlı artışı, deneylerin geri getirimi konusundaki ihtiyaçları gündeme getirmektedir. 

Kullanıcılar, veri tabanında bir deneyi ararken genellikle metin-tabanlı arama 

tekniğini kullanmaktadırlar. Fakat bu teknik, deney içeriğini temsil etmede yetersiz 

kaldığı için yeni yöntemlere ihtiyaç duyulmaktadır. Bu ihtiyaç doğrultusunda, içerik 

tabanlı arama yöntemleri benzer deneylerin geri getiriminde kullanılan alternatif 

yöntem olmuştur. Bu tez, farklı türlerde olan genomik verilerin veritabanlarında 

aranabilmesini sağlayan geri getirim modellerinin tasarımını amaçlayan bir 

çalışmadır. Çalışma, zaman serisi deney geri getirimi, bütün metagenom 

sekanslama örneklemlerinin geri getirimi olmak üzere iki temel kısımdan 

oluşmaktadır. Birinci kısım, zaman serisi deneylerin geri getirimi için farklı imza 

yöntemlerinin ve uygun benzerlik metriklerinin uygulanmasını içermektedir. Bu 

çalışma zaman serisi deneyinin tümünü sorgu olarak alan ve arama yapan ilk 

çalışma olma özelliğini taşımaktadır. İkinci kısımda ise, tüm metagenom 

sekanslama deneylerinin geri getirimi için farklı imza yöntemlerini, özellik seçim 

algoritmalarını ve benzerlik metriklerini içeren bir içerik tabanlı arama altyapısı 

geliştirilmiştir. Çalışmanın temel katkısı, deney imzalarını oluşturmada iki farklı veri 

madenciliği yönteminin kullanılmasıdır. Deneysel sonuçlar, geliştirilen modellerin 

benzer deneyleri bulmada başarılı olduklarını göstermektedir. Ayrıca, sonuçlar 

geliştirilen bu modellerin mevcut veri tabanı uygulamalarında kullanımları 

konusunda umut vaat etmektedir.  

ANAHTAR KELİMELER: Genomik veri tabanı; gen ifade matrisi; zaman serisi 

veri; içerik tabanlı arama; bilgi geri getirimi; imza çıkarımı; arabidopsis; 

metagenom dizilim. 

Danışman: Prof. Dr. Hasan OĞUL 
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1. INTRODUCTION 

This thesis study consists of four main chapters. Chapter 1 gives motivation and 

purpose of the study, terminology and background information, Chapter 2 

describes different fingerprint extraction methods and convenient similarity metrics 

for retrieving time-series experiments, Chapter 3 consists of fingerprint extraction, 

feature selection and comparison approaches for whole metagenome sequencing 

sample retrieval. The final chapter is devoted to conclusion and future work. 

1.1 Motivation and Purpose of the Study 

In recent years, developments in biotechnology and computational biology lead to 

rapid growth in the accumulation of genomic data in public databases. The 

databases store the genomic data in various formats such as experimental 

measurements, sequence samples, structures or networks. Accessing and 

analyzing this type of data is one of the main tasks for the researchers and users. 

Researchers need to obtain biological knowledge from the data to produce new 

hypotheses to be applied in computational studies in their research field. The 

obtained data may be used in application of medical practices such as treatment 

for a specific disease or discovery of a new drug. Besides this, users expect to 

access the genomic data faster through efficient searching tools to make easy 

their lives. In this respect, there is a significant need for accessing and searching 

the data in the related repositories. Therefore, developing efficient retrieval models 

has become a popular research effort for researchers. Currently, meta-data based 

or keyword-based search is commonly used in large repositories. In this type of 

search, experiments are annotated by descriptive labels such as experiment 

name, author of the study, organism name and unfortunately users have limited 

searching options related with these labels. This case may cause some searching 

problems; because searching results highly depend on accessibility and accuracy 

of user-defined annotations. For instance, annotations may be missing or 

incorrect, because a user or a database administrator provides these labels and 

they may make some mistakes in filling the information of the experiment. In 

addition to this, these data may not represent the overall content of the searched 

data, so user requirements could not meet by the retrieval system. In this regard, 

new searching approaches are needed to build more representative queries to 
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search an object in an efficient manner. Latest trend to overcome these problems 

is using query-by-example or content-based searching techniques rather than 

traditional meta-data techniques. In recent years, content-based search term has 

become popular for experiment retrieval in biological and biochemical sciences as 

in other research fields.  

In this thesis study, developing content-based retrieval models for genomic data is 

mainly focused. It is aimed to develop retrieval models by using different data 

types and perspectives. The study has two main contents which are a retrieval 

framework for time-series experiments and a retrieval framework for whole-

metagenome sequencing experiments. Retrieval processes consist of designing 

and development of targeted sub-models, creation of suitable comparing 

mechanisms, evaluating the proposed models with real datasets. 

1.2 Information Retrieval: Terminology and Background 

In the most general sense, information retrieval (IR) is defined as the study of 

obtaining relevant material in an unstructured form from data collections. 

Unstructured data represents raw and unorganized data type, while structured 

data refers to information, usually in text format, which can be organized and 

processed easily by data mining tools. Storing, organizing and searching 

information from the resources are the main tasks of the IR systems. The rapid 

expansion of the global resources of knowledge and use of web contents has 

made these tasks difficult to achieve. Furthermore, users expect to access 

knowledge faster by using more effective tools. In this respect, developing 

searching approaches in an efficient manner has become a basic research interest 

in IR field [1].  

The main objective in IR is retrieving more relevant objects than irrelevant objects 

with the query object. Meta-data based search strategy is generally used in most 

of search engines. Meta-data, which are descriptive annotations such as name of 

the object, author of the study or any user-specified label, gives detailed 

information of the object to be searched. Although, it provides pretty much 

significant information about the object; it may be insufficient to represent the 

overall content of the object. In addition, annotations are generated by the users, 
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so they may make some mistakes in filling the required information fields or some 

fields may be incomplete. This causes some searching problems. To handle these 

problems, it has been recommended to use query-by-example or content-based 

search approach. In this type of search, searched object is provided as a query 

instead of submitting any keyword to retrieve relevant objects with the query. 

Similarity between objects is calculated based on content similarity of query object 

and other objects in the repository. There are two main processes in content-

based search strategy; creating fingerprints for representation of the object content 

and comparing these fingerprints with a related comparison metric in an efficient 

way. Different fingerprinting approaches have been used with respect to the 

representation of content of the object. Information retrieval, fingerprinting 

approach is defined as term of index. It allows representing the object content 

without need of any metadata in database search. Deriving a representative 

fingerprint and comparing these fingerprints in an efficient way are two main goals 

of a successful content-based search implementation. The key question in 

content-based search strategies is to find an approach to derive a representative 

fingerprint from the given object.  

1.3  Biological Terminology and Background 

DNA, or deoxyribonucleic acid, is the main component of all living organisms. It 

stores basic information of all cellular functions of organisms. It consists of four 

nucleotide bases named as Adenine (A), Guanine (G), Cytosine (C), and Thymine 

(T) in its double helix structure. The information stored in DNA depends on the 

order or sequences of those bases and the information is used to build different 

types of cells of an organism. Chromosomes are thread-like molecules that 

contain hereditary information of the organism (Figure 1.1). The chromosomes 

consist of long chains of DNA and related proteins. Moreover, a gene is a heredity 

element composed of DNA segments to store the information to build and maintain 

cells of an organism. It includes sequence of nucleotides on a given chromosome 

which codes a specific protein as given in the figure. Genome is defined as 

completed set of DNA that contains all of its genes. In addition to this, genomics is 

the study of genome characteristics associated with the organism and it has 

valuable knowledge about organisms. Genomic data has been gathered with 
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various technologies and stored in different formats such as gene expression data, 

sequence data or networks.  

Gene expression is defined as the synthesis of gene products, e.g protein, by the 

information provided genetic instructions in the cell. The expression levels of 

thousands of genes are measured simultaneously with the DNA microarray 

technology. The microarray technology helps researchers to understand 

fundamental units of life as well as to discover genetic causes of diseases occur in 

living organisms. Gene expression data are stored in matrices in which rows refer 

to expression levels of genes; columns represent samples or conditions such as 

environmental conditions or time points. (Figure 1.2). Time-series, so-called time-

course, gene expression data represents the changes of gene expression 

measurements over a time period. Time-series data is stored as matrices in which 

rows represent genes; columns represent time range or period. A gene is defined 

as differentially expressed when its expression levels between two conditions 

changes significantly. Differentially expressed genes are genes whose expression 

levels are related with a factor such as a treatment, drug or a clinical outcome.  

 

Figure 1.1 Cell structure of a living organism1 

                                                           
1
 Quoted from TITILADE, Popoola Raimot and OLALEKAN, Elegbede Isa, The Importance of 

Marine Genomics to Life, Journal of Ocean Research, Vol. 3, no.1, p.1–13, 2015. 
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Differential expression of a gene is used to characterize its behavior. These 

profiles are generated for each experiment to represent their gene expression 

matrix as a single vector. Those profiles are used in database search instead of 

using whole gene expression matrices, so the computational efficiency can be 

reduced.  

GEO (Gene Expression Omnibus) [2], ArrayExpress [3] and GenBank [4] are 

widely used public repositories that allow storing, retrieving and organizing 

functional genomic data. GEO was launched by NCBI (National Center for 

Biotechnology Information) in 2000 to provide gene expression datasets for 

researchers. Over 650.000 submissions has been hold in GEO. ArrayExpress has 

been used since 2002 and it consists of data from >50000 hybridizations and 

>1500 000 individual expression profiles. Furthermore, it has also two main parts 

called ArrayExpress Repository and ArrayExpress Data Warehouse. Moreover, 

GenBank is one of the most popular sequence databases that contain over 55.000 

sequences from different organisms.  

 

Figure 1.2 Obtaining gene expression data matrix from a collection of raw    

microarray data 
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Genes may consist of information about diseases. This information can be derived 

from a single gene or relationships among many genes. However, some diseases 

or phenotypic disorders cannot be expressed by individual gene. Beside this, 

genes generally work together like a piece of whole. In this regard, identifying 

gene sets or groups has become a major focus to interpret biological knowledge in 

biomedical research area. Gene sets are gene groups obtained based on 

biological knowledge. Obtaining biologically significance gene sets provide some 

specific information about biological pathways, protein-protein interactions or 

functionally related genes. 

Metagenomics is discovering genetic content of microorganisms from different 

environmental samples with using bioinformatics tools and genomic technologies. 

[5]. Chen and Pachter defined metagenomics as “the application of modern 

genomics technique without the need for isolation and lab cultivation of individual 

species”. Metageomic data provide valuable information about organisms, so 

analyzing this data has become a significant research interest recently. This 

interest leads to some approaches raised for generating sequence data. There are 

two widely used sequencing approaches for generation of metagenomic samples. 

The first one is Sanger sequencing in which DNA is copied into plasmids and 

determination of the sequences is completed through the chain termination 

method. In second method, instead of DNA cloning, one of the next-generation 

sequencing (NGS) approaches, also called high-throughput sequencing, is used to 

obtain sequence reads. Although longer sequence reads can be generated by 

Sanger sequencing, it has some disadvantages based on the cloning process. On 

the other hand, NGS has a lower error rate than Sanger sequencing [5]. However, 

there are recent developments in NGS technology and huge amount of sequence 

data has been generated, using whole metagenome shotgun (WMS) sequencing 

in analyzing huge data collection is a more efficient way to get accurate 

information. Furthermore, targeted studies perform analysis such as phylogenetic 

profiling with a lower cost, while information about metagenomics can be obtained 

by WMS sequencing data analysis. Moreover, development of new analysis 

approaches to discover knowledge from organisms can be done with this method 

easily. 
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1.4  Statistical Significance Tests 

Statistical significance tests are used to show that observed results are not 

occurred randomly; instead they are based on some statistical facts. These tests 

have become a quite important step in data analysis for various academic 

disciplines such as medicine, economics or computational biology.  

Hypothesis testing, also called p-value approach, refer to defining research 

hypothesis or an observable event as a null and alternate hypothesis. The null 

hypothesis (𝐻0), which is opposite of the alternate hypothesis (𝐻1), is defined as a 

hypothesis that can be rejected or nullified. The null hypothesis claims that there 

are no statistical significance between given observations. The level of statistical 

significance of observed results is defined by p-value approach. In this approach, 

a probability that given null hypothesis is true is calculated. When a p-value less 

than or equal to 0.05 is obtained, the null hypothesis can be rejected, in other 

words the alternate hypothesis is accepted.  

Statistical procedures are used for determining whether the difference between 

observations is zero. Statistical procedures have two hypotheses called the null 

hypothesis and the alternative hypothesis defined below. The former claims that 

difference between observations is zero, while the latter assumes that the 

difference is not zero. Paired t-test and Wilcoxon signed-rank test are widely used 

statistical procedures developed for discovering difference between observed 

results. In this study, these tests were used to show statistical significance 

between performances of fingerprinting approaches. When applying both of these 

tests the null hypothesis (𝐻0) and alternate hypothesis (𝐻1) are defined as follow; 

𝐻0 = 𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑢𝑠𝑒𝑑 𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡𝑖𝑛𝑔 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠. 

𝐻1 = 𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑢𝑠𝑒𝑑 𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡𝑖𝑛𝑔 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠. 

The main goal is rejecting null hypothesis. Paired t-test, so-called the dependent 

sample t-test, is a widely used statistical procedure to analyze difference between 

observations. In this test, each object is measured twice such as case-control 

studies.  



8 

 

𝑠𝑥̅ =
𝑠𝑑𝑖𝑓𝑓

√𝑛
                       (1.1) 

𝑡 =
𝑥̅𝑑𝑖𝑓𝑓

𝑠𝑥̅
                                          (1.2) 

Let two given observations are represented by 𝑋 and 𝑌; each individual 

observation is given as 𝑥𝑖 and 𝑦𝑖  and total number of observations is 𝑛. In this 

test, difference between each pair is calculated, then mean difference (𝑥̅𝑑𝑖𝑓𝑓) and 

standard deviation (𝑠𝑑𝑖𝑓𝑓) of the differences are obtained. Standard error for the 

mean difference 𝑠𝑥̅ (1.1) is evaluated using the standard deviation. Then t-statistic 

(1.2) is calculated and obtained value is compared with the critical value from the 

t-distribution table. According to the value from the table, a p-value is obtained 

which is used for rejecting or accepting the null hypothesis specified before [6]. 

Wilcoxon signed-rank test is a non-parametric test which is alternative to paired-t 

test. In this test, firstly null hypothesis and a hypothesized value (in our case this 

value is 0) for comparison are defined. Paired score differences are calculated, 

and then ascending order of absolute value of the difference are obtained. Unlike 

the paired t-test, Wilcoxon test use those ranked values. If there are two 

observations that are equal to hypothesized value, the test ignore them [7]. 

𝑆+ =  ∑ 𝜓𝑖
𝑛
𝑖 𝑟|𝑍𝑖|, 𝑤ℎ𝑒𝑟𝑒 𝜓𝑖 = {

1, 𝑍𝑖 > 0
0, 𝑍𝑖 < 0

                      (1.3) 

𝑆− =  ∑ 𝜓𝑖
𝑛
𝑖 𝑟|𝑍𝑖|, 𝑤ℎ𝑒𝑟𝑒 𝜓𝑖 = {

0, 𝑍𝑖 > 0
1, 𝑍𝑖 < 0

                                                   (1.4) 

Difference between each observation shown as 𝑍𝑖 = 𝑥𝑖 − 𝑦𝑖, 𝑟|𝑍𝑖| is rank of 

absolute value of 𝑍𝑖. Sum of the positive ranks is given as 𝑆+ (1.3), while the sum 

of negative ranks is represented by 𝑆− (1.4). After calculation of 𝑆+ and 𝑆−, the 

smaller one is selected and an appropriate p-value is calculated [8].  
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2. TIME SERIES EXPERIMENT RETRIEVAL  

In this chapter, a content-based retrieval framework with suitable fingerprinting 

methods and comparison strategies for time-series microarray experiments is 

introduced. The chapter consists of three main parts. Motivation of the study and 

related work are defined in the first part. Methods are described in the second part 

and experimental results are given in the final part. 

2.1 Introduction 

Time-series gene expression data are obtained from microarray or similar 

experiments. They have been widely used to explore variety of genomic 

processes. Time-series gene expression data analysis is performed to observe 

variation of gene expression based on an environmental change or different time 

points. In this direction, there are basically two kind of approaches; mathematical 

approaches and network approaches for data analysis process. The former uses 

latent variables to model a gene behavior, while the latter further focuses on 

relationship between gene groups. There are plenty of studies based on the first 

approach to cluster genes [9–11], to classify gene profiles [12, 13] and to estimate 

expression using regression method [14]. The former approach consists of 

methods in which gene regulatory network is used to  detect interactions in terms 

of the some environmental changes [15–17].  

With the exponential growth of time-series experiments, data repositories to 

access the data has been increased recently. The increasing number of 

experiments in these repositories has created a fundamental need for retrieving 

biologically relevant experiments in an efficient way. Therefore, developing 

efficient retrieval models has become a popular research effort for researchers. 

Due to some searching problems of meta-data based search, there has been 

increasing interest about content-based search through gene expression 

repositories. There are two main processes in content-based search strategy; 

creating gene profiles for representation of the experiment content and comparing 

these profiles with a related comparison metric. Different approaches have been 

used with respect to the representation of experiment content. Some studies focus 
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on co-expressed or differentially expressed gene list to obtain gene profiles while 

others obtain gene profiles by known gene-sets.  

Content-based search approach has been widely used in searching through gene 

expression experiments in the data collection. The first study, proposed by Hunter 

et al [18] for content based search in gene expression databases, is a search tool 

named GEST (Gene Expression Search Tool). It compares two experiments using 

Bayesian-based similarity metric based on correlational structure and complex 

joint distributions of expression values. One experiment means a series of profile 

consists of more than one gene expression value at any condition. A simple 

algorithm called RaPiDS (Rapid Profile Database Search) to compare gene 

expression profiles is proposed by Horton et al. [19]. In their study, a profile means 

an experiment involves many genes. They use Spearman rank correlation (SRC) 

to calculate similarity for profile pairs. It has been shown that RaPiDS is a fast and 

efficient method for a reasonable sized database. Fujibuchi et al. [20] build a 

search engine named CellMontage using RaPiDS method. It is the first content-

based search engine that detect similarities between expression profiles. A large 

number of microarray experiments were used to test system performance. GENE 

CHAnge browSER (GeneChaser) developed by Chen et al. [21] is a search engine 

for differentially expressed genes. It automatically analyzes given experiments and 

annotates them. The study consists of two search modules such as single gene 

search and multiple gene searches. In the former, any gene identifier is taken as 

input while in the latter function a gene list is given as a query then relevant gene 

list that contain differentially expressed genes with the query gene or gene list is 

obtained. In addition to this, Hibbs et al. [22] developed an algorithm named 

SPELL which is a web-based search procedure for large gene expression data. 

The proposed model retrieves genes that expressed together with the query genes 

and make some biological prediction. Engreitz et al. [23] proposed a content-

based approach called ProfileChaser to retrieve gene expression experiments. A 

dimension reduction technique so called independent component analysis from 

their previous study [24] was used to enhance the speed of the experiment search. 

Reduced set of gene expression features are extracted by this transformation 

process, then differentially expression (DE) profile, that refers to changes in the 

expression level, for each experiment are generated. Finally, obtained profiles are 
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compared by their novel weighted correlation coefficient. Bell and Sacan [25] use 

binary vector representation to retrieve gene expression experiments using 

content-based approach. In the study, it is showed that binary vector 

representation reduced the time needed for searching database. Besides that, in 

the study of Caldas et al. [26], an experiment is defined using gene sets and these 

gene sets are used as a query for searching process. The proposed retrieval 

model is based on representing experiments through the differential gene sets of 

each experiment. Suthram et al. [27] also used network-based gene-sets to obtain 

fingerprints for representing experiment content. The developed framework is used 

to compare and contrast diseases and they also identified functional modules in 

the human protein network. Georgii et al. [28] developed a retrieval framework 

which has targeted analysis at regulatory relationship of genes and regulatory 

model-based similarity measure. In addition to these studies, there is also a study 

that aims to propose a framework to discover relevant microRNA (miRNA) 

experiments through large data collections [29].  In order to detect differentially 

expressed miRNA profiles, they applied a normal-uniform mixture model and they 

developed a similarity metric to compare categorical fingerprints. Each miRNA 

experiment is represented by binary fingerprints that are vectors of differentially 

expressed of all the miRNAs given in the experiment. It is the first study developed 

for miRNA microarray experiment retrieval.  

Current retrieval methods use different fingerprinting techniques and comparison 

strategies. Although, all methods provide valuable solutions for experiment 

retrieval, they considered that experiments have only two conditions such as 

control and treatment, so the proposed models cannot handle experiments with 

three or more conditions. In addition to this, there is pretty much time-series 

experiments in gene expression repositories. It is the fact that time-course 

experiments provide more depictive information especially for treatment studies. 

Unlike the mentioned studies above, Hayran et al. [30] used time-course content to 

build fingerprints for representing the experiments. They considered first and last 

time points to generate differential expression-based fingerprints, but time-course 

behavior should be defined using all time points in the retrieval process. To this 

end, a content-based retrieval framework, that takes into all time points for 

representing experiment content, was proposed in this chapter. The framework 
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involves different fingerprinting techniques and comparison strategies. This study 

is the first approach that uses gene behavior across all time points in building 

fingerprints. The obtained results show that the proposed framework can retrieve 

biologically relevant experiments. 

2.2 Methods 

Four different fingerprint extraction methods and associated similarity metrics were 

used in the proposed retrieval system. This section consists of two subsections 

such as time-series fingerprint extraction methods and fingerprint comparison 

methods.  

2.2.1 Time-series fingerprint extraction methods 

In the proposed retrieval model, given in Figure 2.1, the first process is 

transforming experiment content into a representative fingerprint. Fingerprinting is 

a widely used technique to describe experiment content in a feature space. After 

transforming all experiments in the repository into a fingerprint, the next process is 

detecting similarity between obtained fingerprints through an appropriate 

comparison strategy. As can be seen from Figure 2.1, the system reports a ranked 

list of experiments which are similar to the query experiment based on a similarity 

score. Novelty of this study comes from using gene behaviors over all time points 

in translating time-series experiment into the fingerprints. Used fingerprint 

extraction methods are described in detail in the next section.  
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Figure 2.1 Overview of the proposed retrieval framework 

2.2.1.1 Differentially expression profile-based method 

Differentially expressed genes are genes that have expression levels changes 

significantly between two different samples or experimental conditions (normal and 

diseased cells etc.). In order to discover differentially expressed genes the ratio of 

expression level of a gene over two conditions is calculated. The calculated value, 

called log ratio, is a quantity for determining differential expression for a gene. In 

the “rule of two”, determining differentially expressed gene is stated as follows: 

The gene is considered as a differentially expressed gene, if its log ratio is greater 

than two or less than half [31]. The rule is the earliest uses of the quantity.  

Discovering differentially expressed genes is one of the main goals of analyzing 

gene expression data to investigate causes of diseases and treatments of such 
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diseases. Identifying and using differentially expressed genes in time-series data 

have been studied in various analysis techniques such as cluster analysis [32] and 

pointwise comparison [33]. In this study, an approach [34], called Normal Uniform 

Differential Gene Expression (NUDGE), was adapted to get the probabilities of 

genes being differentially expressed. The DE profiles represent the changes in the 

expression levels. The genes are modeled in two different groups such as 

differentially expressed and non-differentially expressed. To generate DE profiles 

the specified method is adapted into used time-series experiments. 

𝑟𝑖~𝑝 𝑁(𝑟𝑖|𝜇, 𝜎2) + (1 − 𝑝)𝑈(𝑟𝑖), 𝑖 = 1, 2 … , 𝑁                      (2.1) 

Each time-series experiment is represented by DE profile vectors. The DE of a 

gene 𝑖, called 𝑍İ, is a measure of probability of the gene being differentially 

expressed between two conditions (first and last time point). The method aims 

estimating 𝑍İ by fitting data into a normal-uniform mixture of flat and differentially 

expressed genes. The model formulization is given in the formula (2.1). In the 

formula, the observed normalized log ratio for gene 𝑖 is shown by 𝑟𝑖, 𝑝 denotes the 

prior probability of a gene being differentially expressed, N(ri|μ, σ2) is the 

Gaussian distribution with mean μ and variance σ2 and U(ri) is the uniform 

distribution on a finite interval and 𝑁 is the number of genes.  

The defined model is estimated by maximum likelihood method based on 

Expectation Maximization (EM) algorithm. The labels of genes are defined, 

𝑧𝑖, 𝑖 = 1, … , 𝑁, in which if a gene is not differentially expressed 𝑧𝑖 is , if it is 𝑧𝑖 is 1. 

There are two steps in the algorithm; Expectation (E step) and Maximization (M 

step) step.  

𝑧𝑖̂
(𝑘) =

(1−𝑝̂(𝑘−1))𝑈(𝑟𝑖)

𝑝̂(𝑘−1)𝑁(𝑟𝑖|𝜇̂(𝑘−1),(𝜎̂(𝑘−1))2)+(1−𝑝̂(𝑘−1))𝑈(𝑟𝑖)
                   (2.2) 

Firstly, the labels are estimated in iteration-k of E step as given in the formula 

(2.2). 

𝑝̂(𝑘) =
∑ (1−𝑧𝑖̂

(𝑘)
)𝑖

𝑁
                (2.3) 
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𝜇̂(𝑘) =
∑ ((1−𝑧𝑖̂

(𝑘)
)×𝑟𝑖)𝑖

∑ (1−𝑧𝑖̂
(𝑘)

)𝑖

            (2.4) 

(𝜎̂(𝑘))2 =
∑ ((1−𝑧𝑖̂

(𝑘)
)×(𝑟𝑖−𝜇̂(𝑘))2)𝑖

∑ (1−𝑧𝑖̂
(𝑘)

)𝑖

                               (2.5) 

Then, the model parameters p, μ, and σ2 are estimated in a maximization step 

(2.3, 2.4, 2.5). These steps are processed until a convergence is reached.  

In order to generate DE profile vectors, rank-based binarization was used. The 

impact of the noise in raw data and processed instance generated by the normal-

uniform mixture model can be decreased using the binary representation. Genes 

are listed in descending order according to the probability of differential 

expression. Genes which are located top k% on the list takes the value of 1, the 

rest takes the value of 0. This threshold was used to confirm that fixed percent of 

all genes are differentially expressed. To enhance the retrieval performance the 

value of k was set experimentally.  

2.2.1.2  Transition model-based method 

A fingerprint vector consists of different types of data e.g integer, float or 

categorical values. Time-course experiments generally have two or more time 

points. Representing a gene profile with a binary category such as differential or 

non-differential expression is not a sufficient way to represent these types of 

experiments, so different types of categories should be used in describing their 

profiles. To this end, a competent method developed by Sahoo et al. [35] was 

adapted into this study to organize time profiles. In this method, gene expression 

profiles are described by binary transitions of gene expression over time periods. 

As given in Figure 2.2, there are five transition models named as model 0, 1, 2, 3 

and 4. Model 0 (Figure 2.2.a) represents no important changes in gene expression 

level during a time period. The one-step transition is shown by models 1 and 2. In 

model 1, the gene expression has increasing value from low to high (Figure 2.2.b), 

while in model 2 the expression value changes from high to low (Figure 2.2.c). 

Furthermore, two-step transitions are model 3 (Figure 2.2.d) and model 4 (Figure 

2.2.e); in the former there is an increase followed by a decrease, in the latter one 

there is a decrease followed by an increase. However, gene expressions may be  
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Figure 2.2 Transition models to represent expression levels of genes 

(a) No change in expression 

(b) Expression change from low to high   

(c) Expression change from high to low   

(d) Expression increase followed by a decrease 

(e) Expression decrease followed by an increase 

described by more than five transitions, in this study it is assumed that five models 

can accurately describe gene behaviors. Gene profiles are labeled by the model 

described above. Adaptive regression method is used in which one-step and two-

step models are evaluated to select more convenient model that describe the data. 

All step positions are then assessed and the values of constant segments are 

calculated. Finally, to minimize the square error, collection of the step positions is 

performed. 

𝑆𝑆𝐸 = ∑ (𝐸𝑖
𝑛
𝑖=1 − 𝐸̂𝑖)2,   𝑆𝑆𝑅 = ∑ ( 𝐸̂𝑖

𝑛
𝑖=1 − 𝐸)2         (2.6) 

Gene expression values over 𝑛 time points are shown by 𝐸1,𝐸2, … 𝐸𝑛. Adjusted 

values of the adaptive regression are given as 𝐸̂1,𝐸̂2,… , 𝐸̂𝑛 and mean of the entire 

time points is depicted by 𝐸. In addition to this, 𝑆𝑆𝐸 represents the sum of squares 

error, while the regression sum of squares are defined by 𝑆𝑆𝑅 (2.6).  

𝐹 =
𝑆𝑆𝑅/(𝑚−1)

𝑆𝑆𝐸/(𝑛−𝑚)
                                     (2.7) 

𝑃 = 𝑃𝑟 (𝐹𝑛−𝑚
𝑚−1 > 𝐹)                                                    (2.8) 

For each transition model (one-step and two-step), a regression test statistic 𝐹𝑖 

(2.7) is described. The freedom degrees of 𝑆𝑆𝐸 and 𝑆𝑆𝑅 are represented by 
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(𝑚 − 1) and (𝑛 − 𝑚) respectively. An F-distribution with those values follows the F-

statistic; such as there is a random variable, named 𝐹𝑛−𝑚
𝑚−1, which has this 

distribution the corresponding P-value to the tail probability of this distribution is 

calculated as given in the formula (2.8).  

𝐹12 =
(𝑆𝑆𝐸1−𝑆𝑆𝐸2)/(𝑚2−𝑚1)

𝑆𝑆𝐸2/(𝑛−𝑚2)
                                         (2.9) 

𝐹12 (2.9) also indicates a relative goodness of fit of a one-step versus a two-step 

pattern. This is an F-distribution whose p-value represents the probability of the 

same result on random data. 𝐹1, 𝐹2, 𝐹12 are then used to make decision about 

transition models of gene profiles such as observed data belong to one-step model 

if its P-value for 𝐹1 is significant, but 𝐹12 does not have a significant P-value. 

Sometimes the data does not match with the one-step model, though it has 

significant P-value for 𝐹2, in this case its model is represented as two-step model. 

Otherwise, the model belongs to ‘no change’ transition model. 

2.2.1.3 Time warping method 

Dynamic time warping is a distance measure originally developed for speech 

recognition in the 1970s [36, 37]. It has been used in many areas such as 

handwriting, online signature matching [38, 39], data mining and time-series 

clustering [40], computer vision and animation [41]. Time warping algorithm, 

similar to sequence alignment algorithms, is used to align two time-series. 

Sequence alignment and time warping are different from each other at a point 

such that the former considers base or residue similarity individually, while the 

latter considers the similarity of pairs of vector taken from a common k-

dimensional feature space taken one from each time-series. In this study, feature 

space represents vectors of common set of k genes’ expression levels, since 

alignment of the gene profiles is the main purpose of the study. 

An algorithm proposed by Aach and Church [42] was implemented to align time-

series experiments. The algorithm, which is developed from the principle in 

Kruskal and Liberman [43], is an implementation of simple and interpolative time 

warping algorithms for expression data. The formulization of the approach is given 

as follows; there are two time-series 𝑎 and 𝑏, 𝑎 has 𝑛 time points; 0,1, … , 𝑛 at times 
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 𝑡0< 𝑡1 <….< 𝑡𝑛, 𝑏 has 𝑚 time points; 0,1, … , 𝑚 at times 𝑢0< 𝑢1 <….< 𝑢𝑚. Each 

series is associated with a set of 𝑘 genes then they are referred as being 

associated with a trajectory of feature vectors in k-dimensional feature space. 

While feature vectors of time-series 𝑎 at time point ti is shown by 𝑎𝑖, for series 𝑏 at 

time point uj is shown by bj. The algorithm aims to find the correspondence 

between the time points of each series that minimizes the overall distance 𝐷(𝑎, 𝑏) 

between trajectories. A representation of two aligned series in feature space is 

given in Figure 2.3.a.   

 𝑖(0) = 0 

  𝑖(ℎ + 1) = 𝑒𝑖𝑡ℎ𝑒𝑟 𝑖(ℎ) + 1 𝑜𝑟 𝑖(ℎ)                            (2.10) 

             𝑖(𝑝) = 𝑛 

Order and continuity constraints are defined by warping paths through a table. As 

given in (2.10), 𝑖(ℎ) and 𝑗(ℎ) represents paths in simple warping algorithm, time 

points in given series are shown as ℎ = 0,1, … , 𝑝.  

𝐷𝑞(𝑎, 𝑏) = ∑ 𝑤(ℎ)𝑑(𝑎𝑖(ℎ)𝑏𝑗(ℎ))
𝑞
ℎ=1                   (2.11) 

𝑤(ℎ) =
1

2
(𝑡𝑖(ℎ) − 𝑡𝑖(ℎ+1) + 𝑢𝑗(ℎ) − 𝑢𝑗(ℎ−1))                 (2.12) 

In Figure 2.3.b the warping path corresponding to Figure 2.3.a is depicted. As 

shown from the formula (2.11), 𝐷𝑞(𝑎, 𝑏) refers to the overall distance of the 

warping path. In addition, 𝑊(ℎ) (2.12) represents the average time spent between 

two trajectories.  

𝑒(𝑥, 𝑦) =  √∑ 𝑓𝑖(𝑥𝑖 − 𝑦𝑖)
2𝑘

𝑖=1                                                  (2.13) 
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Figure 2.3 Representation of the time warping algorithm2 

Distances for the algorithms on weighted Euclidean distance is defined as given in 

the formula (2.13) where 𝑥 and 𝑦 are 𝑘 dimensional feature vectors, 𝑓𝑖 is the 

feature weight. These weights can be specified as parameters. In the study 𝑓𝑖 = 1 

is used for all genes. 

Optimal alignment score of two time-series is produced by the time warping 

algorithm. The alignment score is a powerful factor to assess the quality of the 

obtained alignment. The score is zero when two series are identical, while they are 

                                                           
2
 Quoted from: AACH, John and CHURCH, George M. ,Aligning gene expression time series with 

time warping algorithms. Bioinformatics. ,Vol. 17, no. 6, p. 495–508. ,2001. 
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different from each other the score diverges from zero. The average of alignment 

of all common gene pairs is taken as the overall alignment score between the 

given time-series experiment. Obtained score was used as the similarity measure 

for finding similarity between the experiment pairs.   

2.2.1.4 Lyapunov exponent method 

In recent years, separating chaos from noise has become one of the significant 

research issues. Lyapunov Exponents (LEs) measure the rate of convergence or 

divergence of nearby trajectories (the path that a moving object follows through 

space as a function of time) that represent chaos [44] in a system.  In other words, 

they are used to quantify sensitivity to initial conditions in a dynamical system. 

While negative LEs indicate convergence, positive ones are indication of 

divergence. Chaotic behavior can be easily estimated on a time scale and the 

greatness of the LE is a marker of the time scale. There is a variety of methods 

developed for identifying chaos by using experimental time-series [45–47]. The 

Grassberger-Procaccia algorithm (GPA) [47] is one of the widely used methods to 

identify chaos in dynamic system. GPA is easy to implement, however it is 

sensitive to variations in its parameters such as embedding dimension, 

reconstruction delay. In many implementation of LE on time series a positive 

characteristic exponent shows chaos, therefore calculating only the largest LE of 

the given series is enough to identify chaotic system. On the other hand, existing 

methods for calculating LEs have some disadvantages such as being unreliable 

for small datasets, being difficult to implement or having high computational cost. 

For these reasons, to calculate largest LE a method [48] which is faster and easier 

to implement than other methods was used to get LE of the time series 

experiments in this study.  

|| 𝛿𝑥(𝑡)|| = || 𝛿𝑥(0)|| 𝑒
𝜆𝑡          (2.14) 

𝜆(𝑖) =  𝑙𝑖𝑚𝑡→ ∞
1

𝑡
𝑙𝑜𝑔

||𝛿𝑥𝑖
(𝑡)||

||𝛿𝑥𝑖
(0)||

            (2.15) 

Let the Lyapunov Exponent  λ is defined as the average of the local separation of 

the adjacent curve degree in space (2.14). If 𝜆 is negative, different initial 
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conditions tend to give the same output, so it is said that development is not 

chaotic. Otherwise, different initial conditions give separate outputs then 

movement is chaotic. Initially, there is a small difference 𝛿𝑥(0) between two close 

points (𝑥1, 𝑥2), one of them is set as reference point, located on two close curves. 

At the end of time t, these points diverge from each other and the difference 

between them becomes 𝛿𝑥(𝑡). Lyapunov Exponent can be calculated as given in 

the formula (2.15) (||…|| indicates Euclidean distance). In phase space, due to a 𝜆 

represents convergence and divergence at each dimension, LE spectrum λ1 of d-

dimensional dynamic system (𝑅𝑑) is calculated as follows; 𝜆1 ≥  𝜆2 ≥ ⋯ ≥ 𝜆𝑛. In 

chaotic system, there is at least one largest LE and if the exponent is greater than 

0, behavior of the system is chaotic, otherwise it is a deterministic system.  

2.2.2 Fingerprint comparison methods 

After having obtained fingerprints for each experiment, the next process is 

comparing these fingerprints with an appropriate similarity metric. A convenient 

similarity metric was used based on the fingerprint extraction method used. 

Detailed description of each comparison metric was given in the next sections. 

2.2.2.1 Overlap similarity metric 

Overlap similarity metric is adapted for comparison of fingerprints generated by 

Transition model-based fingerprint extraction method. In spite of its simplicity, it is 

a widely used metric for categorical data [49]. The mentioned extraction method 

defines gene expression profiles over categorical values, so the overlap metric 

was selected as an appropriate comparison metric for these values. The overlap 

score ranges between 0 and 1; if there are no similarity between compared objects 

the score is 0; while perfect match between them is represented by the value of 1.  

𝑆(𝑋, 𝑌) = ∑ 𝑆𝑘(𝑋𝑘, 𝑌𝑘)/𝑑𝑑
𝑘=1                              (2.16) 

𝑆𝑘(𝑋𝑘, 𝑌𝑘) = {
1,  𝑖𝑓 𝑋𝑘 = 𝑌𝑘 𝑎𝑛𝑑 𝑋𝑘 , 𝑌𝑘 ≥ 1
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                    (2.17)                               
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Let 𝑋 and 𝑌 be fingerprint vectors to be compared, the overlap score between 

these vectors is given in (2.16) and (2.17). In this metric, the similarity 

measurement is calculated considering only common genes, called as 𝑑, in 

compared experiments. As given in (2.17), individual gene behaviors are 

considered similar when the labels differ from 0.  The value of 0 is not regarded as 

a similarity because it represents no change in time expression value over a time 

period. This choice was made since the most of the genes in an experiment do not 

have differentially expression profiles in terms of any specific environmental 

condition. Considering these genes as similarity between experiments may cause 

a dominating factor among other categorical labels. In addition to this, the 

similarity between experiments that have differentially expressed genes point more 

valuable relevance of the compared experiments. Due to these reasons, the 

original overlap metric was adapted to be applied for the studied case.  

2.2.2.2 Tanimoto similarity metric 

Tanimoto distance, so-called Jaccard, is used for comparison of fingerprints 

obtained with Differential Expression Profile-based fingerprinting method. It is 

originally used for comparison of unordered sets. Similarity between two 

unordered sets is calculated as the ratio of their common elements to the number 

of all different elements. Usually, similarity metrics are defined over binary valued 

vectors, so vectors that have categorical features should be converted into binary 

features to implement Tanimoto coefficient. 

Tanimoto Coefficient = 
𝑎+𝑑

𝑎+𝑑+2(𝑏+𝑐)
                 (2.18) 

Rogers and Tanimoto [50] defined Tanimoto similarity measurement, as given in 

the formula (2.18), for binary valued vectors. Tanimoto coefficient can be 

described over fingerprint vectors such as; 𝑋 and 𝑌 are fingerprint vectors of two 

different experiments. Contingency table [51] for those vectors is given in Table 

2.1. The table consists of comparing results of the values for 𝑋 and 𝑌: 

𝑎= number of times 𝑋𝑖=1 and 𝑌𝑖=1 

𝑏= number of times 𝑋𝑖=0 and 𝑌𝑖=1 
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𝑐= number of times 𝑋𝑖=1 and 𝑌𝑖=1 

𝑑= number of times 𝑋𝑖=0 and 𝑌𝑖=0 

In order to use this similarity metric; fingerprint vectors obtained with Differentially 

Expression Profile-based Method are converted into binary vectors as described in 

the previous section. The Tanimoto scores range between 0 and 1; 0 means no 

similarity, 1 shows a perfect match between compared experiments.  

Table 2.1 Contingency table values for two fingerprint vectors 

 
Fingerprint vector of 𝒀 

1 0 𝑠𝑢𝑚 

Fingerprint 
vector of  

𝑿 

1 𝑎 𝑏 𝑎 + 𝑏 

0 𝑐 𝑑 𝑐 + 𝑑 

𝑠𝑢𝑚 𝑎 + 𝑐 𝑏 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑 

 

2.2.2.3 Pearson correlation coefficient 

Pearson coefficient was used for determining whether there is a correlation 

between Lyapunov Exponents of two compared experiments. It is a widely used 

measure of the linear dependence between two variables.  

       𝑠(𝑋, 𝑌) =  
𝑛 ∑ 𝑥𝑖𝑦𝑖−∑ 𝑥𝑖−∑ 𝑦𝑖 

√𝑛 ∑ 𝑥𝑖
2−(∑ 𝑥𝑖)2  √𝑛 ∑ 𝑦𝑖

2−(∑ 𝑦𝑖)2
                            (2.19) 

If there is a correlation between experiments, it can be stated that those 

experiments are similar to each other. Let 𝑋 and 𝑌 be compared fingerprint vectors 

obtained with the LE fingerprinting method and 𝑥𝑖 refers to Lyapunov score of 

gene 𝑖 of vector 𝑋, while 𝑦𝑖  is the Lyapunov score of gene 𝑖 of vector 𝑌. In addition 

to this, 𝑛 is the number of genes in each fingerprint vectors. The measure (2.19) 

gives a value between +1 and -1, where value of 1 points a positive correlation, 0 

refer no correlation and -1 is represents a negative correlation. A positive 

correlation between similar experiments is expected.  
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2.3 Results 

This section consists of three sub-sections: Data, Evaluation Criteria and Empirical 

Results. Used time-series experiments are given in the first sub-section, second 

sub-section describes evaluation criteria of the proposed system and the empirical 

results are given in the final sub-section. 

2.3.1 Data  

In order to establish a data repository 120 Arabidopsis time-series experiments 

from GEO were collected. The datasets were obtained using different platforms 

and time points range between 3 and 24. In order to minimize cross-platform 

effects, scaling process for each time-series experiment was performed such that 

mean is 0 and standard deviation is 1. 

2.3.2 Evaluation criteria 

An obvious definition, so-called ground truth, is a basic need to evaluate 

performance of a system. Actual relevance of compared objects is defined 

according to defined ground-truth. Determination of relevance of retrieved entities 

is performed using ground-truth information. The most important task in evaluation 

process is describing the relevance information between compared experiments. 

This task is usually performed by labelling the experiments based on some 

environmental factors, such as disease or healthy classes, response to a stimulus; 

however, it is not an efficient way for time-series experiments. For instance, 

treatments of patients with the same disease may be different and they may not be 

related directly to the label of the experiment. Moreover, each treatment affects 

distinct gene regulation, while some gene-sets may be co-regulated by same 

treatment in patients with different disease. That is to say defining relevance 

between time-series experiments should be based on gene-sets rather than static 

labelling. Therefore, two time-series experiments are considered as biologically 

relevant when they share common enriched gene-sets. To adapt this 

consideration into this study, a well-known method named Gene Set Enrichment 

Analysis (GSEA) [52] was used to get enriched gene-sets between compared 

experiments. GSEA is a knowledge-driven and analytical method to analyze 

genome-wide expression profiles at the level of gene sets. It generates set of 
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genes that share common biological functions or regulation. The main goal of the 

method is determining how members of a gene set are distributed among a given 

gene list e.g they are located at the top or bottom of the list. GSEA method has 

some basic steps: it considers that there are expression datasets of experiments, 

given in a heat map (Figure 2.4), from two different classes. Genes are sorted 

according to their correlation between their expression level and the class they 

belong (Figure 2.4.A). Enrichment score (ES) that refers to the degree of 

overrepresentation at top or bottom of the gene list is calculated (Figure 2.4.B). 

Then, significance level of ES is estimated by obtaining a nominal p-value. Finally, 

adjustment of multiple hypothesis testing is made through with getting a 

normalized enrichment score (NES) and calculating false discovery rate (FDR) for 

each NES [52]. NES is a main statistic to assess gene set enrichment results and 

it provides the comparison of the results over the obtained gene sets.   

 

Figure 2.4 GSEA method overview3 

 

𝐽(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
                                               (2.20)                                            

                                                           
3
 Quoted from: SUBRAMANIAN, Aravind, et al., Gene set enrichment analysis: A knowledge-based 

approach for interpreting genome-wide expression profiles, Proceedings of the National Academy 
of Sciences, Vol.102, no.43, p.15545–15550, 2005. 
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After having obtained gene-sets, the next process is finding similarity between 

these gene sets. As given in formula (2.20), Jaccard coefficient is calculated 

between enriched gene sets, named as 𝐴 and 𝐵, of two different compared 

experiments. The coefficient is calculated by dividing number of common gene 

sets of compared experiments by the number of all gene sets. A threshold of 0.3 

was selected regarding a Gaussian distribution of the Jaccard index values of all 

experiment pairs. The threshold was obtained by summing the mean of all values 

and the standard deviation of the data. The true relevance between experiments 

was depicted by the obtained threshold. 

To evaluate the system retrieval performance, Receiver Operating Characteristic 

(ROC) curves was also used in this study. In recent years, ROC curves are 

commonly used in biomedical, machine learning and data mining fields. Although, 

it is used to visualize and organize classifiers based on their performance, it can 

be used to evaluate and compare algorithms [53]. ROC graphs shows relation 

between true positives rates (TPR) plotted on X axis and false positive rates (FPR) 

plotted on Y axis. TPR represents ratio of positives correctly classified to total 

positives, FPR is the ratio of negatives incorrectly classified to total negatives. In 

Figure 2.5, a simple ROC graph is given to show performance of five distinct 

classifiers. In the graph, upper left corner (0, 1) denotes perfect classification and 

diagonal line represents random guess. Upper side of the diagonal line shows 

better classification, while lower side shows worse classification. So, it can ben 

stated that A, B, D classifier have better performance than E and C classifiers 

according to the graph. Also, C’s performance is random. Area under ROC curve 

(AUC) is calculated to compare ROC performance of classifiers. Its value ranges 

between 0 and 1. The higher AUC score shows better retrieval performance, value 

of 1 refers to perfect case.  

In addition to these evaluation processes, statistically significance tests such as 

Paired t-test and Wilcoxon signed-rank test were performed. It was aimed to 

observe that whether the differences between performances of used fingerprint 

extraction methods was statistically significant. It is expected that obtained p-

values should be below the value of 0.05. This value demonstrates that the 
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difference between performances of fingerprint extraction methods with regard to 

AUC score is statistically significant.  

 

Figure 2.5 A basic ROC graph showing five different classifiers4 

2.3.3 Empirical results    

In this study, four different fingerprint extraction methods and three fingerprint 

comparison methods, given in Table 2.2, were used. A similarity metric is needed 

for each fingerprint extraction methods except Time Warping method, since it 

generates an alignment score that can be used as similarity score for experiment 

pairs to be compared. In addition to this, when performing the fingerprinting 

method Transition Model-based method, the parameter k, which is the rank-based 

binarization parameter to select top %k of genes, was selected as 1, since the 

best retrieval performance was achieved with this value.  

In order to perform retrieval task, all experiments in the data collection are taken 

as a query respectively and a ranked list of retrieved experiments, based on a 

similarity score calculated by an associated similarity metric, is obtained. It is 

                                                           
4
 Quoted from: FAWCETT, Tom, An introduction to ROC analysis, Pattern Recognition Letters, 

,Vol.27, no.8, p.861–874, 2006. 
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expected that retrieved experiments that have higher similarity with the query 

experiment be at the top of the list. As stated previously, the system performance 

is evaluated by ROC curves. For each relevant experiment an AUC score was 

calculated. Higher AUC score indicates the better system performance.  

Retrieval performances of all fingerprint extraction methods were given in Figure 

2.6. The performances are given as ROC plots in which horizontal axis represents 

AUC scores; the vertical axis depicts number of experiments with a corresponding 

AUC score. According to the plots, Time Warping method has become more 

successful in retrieving relevant experiments. Moreover, it can be seen that an 

AUC score greater than 0.6 was obtained for the majority of the experiments for 

each fingerprinting method. Average AUC scores for Time Warping method is 

0.77, while it is 0.73 for Transition Model-based method. Besides this, AUC of 0.70 

and 0.68 for Differentially Expression Profile-based method and Lyapunov 

Exponent method are obtained respectively. 

Table 2.2 Fingerprint Extraction and Comparison Methods 

Fingerprint Extraction Method Fingerprint Comparison Method 

Differentially Expression Profile-based Method Tanimoto 

Transition Model-based Method Overlap 

Time Warping Method --- 

Lyapunov Exponent Method Pearson 

 

Statistical significance tests, a Paired t-test and a non-parametric Wilcoxon 

signed- rank test, were performed to detect whether the difference between 

performances of used methods were statistically significant. AUC score difference 

between fingerprint extraction methods pairs were used to perform p-value 

calculation. Compared method pairs and related p-values using two different tests 

were given in Table 2.3. As can be seen from the table, in most of the results, it 

was observed that p value was below 0.05 which is the threshold of statistical 

significance. In addition to this, this result is strong evidence that difference 
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between AUC scores of Time Warping method, that has the best retrieval 

performance, and other method’s AUC score is statistically significant. 

Some examinations also were performed to evaluate the system performance 

based on manual annotations. Before indirect evaluation based on gene-sets, a 

direct evaluation based on textual relevance was performed to discover biological 

sense of the fingerprinting approaches. Transition-model based fingerprinting 

approach and related similarity metric, named Overlap metric, were selected to 

evaluate the system performance based on textual relevance between retrieved 

experiments. To this end, three specific experiments from the collected dataset 

were taken as query experiments. For each query experiment, a ranked list was 

obtained from the experiment collection. When selecting query experiment it is 

expected that at least two relevant experiments which have higher overlap scores 

than other experiments should be retrieved.  

 

Figure 2.6 Retrieval performances of all fingerprinting methods 
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Table 2.3 Statistically Significance Tests of Fingerprint Extraction Methods 

Method Pair 

p-value 

Paired  
t-test 

Wilcoxon 
signed-rank test 

 
Transition Model-based 

Method 
 

Differentially Expression 
Profile-based Method 

0.04861 0.0004649 

 
Transition Model-based 

Method 
 

Time Warping Method 1.49E-06 3.669E-09 

 
Transition Model-based 

Method 
 

Lyapunov Method 
 

0.0002567 9.241E-07 

Differentially Expression 
Profile-based Method 

Time Warping Method 
 

2.064E-11 3.626E-13 

Differentially Expression 
Profile-based Method 

Lyapunov Method 0.1509 0.004291 

Time Warping Method Lyapunov Method 5.54E-15 1.008E-12 

 

The first query experiment is about transcriptional regulation based on the MYB46-

mediated. In this experiment, transcriptome profiles were generated in terms of 

secondary wall development at different time periods such as 1h, 3h and 6h [54]. It 

has the accession number of GSE16143-2 in which “-” points to experiment 

number in same GEO entry. Moreover, the second experiment, GSE3350-1, is 

about analyzing of structures of auxin-induced cell division. Lateral root initiation 

was used to measure expression levels at three different time points 2h and 6h 

[55]. Finally the third experiment, GSE18975-7, was studied for observing natural 

variations of downstream auxin responses. Gene expression measurement of 

Arabidopsis Seedlings grown in liquid culture was performed at time points of 0, 30 

min, 1h and 3h [56]. 

For each selected query experiments, ROC performances are depicted in Figure 

2.7. The obtained AUC scores were 0.63, 0.68, and 0.69 respectively. In addition 

to this, most relevant and least relevant retrieved experiments with each query are 

given in Table 2.4. The first two rows represent most relevant experiments, while 
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the others represent the least relevant experiments with the query. As stated 

before, ranked list was generated based on the overlap score. Overlap score of 

experiment pairs represents the system prediction, while Jaccard score refers to 

true relevance obtained with gene set-based comparison. According to these 

scores, it can be observed that true relevance and predicted relevance of retrieved 

experiments have a powerful correlation. 

 

(a) GSE16143-2 

(b) GSE3350-1  

(c) GSE18975-7 

Figure 2.7 ROC curves of sample query experiments 

After having obtained retrieved experiments, evaluation of the retrieval was 

performed by biological relevance. Manual annotations of the experiments were 

compared to discover relevance between them. The first query sample, 

GSE10464-1 was an experiment which was done for discovering the gene 

expression changes in response to paraquat [57]. In both experiments, after 

applying different treatments, Arabidopsis seedlings were harvested at nearly 

same time periods. It can be observed that the system retrieves relevant 

experiment with the query using same stress response. Moreover, GSE16143-1 

was reported as second most relevant experiment. It is the part of same GEO 

entry with the query experiment. The research on this experiment was conducted 

using two different conditions such as with and without dexamethasone treatment. 

The query experiment uses the treatment; the retrieved one is an experiment 

without the treatment. Similarity between these experiments comes from the 

conditions used in conducting the research rather than treatments for the 

experiments. 

   

AUC= 0.63 AUC= 0.68 AUC= 0.69 
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Table 2.4 Most relevant and least relevant experiments for sample queries 

 

GSE3350-2, which is the most relevant experiment with the second query, is the 

experiment in same GEO entry as in the previous query experiment. The system 

defined them as relevant experiments, because they are obtained almost in same 

environmental conditions and setup. Furthermore, GSE18975-3 was given as 

second most similar experiment with the query. It is the study of natural variation 

of auxin response in different time points such as 30 min, 1h and 3h [56]. There is 

an interesting point that auxin response observation was also performed for the 

query experiment. Their similarity is based on having same treatment with different 

purposes.  

Moreover, GSE18975-3 and GSE1110-2 were retrieved as the most relevant 

experiments with the third query experiment, named GSE18975-7. The former is 

obtained from the same GEO entry, they have same environmental conditions and 

it is expected that they are more relevant. The latter has important relevance with 

the query experiment, because it was studied in same environmental conditions 

with the query experiment to observe auxin treatment in Arabidopsis. That is to 

say, the system has succeeding in finding relevant experiments with the same 

treatment or environmental conditions.   
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In addition to manual annotation based evaluation, GSEA-based evaluation was 

also performed. The query experiment GSE3350-1 and GSE3350-2 the most 

relevant experiment were taken as sample experiments for this purpose. Table 2.5 

shows first 10 common gene sets and related NES between the query and 

relevant experiment. In this study, a gene list from the study of Yi et al. [58] was 

used in performing GSEA, because current GSEA implementation does not 

support gene sets of Arabidopsis organism. According to the results, there are 

common gene sets with high NES between the query and the relevant experiment.  

Table 2.5 Gene sets enriched for both query (GSE3350-1) and first relevant 

experiment (GSE3350-2) 
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3. WHOLE-METAGENOME SEQUENCING SAMPLE RETRIEVAL 

This chapter consists of a content-based retrieval framework developed for whole-

metagenome sequencing samples. The chapter is organized as follows; motivation 

of the study and related work are defined in the first part, while k-mer extraction, k-

mer selection methods, fingerprint extraction and comparison methods are 

described in the second part and the experimental results are given in the final 

part. 

3.1 Introduction 

Analyzing metagenomic data has become a significant research interest with the 

rapid development in sequencing technologies. There are two main approaches in 

studying metagenomic samples; some studies concentrate on targeted 

sequencing of particular genes like 16S rRNA, others focus on whole-

metagenomes [59, 60]. Phylogenetic profiling information can be obtained easily 

by targeted studies at a lower cost through the former approach, while much more 

information such as inhabitant genetics of the community can be gained by the 

latter approach. Targeted sequencing has some disadvantages such that it does 

not provide any information about other genes except 16S rRNA gene and there 

may be conflicts between generated phylogenetic trees. Lately, an alternative and 

more informative approach, called whole-metagenome shotgun (WGS) 

sequencing, was proposed to obtain vast number of DNA reads of all organisms. 

There have been a great number of studies about WGS sequencing by which DNA 

reads of all organisms can be produced. Qin et al. [61] stated that there is a 

relationship between type II diabetes disease and gut metagenome samples. An 

automated analysis platform, called MG-RAST, was developed by Meyer et al. [5] 

to accumulate and access data, make quality control and analysis of almost 3000 

metagenomic sequence samples. In addition to this, iMicrobe project [62] provides 

microbial datasets and computational frameworks for researches. Although, these 

repositories have some analysis modules, they include neither any search function 

nor comparison tool for sequencing samples.  

Detecting similarities between metagenomic samples through huge data 

collections   is a remarkable research area in bioinformatics. Recently, a variety of 
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studies has proposed the content-based approach using distinct perspectives. 

Huson et al. [63] developed a software tool, named MEGAN, for analysis of 

metagenomic datasets. The main objective in this study is discovering taxonomic 

and functional content of the sequences. Firstly, a sequence comparison tool, such 

as BLAST, is used to align set of DNA sequences and known sequences. MEGAN 

uses NCBI taxonomy to process comparison results. A MEGAN file that consists of 

information for analyzing and obtaining graphical and statistical output is 

generated. In order to evaluate the assignment of the reads and generate the 

results at varied stages of NCBI taxonomy, LCA (Lowest Common Ancestor) 

algorithm is performed. Finally, matching sequence of species and taxa are done 

in the NCBI tree in which species-specific sequences are closer to the leaves of 

the tree while widely conserved sequences are closer to the root. Wang et al. [64] 

proposed a naïve Bayesian classifier to classify sequences without aligning them. 

They tested the system performance using large volume datasets in terms of 

sequence length. Liu et al. [17] proposed an approach, called MetaDistance, which 

classifies sequences and selects features of these sequences. They also describe 

the data normalization method to be applied before the proposed method. It is 

stated that the method is appropriate for small size datasets and unbalanced 

classes. In addition to this, Su et al. [65] developed a tool named Meta-Storms to 

build a database of metagenomic samples and search samples through the 

database. The proposed system was evaluated using a large number of samples. 

It succeeded in organizing a database and developing a search system.  

A common point of the methods mentioned above is that they use some 

annotations, taxas or a priori knowledge to analyze metagenomic samples. 

Although, there are some unknown or unculturable organisms, for example 99% of 

bacteria, referred methods could not be applied on these organisms. Therefore, 

new approaches that do not rely on any information or annotations have been 

suggested on this deficiency. These approaches are called reference-free, unlike 

alignment-based approaches they use raw read content of the samples to 

represent them in a feature space. Recently, k-mer (substring of length k) 

representations are the widely used technique for sample representation among 

reference-free studies. In this context, Maillet et al. [66] first proposed a method, 

named Compareads, for finding similar metagenomic samples in a data collection 
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using k-mer approach. The proposed method succeeded in finding similarities 

between samples. Although this approach is faster than traditional methods, its 

computational cost is quite high because of storing all k-mer information. Selecting 

informative features of metagenomic data is quite an important step in data 

analysis. Some studies use two classes of samples, while others work on all large 

number of features instead of using any feature selection technique [67–69]. For 

example, Qin, J. et al [61] make analysis on human gut samples using almost 5 

million genes. Moreover, Seth et al. [70] proposed a retrieval system for extracting 

informative k-mers instead using all k-mers. They applied feature extraction and 

selection method to find similar experiments from data collection. In addition, 

Weitschek et al. [71] developed an alignment-free distance for finding similarity 

between reads. It is clearly seen that alignment-free distance is an efficient way for 

sequence read comparison. Besides this, Polychronopoulos et al. [72] presented a 

method based on k-mer analysis combined with rule-based classification 

approaches to classify bacterial genomes. Dubinkina et al. [73] proposed a 

dissimilarity approach for detecting similarities among metagenomic samples 

using short k-mer spectra. It was stated that the proposed approach achieved in 

detecting similarities between samples and it can be easily adapted into sample 

analysis pipelines.  

As mentioned above reference-free approaches for retrieval of metagenomic 

samples have promising results. To this end, in this chapter developing an efficient 

retrieval model using raw read content is mainly aimed. The chapter introduces a 

content-based retrieval framework developed to retrieve metagenomic 

experiments. There are four main steps; k-mer extraction and selection methods, 

fingerprinting methods and comparison metrics for obtained fingerprints. A data 

collection consisting of real metagenomic samples was used to assess the system 

retrieval performance. Each experiment in the collection was taken as a query 

experiment; a ranked list was generated based on the similarity between the query 

and other experiments. The main objective of the system is retrieving relevant 

samples from the repository. Relevance between samples is defined as if the 

patients, named positive samples, are retrieved by the system they are called 

relevant samples; otherwise the retrieved experiments are called irrelevant. 
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The basic contribution presented in this study is extracting fingerprints based on 

two text mining methods, Latent Semantic Analysis (LSA) and Latent Dirichlet 

Allocation (LDA), which have not been used for retrieving metagenomic samples 

from this data collection. The experimental results show that LSA is an 

encouraging fingerprinting technique to represent the experiment content in the 

feature space and to find similarity between experiments from the experiment. 

3.2 Methods 

The proposed retrieval system first takes an experiment as a query then it 

retrieves a ranked list based on the similarity between the query and other 

experiments in the collection. Each experiment from the data collection is taken as 

a query respectively. Retrieval process consists of progressive steps such as 

extraction of k-mers, selection of informative k-mers, fingerprint extraction and 

comparison of those fingerprints. The overall view of the system is given in Figure 

3.1. Firstly, k-mer frequency vectors of the query experiment and other 

experiments in the collection were obtained. Having extracted k-mer frequency 

vectors, k-mer selection process is performed for values of k which is greater than 

6. After that, two different fingerprint extraction methods were applied to obtain the 

fingerprints of the experiments. Finally, comparison of these fingerprints was 

performed to detect similarity between experiments. Beside these processes, 

direct comparison of frequency vectors was also performed to compare obtained 

results with fingerprint extraction results. Each process is described in the next 

section. 
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Figure 3.1 General view of the proposed framework 

3.2.1 K-mer extraction 

The term k-mer, so-called n-gram, refers to all ordered substrings length of k in a 

string. Extracting all possible k-mers in a sequence read is the main step of 

metagenome analysis applications. In DNA sequence, which consists of A, C, G 

and T nucleotides, there are 4𝑘 possible nucleotide subsequences of length k to 

be extracted. As stated before, the first process of the proposed system is k-mer 

extraction, with k range between 2 and 13, for experiment representation in the 

feature space. K-mer frequency is the ratio of total number of the current k-mer to 

the total number of all k-mers. In DNA sequencing process, which strand is 

processed and read direction are not known, reverse complement of k-mers was 

considered in extracting k-mer occurrences in the current experiment.  To this end, 

for each k-mer, read and its reverse complement were calculated, after that the 

one which comes first lexically was selected as the corresponding k-mer for the 

current experiment. 
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3.2.2 K-mer selection 

High dimensional nature of data in bioinformatics makes Feature Selection (FS) 

process necessary to improve performance of data analysis applications, because 

it has been agreed that the best system performances cannot be achieved with 

using all features. FS process is applied to select informative features that are 

relevant with the specific analysis task to be accomplished. In other words, it is the 

process of eliminating irrelevant and redundant data from the data collection. The 

main difficulty in FS is selecting set of features which depend on the whole 

dataset. 

In this study, three different FS techniques, selecting features based on Term 

Frequency Inverse Document Frequency (tf-idf) scores, Correlation Attribute 

Evaluation (CAE)-based and combinatorial feature selection approaches were 

used for selecting feature vectors for k>6. Each method is described in detail in the 

following sections. 

3.2.2.1 Selecting features based on term frequency-inverse document (tf-idf) 

frequency scores 

Term Frequency Inverse Document Frequency, so called tf-idf, is a widely used 

word weighting approach in text mining and information retrieval applications. Term 

specificity measure was originally introduced by Jones in 1972 [74] and it has 

been lately known as inverse document frequency. Let a corpus consists of many 

documents and each document involves different number of words. Basic idea 

behind this measure is that if a word occurs in many documents of the corpus, it is 

less important than other terms that occur rarely in the corpus. Tf-idf is evolved 

from idf measure to find importance of a word within a document collection.  

NOO= number of occurrences of k-mer r in experiment e 

TNK=  total number of k-mers in experiment e 

TNE=  total number of experiments 

NOE= number of experiments in which r occur 

𝑡𝑓𝑖𝑑𝑓𝑟,𝑒 = 𝑡𝑓𝑟,𝑒 ∗ 𝑖𝑑𝑓𝑟                              (3.1) 
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𝑡𝑓𝑟,𝑒 =  
𝑁𝑂𝑂

𝑇𝑁𝐾
                                                                    (3.2) 

𝑖𝑑𝑓𝑟 = 𝑙𝑜𝑔10
𝑇𝑁𝐸

𝑁𝑂𝐸
                                                                       (3.3)     

In order to apply tf-idf approach into the developed system, a term is represented 

by a k-mer, a document is represented by an experiment. For each experiment in 

the collection, tf-idf scores were calculated as given in the formula (3.1). The 

product of two terms 𝑡𝑓𝑟,𝑒 (3.2) and 𝑖𝑑𝑓𝑟 (3.3) is given as 𝑡𝑓𝑖𝑑𝑓𝑟,𝑒 (3.1). 

Frequency of a k-mer is shown by 𝑡𝑓𝑟,𝑒 which points that how often a k-mer (𝑟) 

occur in the experiment (𝑒). In addition, the importance of a k-mer in the collection 

is measured by the term inverse document frequency 𝑖𝑑𝑓𝑟. All tf-idf scores were 

calculated for each k-mer, and then these k-mers were sorted in descending order 

based on the obtained scores. Finally, the first 𝑁 k-mer in the ranked list was 

selected. 

3.2.2.2 Correlation attribute evaluation (CAE)-based feature selection 

Correlation Attribute Evaluation (CAE) method was used as another feature 

selection method in this study. In this approach, evaluation of an attribute is 

performed by calculating Pearson correlation between the attribute and the class. 

The fundamental principle based on this FS method is selecting a subset of 

features consists of features which are highly correlated with the class, but 

uncorrelated with each other.  

𝑟 =
∑ 𝑋𝑌−

∑ 𝑋 ∑ 𝑌

𝑛

√(∑ 𝑋
2

−
(∑ 𝑋)2

𝑛
)(∑ 𝑌

2
−

(∑ 𝑌)2

𝑛
)

                         (3.4) 

Let 𝑋 and 𝑌 be two subsets with the size of 𝑛, 𝑟 (3.4) is Pearson Correlation 

coefficient  between them. Pearson correlation is a correlation coefficient widely 

used in linear regression. It gives the relationship between two sets of data and its 

score ranges between -1 and 1, perfect match is shown by the value of 1, the 

negative relationship is represented by the value of -1, while 0 points no 

relationship between the subsets. 
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In the proposed retrieval model, CAE technique was applied to get ranked k-mer 

list based on correlation of the k-mer with the corresponding class. After that, the 

first 𝑁 k-mer were selected with regard to the cut-off value determined 

experimentally. Several runs were performed to observe how the retrieval 

performance is influenced by the changing number of selected features for k 

values greater than 6.  

3.2.2.3 Combinatorial feature selection approach  

A combinatorial approach paired with a robust metaheuristic solution algorithm, the 

study of Bertolazzi et al. [75], was adapted into this study to tackle feature 

selection before retrieving samples. Similar methods have already been used with 

success in other applications regarding genetic and biological sequences [72, 76]. 

The adapted method, named IP-GRASP (Greedy Randomized Adaptive Search 

Procedure with a short memory), is a heuristic algorithm based on GRASP. It has 

been designed for using data set composed of binary and integer features. It is 

assumed that there is a real-valued data matrix, called 𝐴, consists of 𝑚 rows and 

𝑛 columns in which samples are represented by rows, features represented by 

columns. Value of a feature on sample 𝑖 is denoted by the item 𝑎𝑖𝑘. The main goal 

of the method is to gain maximum information by selecting a small number of 

features. The idea is based on a measure of information using the Euclidean 

distance. 

𝐼(𝐴) = ∑ ∑ ∑ (𝑎𝑖𝑘 − 𝑎𝑗𝑘)2𝑛
𝑘=1

𝑚
𝑗=𝑖+1

𝑚
𝑖=1                          (3.5) 

Information measurement given by 𝐼(𝐴), in the formula (3.5), is related to the 

variance calculated through each pair of samples of the data.   

∑ 𝑑𝑖𝑗
𝑘 𝑥𝑘

𝑛

𝑘=1

− 𝛼 ≥ 0,   ∀ 𝑖, 𝑗, 𝑐(𝑖) ≠ 𝑐(𝑗) 
                                      

(3.6) 

𝑑𝑖𝑗
𝑘 = {

1, 𝑖𝑓 𝑎𝑖𝑘  ≠  𝑎𝑗𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

                          (3.7) 
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∑ 𝑥𝑘 ≤𝑛
𝑘=1  𝛽, 

 𝑥𝑘 = {
1, 𝑖𝑓 𝑘 ∈  𝑁′

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 𝑥 ∈ {0,1}𝑛, 𝛼𝜖ℝ+ 

                        (3.8) 

The main task is defined as reducing dimension of the data matrix, so such 

problem can be formalized as given in the formula (3.6). When applying the 

method to the original matrix 𝐴, it is considered that reduced number of dimension, 

so-called target dimension, is β and subset of columns is represented by 𝑁′ which 

consists of features selected by the method. The problem can be formulized using 

a binary variable 𝑥𝑘 defined in (3.8) to represent selected features. Minimal 

threshold quantity 𝛼 is also depicted to provide separation samples projected on 

reduced dimension, especially when the reduced dimension β, takes the value of 

1. This threshold quantity is selected as large as possible. Another issue that 

addressed for describing the general formula of the model is that each object may 

belong to one or more classes in supervised learning problems. Therefore, the 

proposed system should point the correct class of the object. Thus, samples that 

belong to different classes are used, the others are eliminated. The class of an 

object is represented a mapping 𝑐 which shows the class of an object. As given in 

the formula (3.6), samples that belong to different classes are selected in the 

construction of the model. Finally, to represent objects by binary features instead 

of using a distance function between samples, a generic element of the constraint 

matrix 𝑑𝑖𝑗
𝑘

 (3.7) is defined. In this way, controlling of the value of a feature for two 

samples is equal or not is performed. 

Greedy Randomized Adaptive Search Procedure (GRASP) with some 

modifications is applied to solve problems stated above. The algorithm is an 

iterative method and there are two steps in each iteration such as construction of a 

solution and local search. Basic steps of the algorithm are given in Figure 3.2 as a 

pseudocode. Firstly, a solution named 𝑥 is built in the construction phase. A finite 
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solution set named 𝑋, an objective function 𝑓: 𝑋 →  ℝ to be minimized are given in 

the model. In order to find a local minimum for the solution, its neighborhood is 

detected in the local search. Maximum number of iteration is named as MaxIt, 

while initial seed for the pseudo-random number generator is named as Seed. 

When adding a new element to the solution, the algorithm uses a greedy function 

named 𝑔: 𝐶 →  ℝ to select an element from a candidate list 𝐶 based on its benefit. 

Benefit of each element is changed at each iteration; therefore the procedure is 

called as an adaptive procedure. The model select one of the candidates from the 

list and this list is called the restricted candidate list (RCL). When a row shows a 

value of 1 in a column, this means that the column covers this row of binary matrix. 

The selection process for a column consists of number of rows that are not 

covered by that column. Rows covered by a column are memorized by the model 

and cover process is performed based on order derived in the previous iteration. 

Each row is considered not covered by any column and has largest order. A 

randomized selection is done between those rows and columns that cover rows 

are stored in the RCL. After that, selection of a column from the RCL list is 

performed using a weight distribution. Columns have higher weights, if they 

appear in any of the best solutions. 

 

Figure 3.2 Basic steps of GRASP algorithm5 

                                                           
5
 Quoted from: BERTOLAZZI, Paola et al., Integer programming models for feature selection: New 

extensions and a randomized solution algorithm, European Journal of Operational Research, 
Vol.250, no.2,p.389–399, 2016 
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3.2.3 Fingerprint extraction methods 

Fingerprinting is a widely used technique to represent an object by summarizing its 

content in a feature space. Extracting fingerprints of experiments was performed to 

get feature vector representation of experiments before detecting similarities 

among the experiment collection. This process was applied using different text 

mining techniques such as Latent Semantic Analysis (LSA) and Latent Dirichlet 

Allocation (LDA). Applying these techniques, terms used for text mining 

applications were matched as; a k-mer refers to a word, while a document 

represented by an experiment. Moreover, the corpus is represented by the data 

repository or collection. 

3.2.3.1 Latent semantic analysis (LSA) 

Lexical matching is a popular way that search engines use to retrieve relevant 

information from data collections. However, this approach is straightforward and 

fast; it fails to retrieve much relevant information. New approaches are required to 

overcome problems of existing retrieval techniques. Latent semantic analysis 

(LSA) is one of the proposed approaches for this purpose by assuming that there 

is a latent structure in the data that can be discovered with statistical techniques. It 

is a data mining approach which uses linear algebra techniques to discover 

relationships between documents and terms. LSA was firstly presented by Dumais 

et al. [77] and Deerwester, et al. [78] to be applied in IR studies. Common 

approach in this approach is that documents are represented vectors of terms in 

the vector space model. All documents are turned into a feature vector in which 

each term count in the document is represented as a distinct feature and stored in 

term-document matrix. There are four fundamental steps in LSA;  

 Term-document matrix construction; frequency of each term in terms of the 

document is calculated. 

 Term-document matrix transformation; obtained frequency values in the 

previous step are transformed to represent the importance of each term for 

a document in the corpus. 
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 Dimension reduction; to get latent structure of the transformed matrix 

Singular Value Decomposition (SVD) is applied. In this way, 𝑥 largest 

singular values are extracted. 

 Retrieval process in reduced space; the retrieval process is performed. 

𝐴 = 𝑈 ∗ 𝑆 ∗ 𝑉𝑇                     (3.9)                              

SVD is used to decompose rectangular term document matrix A (𝑚 𝑥 𝑛) into 

three distinct matrixes (Figure 3.3). Matrix 𝑈 (𝑚 𝑥 𝑚) is a real unitary matrix, 𝑆 

(𝑚 𝑥 𝑛) is a rectangular diagonal matrix with entries in descending order and 𝑉 

(𝑛 𝑥 𝑛) is a unitary  matrix as given in the formula (3.9) [79]. Left and right singular 

vectors of 𝐴 are given by 𝑈 and 𝑉 which means that 𝐴 is represented using 

orthogonal indexing dimensions.  

 

Figure 3.3 Singular Value Decomposition of matrix A 

     𝐴𝑘 =  𝑈𝑘 ∗ 𝑆𝑘 ∗ 𝑉𝑘
𝑇         (3.10) 

A shortened SVD is used by LSA which means that k largest singular values and 

related vectors are represented in the reduced space given in the formula (3.10).  

Term vectors in this reduced space are given in the rows of 𝑈𝑘, document vectors 

are given in the  𝑉𝑘. The number of reduced dimension is depicted by the 

parameter named d. In the developed framework, the model was run for different 

values of d to get best retrieval performance, since there is no absolute rule for 

selecting this parameter. 
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3.2.3.2 Latent dirichlet allocation (LDA) 

Topic is defined as allocation over a definite vocabulary. Topics models were 

developed for detecting topics, hidden variables, which occur in a collection of 

documents called corpus. Generally, documents involve more than one topic with 

different proportions. Observing topics of documents directly is not possible, so 

they are called hidden variables. In topic models, topics are defined over 

generated words by the model. Topic models are generative models which aim to 

propose a model in a mathematical framework by which analyzing documents and 

detecting topics of documents based on word statistics could be performed. It is a 

useful methodology for interpreting structure of data information. It was first 

described in information retrieval, although it has been applied in various 

application areas such as visualization, statistical inference and bioinformatics. 

The first topic model, called Probabilistic Latent Semantic Analysis/Indexing (pLSA 

or PLSI), was proposed by Hoffman et al. [80] as an alternative method to Latent 

Semantic Analysis/Indexing (LSA/LSI). In this model, each document can be 

generated by only one topic. Moreover, pLSA has some deficiencies such as it 

does not have probabilistic model at the level of documents and it does not 

provide any generative model for document representation which is the list of 

numbers (mixing proportions for topics). Thus, when size of corpus grows, number 

of model parameters also increase that cause overfitting problem. Therefore, 

Latent Dirichlet allocation (LDA) was introduced by Blei et al. [81] to handle the 

problems of pLSA. 

In recent years, with the rapid evaluation of topic models, researchers have started 

to use topic models in the field of bioinformatics. Due to its achievement in the 

analyzing large scale data, it has become a preferable approach in this field. As in 

many research areas, detecting hidden knowledge from the data structure is a 

significant research problem should be addressed by researchers in the field of 

bioinformatics. Clustering, classification and feature extraction of biological data 

are main tasks for using topic models. There are some studies which use topic 

model in analyzing biological data. For example, Caldas et al. [26] studied LDA in 

retrieving microarray genomic data. In this study, the microarray samples are 

represented as vector of number of differentially expressed genes and each 
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experiment corresponds to a document which consists of different topic 

distributions. Moreover, Chen et al. [82–84] used LDA for analyzing gene 

sequence data. DNA sequences are represented by k-mer frequencies and each 

sequence corresponds to a document while each k-mer corresponds to a word. 

The aim of the study is to extract topics distributions for each genome sequence. 

Chen et al. [85] also studied LDA model with background distribution (LDA-B) in 

discovering functional groups. LDA-B is an extension of LDA which is constructed 

by adding background distribution of shared functional elements. In addition to 

this, La Rosa et al. [86] proposed a new alignment-free method based on 

Probabilistic Topic Modeling for genome sequences. They represented sequence 

experiments with using fixed length k-mers and applied LDA to classify genome 

sequences with different sequence length.  

In this study, LDA was used as a second fingerprinting technique to be applied for 

k-mer frequency vectors of the experiments. The model terms are defined such as 

[81]; 

 Vocabulary is a vector of words; {1, … . , 𝑉}. Words are shown by unit vectors 

such that 𝑣𝑡ℎ word in the vocabulary is shown as 𝑤𝑣 =1 and 𝑤𝑢=0 for 

𝑢 ≠ 𝑣.  

 There are 𝑁 words in each document. Words are given as 𝒘 =

{𝑤1, 𝑤2, … . , 𝑤𝑁} in which 𝑤𝑛 is the 𝑛𝑡ℎ word in the document. 

 There are 𝑀 documents in the corpus 𝐷 = {𝐰𝟏, 𝐰𝟐, … . , 𝐰𝐌}. 

It is assumed that the corpus consists of 𝑀 metagenomic experiments and 𝑇 

topics. A k-mer is represented by 𝑤, while there is a sample 𝑑 contains of 𝐾 k-

mers shown by 𝑑 = {𝑤1, 𝑤2, … . , 𝑤𝐾}. In addition to this, a topic is a distribution 

over the k-mers of the samples. 

𝑃(𝑤𝑖) = ∑ 𝑃(𝑤𝑖|𝑧 = 𝑧𝑗)𝑃(𝑧 = 𝑧𝑗)𝑇
𝑖=1           (3.11) 

All metagenomics experiment are represented by generated topics with the 

probability distribution given in (3.11). 𝑃(𝑤𝑖) is the probability of a k-mer 𝑤𝑖 in a 

given document, while selecting a k-mer from topic 𝑧𝑗 for the current sample is 
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represented by 𝑃(𝑧 = 𝑧𝑗). Furthermore, probability of sampling a k-mer given the 

topic 𝑧𝑗 is defined as 𝑃(𝑤𝑖|𝑧 = 𝑧𝑗). In summary, firstly topics are specified before 

any data is defined in the model. Generation process of each k-mer is performed 

in two steps; 

 A distribution is selected randomly over topics. 

 For each k-mer in the experiment 

o A topic is selected randomly from the topics in step 1. 

o A k-mer is selected from the corresponding distributions over the 

vocabulary. 

The application of LDA model is given in Figure 3.4. Firstly, k-mer extraction of 

each sample is performed. Then, the model is implemented with different number 

of topics. Model fitting is performed by Gibbs Sampling [88] as defined in [87] 

which recommend a value of 50/𝑘 for 𝛼 and 0.1 for 𝛽, where 𝑘 represents the 

number of topics and 𝛼 and 𝛽 are model hyperparameters. After this process, 

each sample is represented by generated topic distributions. In addition to this, 

number of topics is determined experimentally, because there is no efficient way 

for setting it.  

 

 

Figure 3.4 LDA steps in the proposed retrieval system 
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3.2.4 Nullomer analysis  

Nullomers, so-called absent k-mers, are substring of sequences that do not occur 

in a sequence read. It is a well-known fact that every possible k-mer may not occur 

in concerned read, so nullomers of compared samples may provide valuable 

information about similarity or dissimilarity between them. If any two experiment 

share common absent k-mers, they may have some biological relevance. 

Therefore, nullomer analysis provides detecting structure of a sequence with 

investigating a question: whether their existence is a statistical matter or outcome 

of any feature of the sequence [89]. There has been a recent interest in nullomer 

analysis in DNA sequences over the past decade. Nullomer analysis can provide 

valuable information various biological researches like drug target identification, 

environmental monitoring and forensic applications [90]. 

In order to discover relevance between experiments, the set of absent sequences 

of a given size were computed. In this study, nullomer analysis consists of two 

sections such as simple nullomer analysis and 1-order, so-called high order, 

nullomer analysis. In the first section, after having detecting absent k-mers, with a 

given size, for each experiment, absent k-mer vectors are generated. Then, 

transformation of these vectors to binary vectors, in which value of 1 refers to an 

absent k-mer, the value of 0 represents the k-mer occurs in the current 

experiment, was performed. After transformation process, the related similarity 

coefficient was calculated to get similarity scores between compared experiments. 

The second section in nullomer analysis is high order nullomer analysis introduced 

by Vergni and Santoni [89]. This study is an extension of nullomer analysis to 

investigate structure of nullomers in depth. High order nullomers are absent short 

sequences whose mutated sequences are still nullomers. Those nullomers are 

named as first order, second order nullomers etc. because, a short sequence (a k-

mer) is not in the whole genome with its possible one letter or two letter mutations. 

In this study, 1-order nullomers of each experiment was investigated. For instance, 

if there is a short sequence 𝑆 = 𝐴𝐶𝐺𝐴𝐴𝑇𝑇𝐴𝐺𝐺𝐺𝐶𝐶𝑇𝐺𝐴𝐺, it is very easy to 

recognize that all sequences in length of 2 is present in the sequence, but there 

are some absent sequences in length of 3 e.g AAA, TTT. These absent 

sequences are called simple nullomers. Regarding first order nullomers, they 
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occur in length of 4 in sequence 𝑆 such as nullomer 𝐴𝐴𝐴𝐴 is a first order nullomer 

since all possible sequences obtained with the mutation of one nucleotide are 

absent sequences.  

In order to understand the implementation of the first order nullomers for 

comparing experiments, a simple example is defined as follows; Let A and B are 

compared experiments, 1-order nullomers of them are represented by X and Y 

subsets of nullomers given as; 𝑋 = {𝐴𝐶𝐺𝑇𝐴𝐴, 𝐴𝑇𝐺𝐺𝐴𝑇},  𝑌 = {𝐴𝐶𝐶𝐺𝑇𝐴, 𝐶𝐶𝐶𝐺𝐴𝐺𝐶}. 

For each nullomers of a given sample, the set of dinucleotides (dinuc) at each 

position was considered: let 𝑘 be the size of considered sub-words, the first 

dinucleotide starts at position 1 (first and second nucleotide), then shifting along 

the sequence the second dinucleotide starts at position 2 (second and third 

nucleotide) and so on till the last dinucleotide starting at position (𝑘 − 1)𝑡ℎ and 𝑘𝑡ℎ 

nucleotide). For each dinucleotide position the related dinucleotide frequencies 

were computed.   

For given experiments frequency distributions are calculated as follows; 

For experiment A; 

dinuc 1-2: AC: 0.5, AT: 0.5 and others dinuc are 0  

dinuc 2-3: CG: 0.5, TG: 0.5 and others dinuc are 0 etc. 

…. 

dinuc (n-1)-(n): AA: 0.5, AT:0.5 others are 0 

For experiment B; 

dinuc 1-2: AC: 0.5, CC: 0.5 and others dinuc are 0  

dinuc 2-3: CC: 0.5, CG: 0.5 and others dinuc are 0 etc. 

…. 

dinuc (n-1)-(n): TA: 0.5, GT:0.5 others are 0 

Finally, (k-1) distributions for sample A and (k-1) distributions for sample B were 

obtained. In order to compute the distance between a couple of metagenomic 

samples, the similarity of dinucleotide composition at each position of the related 

set of nullomers (1-order nullomers) was evaluated by applying the Jensen 

Shannon Divergence (JSD). For each dinucleotide position, the JSD was 

calculated between two related frequency distributions and then (k-1) JSD were 

summed up. Two distance values for each sample pairs were obtained, the former 



51 

 

refers to simple nullomers results and the latter represents 1-order nullomers 

results. 

3.2.5 Fingerprint comparison 

Similarities between experiments are calculated in two ways: direct comparison of 

frequency vectors and calculating similarity scores between obtained fingerprints 

with an appropriate similarity metric. The similarity metric differs according to the 

used fingerprint extraction method.  

𝐷𝑠𝑞𝑟𝑡(𝑋, 𝑌) = ∑ ( √𝑓𝑛(𝑘, 𝑋) − √𝑓𝑛(𝑘, 𝑌) )2
𝐾                                     (3.12) 

𝐷𝑙𝑜𝑔(𝑋, 𝑌) = ∑ (𝑙𝑜𝑔(1 + 𝑓𝑛(𝑘, 𝑋)) − log (1 + 𝑓𝑛(𝑘, 𝑌)))2
𝐾         (3.13) 

Variance-stabilized (VS) (3.12) and Log transformed (LT) Euclidean distances 

(3.13) of compared experiments was performed to make direct comparison of 

frequency vectors. Let 𝑋 and 𝑌 be two compared fingerprints; represents 

frequency of the k-mer 𝑘 in 𝑋 is given by 𝑓𝑛(𝑘, 𝑋), while 𝑓𝑛(𝑘, 𝑌) refers to 

frequency of the same k-mer in  𝑌. The score ranges between 0 and 1, 0 refers to 

the most similar experiments, while the score closing to 1 represents decreasing 

similarity.  

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑐𝑜𝑠(𝜃) =
𝑋∙𝑌

||𝑋||||𝑌||
=

∑ 𝑋𝑖𝑌𝑖
𝑛
𝑖=1

√∑ 𝑋𝑖
2𝑛

𝑖=1 √∑ 𝑌𝑖
2𝑛

𝑖=1

                  (3.14) 

In addition to this, fingerprints generated with LSA method were compared with 

Cosine distance. The obtained score (3.14) ranges between 0 and 1; if vectors are 

exactly same vectors their distance becomes 1, while they have no similarity the 

score becomes 0. 

Kullback-Leibler (KL) divergence was used compare probability distributions, 

generated by LDA model, of experiments. KL divergence has been commonly 

used in data mining and pattern recognition [91]. It is not a symmetric metric and 

generates a non-negative distance value which takes the value of 1 if the 

compared objects are exactly same. 
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𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑝𝑖𝑙𝑜𝑔
𝑝𝑖

𝑞𝑖

𝑛
𝑖=1                                           (3.15) 

𝑃 = (𝑝1, 𝑝2, … , 𝑝𝑛), 𝑄 = (𝑞1, 𝑞2, … , 𝑞𝑛) for ∑ 𝑝𝑖
𝑛
𝑖=1 = 1 and ∑ 𝑞𝑖

𝑛
𝑖=1 = 1 

Let 𝑃 and 𝑄 be two probability distributions, KL divergence between them is shown 

by 𝐷𝐾𝐿(𝑃||𝑄) (3.15). Both 𝐷𝐾𝐿(𝑃||𝑄) and the average value of 𝐷𝐾𝐿(𝑃||𝑄) and 

𝐷𝐾𝐿(𝑄||𝑃) were calculated to observe that how the retrieval results are influenced 

by those different approaches, since the KL divergence is not a symmetric metric. 

                    𝐽(𝐴, 𝐵) =
|A∩B|

|A∪B|
                                                                     (3.16)                                                                                                    

In the nullomer analysis, Jaccard and Jensen Shannon (JS) divergence were 

used.  Jaccard coefficient was used for simple nullomer analysis, while JS 

divergence was used for 1-order nullomers analysis. Jaccard index between 

absent k-mer vectors, named A and B, of the experiments to be compared is 

calculated as given in the formula (3.16). Those vectors are binary vectors in 

which 1 represents an absent k-mer, 0 corresponds a k-mer occurs in the 

corresponding experiment. The ratio of number of common absent k-mers to the 

number of all k-mers gives the Jaccard index.   

   𝐽𝑆(𝑃||𝑄) =
1

2
𝐷(𝑃||𝑀) +

1

2
𝐷(𝑄||𝑀)                  (3.17) 

       where  𝑀 =
1

2
𝑃 +

1

2
𝑄    

𝐽𝑆(𝑃||𝑄) = − ∑ 𝑀𝑙𝑜𝑔(𝑀) +
1

2
∑ 𝑃𝑙𝑜𝑔(𝑃) +

1

2
∑ 𝑄𝑙𝑜𝑔(𝑄)      (3.18) 

𝐽𝑆(𝑃||𝑄) = 𝐻(𝑀) −
1

2
𝐻(𝑃) −

1

2
𝐻(𝑄) 

    where 𝐻(𝑃) = − ∑ 𝑝𝑖
𝑛
𝑖=1 log (𝑝𝑖)  

Furthermore, Jensen Shannon (JS) divergence (3.17), (3.18) was used in the 

analysis of 1-order nullomers. The JS divergence is symmetrized and smoothed 

version of the KL divergence. Shannon entropy of the three distributions 𝑀, 𝑃 and 

𝑄 was used to calculate JS divergence. It actually measures the how these 

distributions are separable from each other.  
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Furthermore, there is an important point that needs attention when applying LDA 

model in the proposed retrieval system; the model generates an output named as 

“final.gamma“. It is a distribution matrix in which rows represents experiments; the 

columns represent the topics generated by the model. Produced topic distributions 

should be normalized such as the alpha parameter is subtracted from each row 

entry in the matrix then the row is renormalized to total value of them is 1. In this 

way, the distribution is a normal distribution that has equal mean, median and 

mode. Furthermore, various distributions (Poisson, Binomial etc.) based on the 

overall structure of the data can be used in finding KL divergence. 

3.3 Results 

This section consists of four sub-section such as; Data, Evaluation Criteria, 

Empirical Results and Implementation. The first sub-section gives information 

about whole metagenome sequencing samples dataset, second sub-section 

describes evaluation criteria of the proposed system and the third sub-section 

gives empirical results. The final sub-section describes implementation. 

3.3.1 Data 

In this study, a real human metagenomic dataset called Type 2 diabetes (T2D) 

[61]  was used to evaluate the performance of the proposed system. The dataset 

contains human gut microbiota samples collected from 199 individuals, 100 of 

them are healthy people and 99 of them patients with type 2 diabetes. There are 

different phases in the dataset named phase I and phase II, phase II was selected, 

since its coverage is higher than the other phase type. The dataset size is about 1 

terabyte and Illumina Genome Analyzer technology was used to get sequencing 

samples. The sequence data generated by this technology should be evaluated 

whether raw reads are in good or bad quality. A quality threshold is applied to 

eliminate nucleotides that have the quality value less than the threshold. The 

quality threshold is a widely used metric for assessing the accuracy of sequence 

read generation process. In this study, a quality threshold of 30 was applied to get 

base pairs that have good quality.  
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3.3.2 Evaluation criteria 

In this chapter as in the first chapter of the study, the assessment of the system 

performance was performed by defined “ground truth”. Relevance definition 

between experiments is the first step in this process. In the data collection, positive 

samples are defined as patients with type 2 diabetes and negative samples are 

healthy people. If two samples are retrieved from the same class that is to say 

positive class, they are marked as relevant, otherwise they become irrelevant 

samples. The system aims at retrieving relevant samples which are patients with 

the same disease with the query. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑛; 𝑞) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑡𝑜 𝑞 𝑖𝑛 𝑛 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛
     (3.19) 

𝑀𝐴𝑃 =  
1

|𝑄|
∑ 𝐴𝑣𝑒𝑃(𝑞)𝑞∈𝑄                                                    (3.20)                                         

𝐴𝑣𝑒𝑃(𝑞) =  
1

𝑚𝑞
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑛; 𝑞)𝑛∈𝑅𝑞

                                               (3.21) 

In order to test the system retrieval performance Mean average precision (MAP) 

(3.20) was used. It is a commonly used metric in information retrieval. The retrieval 

system produces a ranked list in ascending order based on obtained similarity 

scores for a query 𝑞. At the top of the list the most similar experiments are 

located. When calculating 𝑀𝐴𝑃 score of the each query, precision (3.19) and 

average precision 𝐴𝑣𝑒𝑃 (3.21) are calculated as given below. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is 

calculated using top 𝑛 samples; 𝑛 ∈ {1,2, … . 𝑁}. In the formulas, 𝑄 represents the 

set of all queries, locations of relevant samples in the ranked list is given by 𝑅𝑞 

and 𝑚𝑞 is the number of relevant samples to the query. Higher value of MAP 

indicates better retrieval performance.  

Furthermore, multiple sequence alignment was used for assessing the topic 

distribution process of LDA model. Multiple sequence alignment (MSA) was 

applied to discover whether sequences in same topic have some similarity. In LDA 

model, firstly topics are generated then k-mer assignment to a topic is performed. 

Sequences in same topic are expected to similar to each other, while sequences 

in different topics are expected to dissimilar from each other. At this point, 
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sequence alignment approaches provide valuable information about similarities 

between sequences. These approaches are efficient techniques to be applied in 

variety of bioinformatics analyses such as structure prediction, detecting 

structure/sequence similarity or phylogeny. There are two basic forms of those 

approaches; pairwise sequence alignment MSA. The former is used for aligning 

two sequences, while the latter is used for the alignment of three or more 

biological sequences of DNA, RNA or protein. The main goal of the MSA methods 

is to obtain maximal matching between characters of input sequences in terms of 

a scoring function. Over the past decade, plenty of MSA algorithms and programs 

have been developed to enhance alignment results. All these algorithms study on 

the same problem using various ways. Computational costs and alignment 

accuracy of the algorithms are the main issues in finding suitable algorithm for a 

specific sequence dataset. Until now, overall outcomes indicate that there is no 

perfect MSA method, because each method has its own some strengths and 

weakness based on the problem being addressed. In this study, a MSA method 

[92] which is an extension of a heuristic algorithm [93] was used to build multiple 

alignments between sequences both in the same and different topics. The method 

aims at optimizing the consistency between multiple alignments by combining the 

output of fifteen widely used MSA methods. To provide one consensus alignment 

it computes multiple alignments of the given sequences. The method generates a 

colored version of final alignment which indicates an agreement between all used 

MSA methods. A sample output of protein sequences alignment is given in Figure 

3.5. Red regions show perfect agreement; blue regions refer to weak agreement, 

while green and yellow regions should be used with caution. As can be seen from 

the figure, each residue is colored separately with respect to the alignment of that 

specific residue. The score, called CORE (Consistency of the Overall Residue 

Evaluation) index, given in the top, which is the average consistency score 

indicates quality of the alignment. It ranges between 0 and 100 and sometimes 

may be scaled to the range between 0 and 1000. The higher the score, the more 

reliable the alignment is. A star (*) indicates an entirely conserved column in MSA, 

a gap is represented by indicator of (-). 
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Figure 3.5 Sample output of used MSA method6 

Besides aligning k-mers in same and different topics, motif discovery and motif 

comparison processes were used to evaluate the topic generation process of the 

LDA model. Motif-based sequence analysis methods have been widely used for 

sequence comparison, because set of sequences are assumed to have common 

sequence pattern if they are similar sequences. A sequence motif, so-called fixed 

length pattern or conserved area, is defined as a part of DNA or protein sequence 

which is in a specific structure. A motif in DNA represents a protein-binding site, 

while a motif in protein represents a basic unit of protein folding. Those motifs, 

which have structural and biological significance, can be used to observe 

evolutionary and functional relationships between sequences. They are seen as 

candidates for functionally important sites. Identifying and characterization of such 

motifs play an important role to understand the structure of cellular processes, 

such as mechanisms of diseases, in the molecular biology. As given in Figure 3.6, 

firstly unaligned sequences are taken as input to a motif discovery algorithm and 

motifs are discovered among given sequences. Then the discovered motifs are 

                                                           
6
 Quoted from:  http://www.tcoffee.org/Projects/mcoffee/#COMMANDS. (01.08.2018) 
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searched through a known database that consists of known motifs. The searching 

process is performed by a motif comparison algorithm to find similarity between 

the query motif and motif collection. Finally, aligned motifs are obtained. In this 

manner, the relevance between the query motif and known motifs can be 

discovered.  

 

 

Figure 3.6  General view of the motif discovery and motif comparison processes 

Motif discovery aims at finding short similar sequences that occur repeatedly in as 

many as sequences. Motif discovery problem has been solved by different 

manners until now. In this study, an algorithm [94], which uses an expectation 

maximization technique, was used to find motifs among k-mers in topics generated 

by the LDA model. The algorithm gives results of discovered motifs with a 

sequence logo, e-value, sites, and width information as given in Figure 3.7. The 

sequence logo is the graphical representation of displaying discovered motifs. For 

DNA sequences different colors are used such as red, blue, orange and green 

represents nucleic acids A, C, G and T respectively. The height of the each 

character in the logo depends on its relative frequency at the given position. In 

addition to this, y-axis represents the amount of information measured in bits. The 

second output is e-value which represents the statistical significance of the motif. 

The e-value is calculated using log-likelihood ratio, width and sites information of 

the motif. It is an estimate of the expected number of motifs with the given log-
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likelihood ratio (or higher), and with the same width and site count, that one would 

find in a similarly sized set of random sequences. The method ranks motifs based 

on their e-value, motifs with a low e-value, which has the most statistically 

significant, are given at the top of the list, while the motifs, which have e-values 

greater than 0.05, are displayed partially transparent. The other output parameters 

are sites and width; the former represents a number of sites contributing to the 

structuring of the motifs, the latter corresponds to the width of the motif.  

 

 

Figure 3.7 Sample output of the used motif discovery algorithm 

Furthermore, a method [95] was used for searching for similar motifs with the 

discovered motifs through the database of known motifs. The algorithm searches a 

query motif within a database and reports a ranked list of motifs according to 

statistical significance score between the query and the target motif. The result 

also contains an optimal alignment of two given motifs. The ranked lists of motifs 

are transcription factors (TF); each of them has a model, data source and TF 

family information. TFs are proteins that bind a specific DNA sequence to regulate 

gene expression. Transcription process, which contains basic information to make 

a protein, is defined as copying DNA sequence of a gene into RNA molecule. TFs 

are the key points for performing logic operations of information to decide whether 

to express a gene.  
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3.3.3 Empirical results 

The proposed framework was evaluated using the dataset described in Section 

3.3.1. There are 199 metagenomic experiments, 99 of them are positive samples, 

the others are negative samples. Retrieving relevant samples is mainly aimed 

regarding to the relevance definition. To this end, the first process is k-mer 

frequency calculation for k values between 2 and 13.  After that, direct comparison 

of the frequency vectors was performed using LT and VS Euclidean distances. 

MAP scores of these distances based on different k values are depicted in Figure 

3.8. The obtained scores indicate that LT and VS distances have similar 

performances in retrieving relevant samples. It is clearly seen that there is an 

obvious increment in MAP scores with the increasing values of k, because greater 

value of k value helps to better represent experiment content in the feature space. 

Table view of the obtained results was given in Table A.1. 

 

Figure 3.8 MAP scores of the Log transformed and Variance-stabilized Euclidean   

distances 
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In addition to the direct comparison of frequency vectors, two different 

fingerprinting approaches were performed in this study. LSA retrieval performance 

is given in Figure 3.9. MAP scores were computed for several values of d 

parameter, number of reduced dimensions, such as 10, 15, 20, 25 and 30. MAP 

scores were not computed for d >10, because 2-mer vector size is equal to 10. It is 

clearly seen that the best retrieval performance was achieved at d=10 for 2-mers 

among all k-mers. For 2-mers, it is much better to perform retrieval process with all 

k-mers, though it is not possible to use all k-mers for high k values, due to 

excessive increment in vector size. Furthermore, there is an exponential increment 

in k-mer vector size for k>6, so feature selection methods were performed to 

decrease the computational cost. As can be seen from the figure, the fingerprinting 

method performs well in general with the parameter d=15 for all k values, since the 

highest average MAP was observed at this value. Table view of the results was 

given in Table A.2. 

 

 

Figure 3.9 MAP scores of LSA fingerprint extraction method for different d values 
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LDA method was applied as the second fingerprinting approach in the proposed 

framework. There are some parameters, alpha (α), number of topics (𝑘) and 

iteration number (𝑖𝑡𝑒𝑟), to be defined before application of the model. In this study, 

these parameters were set as experimentally, since there is no known rule about 

the parameter selection. The MAP score which is greater than the score of direct 

comparison was selected as the final performance score for each k-mer. 

Moreover, the excessive growth of k-mer vector size for great k values has 

become the feature selection methods the basic need for efficient retrieval 

process. To this end, tf-idf, CAE, and combinatorial approach were performed to 

decrease the computational cost for k>6. When applying tf-idf method for 12-mers 

and 13-mers, a modified version of tf-idf approach was performed. Due to the fact 

that experiments have distinct k-mers for greater value of k, size of vocabulary 

used in LDA model has been growing extremely. Actually, the size of vocabulary is 

not expected to be too large, it is considered that it should be proportional to the k-

mer vector size. In order to avoid this increase, the approach of “select only the 

terms which occur in maximum number of documents” was performed for the k-

mer selection of 12-mers and 13-mers. Firstly, tf-idf scores of k-mers were 

calculated, then k-mers were sorted in descending order based on the obtained 

scores. After that, occurring number of k-mers among all experiments in the 

corpus was calculated and k-mers occurred in the maximum number of 

experiments were selected. Thus, a vocabulary with a considerable size was 

obtained to perform LDA model efficiently. LDA retrieval performance was given in 

Figure 3.10, beside that detailed information of the model parameters, feature 

selection methods, numbers of k-mers were given in Table A.3. The highest MAP 

scores of each run for each k value were given in bold in the table. As can be seen 

from the results, there is an obvious increment in the performance of LDA for k 

values between 2 and 9, but it has not achieved in finding relevant samples for 

k>9. This case can be explained that selecting informative k-mers by used feature 

selection methods has not become successful in the vector space model.  
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Figure 3.10 MAP scores of LDA fingerprint extraction method for different k values 

Moreover, to evaluate the robustness of the LDA model with respect to the 

different runs, the model was run ten times for 7-mers. After getting MAP scores 

for each run, a standard deviation of obtained MAP scores, the value of 0.0022, 

was calculated. The value shows that MAP scores are close to each other. In 

other words, the LDA model is a robust model in retrieving similar sequence 

samples. In addition, the combinatorial feature selection method was only applied 

for 7-mers to test the method.  Best retrieval performance for 7-mers was achieved 

with this FS method. 

As stated previously, LDA model assigns each k-mer to the one of the obtained 

topics. Topic level-distributions of 13-mers were used for evaluation of this 

assignment. Because of high k value stores more information than other k-mers, 

k=13 was selected for the evaluation of the model. Table 3.1 depicts the 13-mer 

lists for five obtained topics. K-mers in same topic are expected to have some 

biological similarities. Hence, MSA algorithm was performed for both the 

sequences in topic-1 and sequences from different topics given in the Table 3.1. 

Figure 3.11 gives MSA results which consist of two different cases; alignments of 

sequences from same topic (topic-1) are given in the first part (a) and alignments 

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

M
A

P
 s

co
re

s 

k values 



63 

 

of sequences from different topics are given in the second part. To build multiple 

alignments for these cases, a MSA tool described in the Section 3.3.2 was used. 

In the figure, colored MSA’s with CORE (Consistency of the Overall Residue 

Evaluation) index scores are given. The topmost score is the average consistency 

score for each sequence. It is predicted that alignment score of sequences in 

same topic should be more consistent than results of sequences from different 

topics. According to the result, a larger consistency score (625) for the first case is 

obtained than the other case (305). This means that sequences in same topic are 

closer to each other than the sequences in different topic. Furthermore, numbers 

of red regions, which show a perfect agreement between the used methods, in 

topic-1 are higher than the regions in the different topics.    

Table 3.1 Top ten ranked 13-mers for first five generated topics by LDA model 

  topic-1 topic-2 topic-3 topic-4 topic-5 

seq1 CCTAAGGGTCGCC CCCTAGGAGCAGA CCTAGCATCCCAG CTAGCGGCTATAG CCTAACTACCCTA 

seq2 CTAAGGTCCGTCC ATCTATCCCCCCC GACCTCACACGTA CAACCTAGCCGTC CCCTAGGCGATTA 

seq3 CCTAACTACCCTA GATCCTAACCAGC AGACTTAGGACCC AGAGATGTGTCCC AGTCAACCCCGAG 

seq4 CCTATAGGTCGTC CACGCGATGTGTA ACCCTAGCCCGAA CCGCACTAGGCAC ACGAGACCTCTTA 

seq5 CATCCTAAGGGCG AGTCCGTCGCTAG AGTTGGGTACCCG AGTAACCGACTAA AGGACCATAGTTC 

seq6 CCATAGGGCCGTC CTAGCGGAGTCGA CTAGCGTGGCAAG ACCAGCTAGGGCT CTATAGTTGTACA 

seq7 AGGACCATAGTTC GACGTCTCAGTTA CCTAATGAGGGAC CCCCCTTAACCCC AGTCTCGCGAGCA 

seq8 ACACACGTACCCT AACACTACACGTA ACACTCAACCTCG ACTTGAGTCTCTA ACTTAGCGCGACG 

seq9 ACTTAGCGCGACG CCTAGTCAGCAGG TAGGACCCACATA GAACCCCTACTGA CGGATAGCTAGAA 

seq10 CATCCTAAGGGCG CACGTTAGTTGGA CAGCCCTAGTTCG AGTTGTACGACTA CTAAGGGTTAAAC 

 

A motif was discovered among the sequences occurred in topic-1. It is a 9-base 

long sequence and its logo is given in Figure 3.12. The motif was discovered by e-

value of 1.5E-006 which means that it is a statistically significant motif. Besides 

this, it is assumed that motifs with small e-values (e.g. less than 0.001) are very 

unlikely to be random sequence artifacts. The obtained e-value is very smaller 

than the specified threshold, the discovered motif does not occur in randomly 

among sequences. Moreover, as can be seen from the given logo, C and T bases 

generally occur in the first two positions in the discovered motif. Motif locations 

based on each sequence is given in the appendix in the Figure A.1. The figure 
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demonstrates the motif site locations. The position and strength of the motif were 

represented by individual blocks, while the significance of the site is depicted by 

the height of each block. The height is calculated to be proportional to the negative 

logarithm of the p-value of the site, truncated at the height for a p-value of 1E-10. 

 

Figure 3.11 (a) MSA result of 13-mers in topic-1 and (b) MSA result of 13-mers in 

different topics 

To find similar motifs with the discovered motif in known motif databases, motif 

comparison method was performed. After having selected Human DNA database, 

searching for similar motifs was applied for the discovered motif.  According to the 

optimal alignment results, most significant matches with the target motif were 

generated by the method. The obtained motifs are transcription factors which are 

given in Table 3.2. Each motif is given with its model name and transcription factor 

name.  

 



65 

 

 

Figure 3.12 Sequence logo of the discovered motif 

Table 3.2 Transcription factor list of the discovered motif 

Model Transcription Factor 

ISL1_HUMAN.H11MO.0.A ISL1 

HXB4_HUMAN.H11MO.0.B  HOXB4 

SOX9_HUMAN.H11MO.0.B  SOX9 

ARNT_HUMAN.H11MO.0.B  ARNT  

ETV1_HUMAN.H11MO.0.A  ETV1 

 

In this study, LSA and LDA were used to obtain fingerprints of the experiments. 

Retrieval performance of those methods was compared to the direct comparison 

of the frequency vectors. The comparative results of these methods and direct 

comparison were given in Figure 3.13. In direct comparison, Log score and Var 

score Euclidean distance performances were given separately. The obtained 

results depicts that LSA has achieved in detecting similar metagenomic 

experiments for k<11. In addition to this, LDA has close performance with LSA 

method for k values between 5 and 8. It is also clearly observed that direct 

comparison of frequency vectors has become more successful rather than 

http://meme-suite.org/opal-jobs/appTOMTOM_5.0.1_1534331824022-1325054059/tomtom.html#match_0_3
http://www.genenames.org/cgi-bin/gene_symbol_report?match=ZBTB7A
http://meme-suite.org/opal-jobs/appTOMTOM_5.0.1_1534331824022-1325054059/tomtom.html#match_0_2
http://www.genenames.org/cgi-bin/gene_symbol_report?match=ASCL1
http://meme-suite.org/opal-jobs/appTOMTOM_5.0.1_1534331824022-1325054059/tomtom.html#match_0_4
http://www.genenames.org/cgi-bin/gene_symbol_report?match=ZNF76
http://meme-suite.org/opal-jobs/appTOMTOM_5.0.1_1534331824022-1325054059/tomtom.html#match_0_0
http://www.genenames.org/cgi-bin/gene_symbol_report?match=ZNF143
http://meme-suite.org/opal-jobs/appTOMTOM_5.0.1_1534331824022-1325054059/tomtom.html#match_0_1
http://www.genenames.org/cgi-bin/gene_symbol_report?match=SALL4
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fingerprinting techniques for k>11. It should be noted that direct comparison k-mer 

frequency vectors rely on only time and space factors, though a fingerprinting 

approach needs a proper feature selection method in addition to these factors. 

Thus, a new research interest should be addressed has been emerged  that is out 

of the scope of this study. According to the experimental results, LSA and LDA 

methods can be used efficiently in transforming experiment content in the feature 

space and they have promising results in detecting relevance information within 

samples for small k values.  

 

Figure 3.13 Comparative results of LSA and LDA fingerprint extraction methods  

with direct comparison by using Log score and Var score 

In this study, the dataset from the study of Seth et al. [70] was used to test the 

proposed system. Seth et al. [70] has extracted great k values (30-mers) to detect 

similarities between metagenomics samples, while in this study  the maximum k 

value is 13. However, any selection process was not applied, a lower score than 

the study of Seth et al. was achieved by the direct comparison considering 12-

mers. 

Nullomer analysis involves two parts; simple nullomer analysis and 1-order 

nullomer analysis. In order to perform nullomer analysis, firstly absent k-mers were 
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discovered for each experiment and binary vectors transformation was performed. 

In these vectors an element of the vector takes the value of 1 if the related k-mer 

is absent, otherwise it takes the value of 0 for the corresponding experiment. The 

dataset has absent k-mers for k values greater than or equal to 11. Distances 

between binary vectors of experiments were calculated with Jaccard coefficient. 

As showed in Table 3.3, Jaccard scores are not good because, experiments share 

limited absent k-mers.  In addition to this, first-order nullomer analysis was 

performed. It is note that nullomers appears at length of 11, while first-order 

nullomers appear at length of 14. For first-order nullomer, two different coefficient 

called Jaccard and Jensen Shannon divergence were used. According to the 

results given in Table 3.4, there is a little difference between MAP scores of two 

coefficients. First-order nullomers could not provide efficient retrieval performance 

as well as simple nullomers. 

Table 3.3 MAP scores of Jaccard coefficient for absent k-mers 

Absent k-mers MAP 

11-mers 0.4799 

12-mers 0.5067 

13-mers 0.5030 

 

Table 3.4 MAP scores of Jaccard and JS coefficient of the 1-order nullomers 

  
Coefficient MAP 

14-mers 

Jaccard 0.4949 

JS 0.4829 

 

As stated previously, fingerprinting approach LSA outperforms the other methods 

for k values between 2 and 10 in retrieving relevant experiments from the data 

collection. Wilcoxon Signed Rank and Paired t-test were performed to observe 

whether differences between direct comparison and fingerprinting approaches 
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were statistically significant. P-value of 8.99E-07 and 2.39E-07 between LSA and 

direct comparison using Wilcoxon Signed Rank and Paired t-test were obtained 

respectively. P-value of 1.26E-04 and 1.02E-04 were calculated in comparing 

results of LSA and LDA. It is clearly seen that obtained p-values are below the 

threshold of 0.05. That is to say, these values support that LSA has become more 

successful in detecting similarities rather than other methods. The tests were also 

used to discover the statistical significance between retrieval by fingerprint 

technique and retrieval by random and p-value of 8.83E-07 and 2.07E-08 were 

obtained. It can be concluded that fingerprinting technique based on MAP scores 

is statistically significant. To this end, the success of retrieval by fingerprinting 

approaches has statistical significance as against the retrieval by random. 

3.4 Implementation 

The system implementation was done using C++, R and MATLAB and it was 

tested on Windows platform. Boost 1.64 and zlib were used as external libraries. 

Some supplementary files (executable files, documentation and test data files) are 

available in the link: www.baskent.edu.tr/~hogul/WMS_retrieval.rar. The proposed 

framework can be used for any dataset. 
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4. CONCLUSION 

Over the recent years, a massive volume of genomic data has been accumulated 

mainly in public repositories. Rapid increase of such data raises an important need 

for efficient data analysis approaches that should be addressed by researchers. 

Due to the fact that current database applications provide meta-data based search 

which has limited searching options for retrieval of genomic data, content-based 

search approach has become an alternative solution recently. In this thesis study, 

developing content-based retrieval frameworks using different data types and 

perspectives was aimed to retrieve relevant experiments from genomic databases. 

The study contains two main chapters which are time-series experiment retrieval 

and whole-metagenome sequencing sample retrieval. The retrieval frameworks 

aim at designing and development of targeted sub-models, creation of suitable 

comparing mechanisms, evaluating the developed models with real datasets. 

The first chapter, Time-Series Experiment Retrieval, to the best our knowledge, is 

the first study that builds fingerprints of experiments using all time-series 

expression profiles for comparing experiments. In fingerprint extraction, four 

different methods such as Differentially Expression Profile-based, Transition 

Model-based, Time Warping and Lyapunov Exponent methods were used. 

According to the experimental results, Time Warping method is a promising 

fingerprinting approach in detecting relevance between time-course experiments. 

The system performance was evaluated based on ROC scores. It can be 

observed that the proposed system has become successful in retrieving relevant 

experiments with high ROC scores. The results also point that using whole time-

course experiments as a query and obtaining fingerprints with all expression 

values is an efficient approach for detecting relevance between experiments. 

Moreover, the system retrieval performance was assessed with an indirect 

evaluation based on gene-sets and direct evaluation based on manual annotations 

of experiments. Thus, discovered relevance between compared experiments with 

fingerprinting techniques was verified by these assessment approaches. In 

addition to this, adapting the proposed framework for large data collections that 

consists of a variety of organisms and platforms will be our future work. 
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In the second chapter, called Whole Metagenome Sequencing Sample Retrieval, a 

framework using novel fingerprinting approaches, LSA and LDA, was proposed. 

The proposed system contains k-mer extraction, selection, fingerprint extraction 

and comparison processes. To extract fingerprints, performing the application of 

data mining algorithms is the novelty of the study in this field. According to the 

experimental results, LSA is an efficient fingerprinting technique to represent the 

experiment content and detecting relevance information between compared 

experiments. It is also observed that LSA method outperforms LDA and direct 

comparison of frequency vectors for k<11, though the slight decrement has been 

seen in the performance at increasing value of k. Besides this, direct comparison 

has better retrieval performance rather than fingerprinting methods for k>10. 

Computational cost is the main challenge of this study, that is to say LDA 

fingerprinting technique took almost 1 week to work especially for k>10. In addition 

to this, there are some issues such as; the value of k affects precision and 

efficiency of results directly and direct comparison method for high k values is not 

reliable. Therefore, feature selection algorithms were applied for high k values to 

overcome specified issues.  

The proposed framework indicates the adaptability of text mining techniques in 

extracting fingerprints of metagenomic experiments. The obtained results clearly 

showed that used fingerprinting approaches have encouraging results to represent 

experiments in a feature space for finding similarities between them. Furthermore 

the study has two biological contributions. The first one is that if two samples are 

assumed to be relevant, they should have similarity between their experiment 

content. The experimental results have confirmed this idea by means of 

fingerprinting approaches and similarity metrics. In addition to this, LDA model 

presents the second contribution which is that sequences in same group have 

evolutionary relationships such as having similar biological functions or sharing 

common ancestor. As a conclusion, the results guide us to a new motivation for 

the developed system to give more efficient retrieval results with high k values.  

According to the observations of experimental results, biological relevance 

between experiments can be detected without being dependent on any user-

defined textual annotation. As against traditional meta-data-based retrieval 
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techniques, the proposed models can provide more intelligent search strategies. 

Empirical results lead to researchers to apply the proposed models in current 

database searching implementations. Moreover, the fingerprinting approaches and 

similarity metrics for different types of genomic data presented in this study is 

expected to provide a new perspective for future implementations. Finally, the 

proposed retrieval frameworks can be used in a laboratory environment, so 

biological knowledge extracted from experiments can be used in building new 

hypothesis.  
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APPENDIX 

Table A.1 MAP scores of the of Log transformed (LS) and Variance-stabilized (VS) 

Euclidean distances 

  
LS score 

MAP 
VS score 

MAP 

2-mers 0.5151 0.5128 
3-mers 0.5163 0.5168 
4-mers 0.52 0.5205 
5-mers 0.5227 0.5245 
6-mers 0.5256 0.5278 
7-mers 0.5287 0.5316 
8-mers 0.5329 0.5357 
9-mers 0.5403 0.5418 

10-mers 0.5505 0.5498 
11-mers 0.5632 0.5598 
12-mers 0.5718 0.5635 
13-mers 0.5711 0.5605 

 

Table A.2 MAP scores of LSA fingerprint extraction method by using k-mer frequency 

values 

 

 
LSA/Cosine score  

MAP 
 

 
d=3 d=10 d=15 d=20 d=25 d=30 

2-mers 0.5343 0.5895     

3-mers 0.5325 0.5474 0.5483 0.5581 0.5558 0.5635 

4-mers 0.5317 0.5398 0.5515 0.5552 0.551 0.5489 

5-mers 0.5291 0.5347 0.5522 0.5458 0.5449 0.5453 

6-mers 0.5275 0.5317 0.5518 0.5445 0.5402 0.5451 

7-mers 0.526 0.529 0.5523 0.5464 0.5424 0.5462 

8-mers 0.525 0.5266 0.561 0.5497 0.5472 0.5479 

9-mers 0.5231 0.525 0.5683 0.5568 0.5502 0.547 

10-mers 0.5202 0.5264 0.567 0.5617 0.5545 0.5513 

11-mers 0.5166 0.5372 0.5512 0.5506 0.5566 0.5493 

12-mers 0.5161 0.5213 0.5228 0.519 0.5138 0.5136 

13-mers 0.5196 0.5117 0.5203 0.5206 0.5184 0.5162 
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Table A.3 MAP scores of LDA fingerprint extraction method for k values between 2 and 

13 using different LDA model parameters 

  

  

  

KL divergence 

 
MAP 

FS 
method 

orj nof 
term 

reduced  
nof 

term 

nof 
topic 

(k) 

alpha  
(50/k) 

iter Normal Symetric 

2-mers 

run-1 No 10 10 5 10 100 0.5123 0.5127 

run-2 No 10 10 5 10 300 0.5171 0.5158 

run-3 No 10 10 5 10 500 0.5136 0.5127 

run-4 No 10 10 7 7.14 300 0.5033 0.5037 

                    

3-mers 
run-1 No 32 32 16 3.13 100 0.5161 0.5175 

run-2 No 32 32 16 3.13 300 0.5200 0.5211 

                    

4-mers 

run-1 No 136 136 10 5 20 0.5124 0.5129 

run-2 No 136 136 50 1 50 0.5225 0.5219 

run-3 No 136 136 100 0.5 100 0.5306 0.5300 

run-4 No 136 136 100 0.5 1000 0.5236 0.5199 

                    

5-mers 

run-1 No 512 512 20 2.5 100 0.5230 0.5227 

run-2 No 512 512 100 0.5 100 0.5348 0.5337 

run-3 No 512 512 100 0.5 250 0.5413 0.5400 

                    

6-mers 
run-1 No 2080 2080 50 1 100 0.5342 0.5327 

run-2 No 2080 2080 100 0.5 100 0.5378 0.5374 

                    

7-mers 

run-1 No 8192 8192 20 2.5 100 0.5250 0.5242 

run-2 No 8192 8192 100 0.5 100 0.5451 0.5448 

run-3 Yes 8192 705 100 0.5 100 0.5410 0.5389 

run-11 CAE(0.3415) 8192 200 20 2.5 100 0.5382 0.5344 

run-12 CAE(0.3661) 8192 50 20 2.5 100 0.5332 0.5310 

run-13 CAE(0.3939) 8192 10 20 2.5 100 0.5069 0.5066 

run-14 CAE(0.3997) 8192 5 20 2.5 100 0.5158 0.5155 

run-4 Comb. App. 8192 50 20 2.5 100 0.5441 0.5444 

run-5 Comb. App. 8192 50 100 0.5 100 0.5549 0.5567 

run-6 Comb. App. 8192 20 20 2.5 100 0.5452 0.5424 

                    

8-mers 

run-1 No 32896 32896 20 2.5 30 0.5289 0.5249 

run-2 No 32896 32896 50 1 50 0.5289 0.5290 

run-3 No 32896 32896 100 0.5 100 0.5514 0.5510 

run-6 CAE(0.30) 32896 2630 100 0.5 100 0.5378 0.5355 

run-7 CAE(0.30) 32896 2630 100 0.5 350 0.5505 0.5430 

run-8 CAE(0.20) 32896 16200 100 0.5 100 0.5413 0.5394 
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run-1 tf-idf 32896 2000 100 0.5 100 0.5012 0.5009 

run-2 tf-idf 32896 2000 200 0.25 150 0.4979 0.4984 

                    

9-mers 

run-1 CAE(0.35) 131072 1521 100 0.5 100 0.5368 0.5335 

run-2 CAE(0.33) 131072 1521 100 0.5 250 0.5465 0.5374 

run-3 CAE(0.33) 131072 1521 100 0.5 350 0.5521 0.5414 

run-4 CAE(0.35) 131072 3507 100 0.5 155 0.5444 0.538 

run-5 CAE(0.35) 131072 3507 100 0.5 350 0.5538 0.5431 

                    

10-mers 

run-1 CAE(0.37) 524801 1500 100 0.5 100 0.5447 0.5373 

run-2 CAE(0.37) 524801 1500 100 0.5 220 0.5488 0.5355 

run-3 CAE(0.37) 524801 1500 100 0.5 350 0.5424 0.5316 

                    

11-mers 
run-1 CAE(0.38) 2097153 1501 100 0.5 250 0.5439 0.5257 

run-2 CAE(0.38) 2097153 1501 100 0.5 350 0.5263 0.5136 

                    

12-mers 
run-5 tfidf/nof docs 8390656 1112 100 0.5 100 0.5258 0.5271 

run-6 tfidf/nof docs 8390656 1112 50 1 100 0.5256 0.5291 

                    

13-mers 

run-4 tfidf/nof docs 33554355 1160 100 0.5 100 0.5282 0.5296 

run-5 tfidf/nof docs 33554355 1160 200 0.25 100 0.5300 0.5158 

run-6 tfidf/nof docs 33554355 1160 50 1 100 0.5360 0.5287 

run-7 tfidf/nof docs 33554355 2020 100 0.5 100 0.5354 0.5352 

run-8 tfidf/nof docs 33554355 2020 200 0.25 100 0.5356 0.5300 
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            Figure A.1 Motif locations of the discovered motif 

 


