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ABSTRACT
Immunotherapy can revolutionize anti-cancer therapy if specific targets are available. Immunogenic
peptides encoded by cancer-specific genes (CSGs) may enable targeted immunotherapy, even of oligo-
mutated cancers, which lack neo-antigens generated by protein-coding missense mutations. Here, we
describe an algorithm and user-friendly software named RAVEN (Rich Analysis of Variable gene
Expressions in Numerous tissues) that automatizes the systematic and fast identification of CSG-encoded
peptides highly affine to Major Histocompatibility Complexes (MHC) starting from transcriptome data.
We applied RAVEN to a dataset assembled from 2,678 simultaneously normalized gene expression
microarrays comprising 50 tumor entities, with a focus on oligo-mutated pediatric cancers, and 71
normal tissue types. RAVEN performed a transcriptome-wide scan in each cancer entity for gender-
specific CSGs, and identified several established CSGs, but also many novel candidates potentially
suitable for targeting multiple cancer types. The specific expression of the most promising CSGs was
validated in cancer cell lines and in a comprehensive tissue-microarray. Subsequently, RAVEN identified
likely immunogenic CSG-encoded peptides by predicting their affinity to MHCs and excluded sequence
identity to abundantly expressed proteins by interrogating the UniProt protein-database. The predicted
affinity of selected peptides was validated in T2-cell peptide-binding assays in which many showed
binding-kinetics like a very immunogenic influenza control peptide. Collectively, we provide an exqui-
sitely curated catalogue of cancer-specific and highly MHC-affine peptides across 50 cancer types, and a
freely available software (https://github.com/JSGerke/RAVENsoftware) to easily apply our algorithm to
any gene expression dataset. We anticipate that our peptide libraries and software constitute a rich
resource to advance anti-cancer immunotherapy.
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Introduction

Immunotherapy is currently transforming clinical oncology
and holds promise for cure even for patients with meta-
static disease.1 The success of many immunotherapeutic
approaches, e.g. adoptive T cell therapy, largely depends
on the availability of specific immunogenic target structures
presented via Major Histocompatibility Complexes (MHCs)
on the surface of cancer cells, but not on that of normal
tissues.2 Genetically instable and hyper-mutated cancer
entities such as malignant melanoma and lung carcinoma

offer such highly specific target structures through missense
mutations in the protein coding genome that generate ‘neo-
antigens’.3

However, many cancer types such as pediatric cancers are
characterized by a remarkably stable and oligo-mutated
genome.4 In addition, the few recurrent somatic mutations
found in pediatric cancers are hardly immunogenic.5 Thus,
specific immunotherapy of oligo-mutated cancers is challen-
ging, but may be enabled by the expression of non-mutated
cancer-specific genes (CSGs).2
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Many CSGs are only expressed during early embryogenesis or
in immune-privileged germline tissues such as testis.6,7 This
restricted expression pattern increases the likelihood of circulat-
ing lymphocytes directed against immunogenic peptides
encoded by these CSGs,7 which can be exploited clinically. In
neuroblastoma and Ewing sarcoma, which are aggressive and
oligo-mutated pediatric cancers,8,9 adoptive T cell therapy tar-
geting CSGs has been successfully applied in humanized mouse
models10–13 and patients.14 Screening for additional CSGs could
be enabled by comprehensive and already available transcrip-
tome datasets of cancer and normal tissues,15 However, due to
the lack of specific algorithms and user-friendly tools, the iden-
tification of CSGs and derivative peptides with high affinity to
MHCs continues to be laborious and slow.16

To accelerate this process and to identify CSGs suitable for
targeting various oligo-mutated cancer entities, we developed an
algorithm and provide an intuitive software termed RAVEN (Rich
Analysis of Variable gene Expressions in Numerous tissues),
which automatizes the systematic and fast identification of can-
cer-specific peptides with high affinity to MHCs starting from
gene expression data. By applying RAVEN to a dataset of 2,678
gene expression microarrays comprising 50 tumor entities and 71
normal tissue types, we identified a library of peptides suitable for
targeting multiple cancers. Our datasets and software represent a
rich resource for the development of immunotherapies.

Results

Dataset assembly, workflow, and basic concepts of
RAVEN

In order to automatize the systematic and fast identification of
CSGs as well as the prediction of corresponding highly affine
peptides for any given MHC, we developed a user-friendly

software named RAVEN (Rich Analysis of Variable gene
Expressions in Numerous tissues). An overview on the work-
flow conducted by RAVEN is given in Figure 1. The software,
a detailed user manual enabling researchers to easily use the
software and our gene expression datasets are freely available
under https://github.com/JSGerke/RAVENsoftware.

Transcriptome-wide detection of CSGs overexpressed in
multiple cancer entities with RAVEN

Previous studies have shown that many established CSGs are
only expressed in subsets of specific cancer entities, which is
often referred to as ‘outlier’ expression.17,18 Indeed, many
CSGs are either virtually not expressed in somatic normal
tissues or exclusively expressed in specific lineages such as
embryonal and germline tissues.6,7 This outlier expression
discriminates cancer cells from normal somatic cells and
may offer a therapeutic window for preferentially targeting
cancer cells, e.g. by adoptive T cell therapy.2 Also, it may
increase the likelihood that lymphocytes responsive to the
proteins encoded by CSGs are preserved in the mature lym-
phocyte repertoire,7 because they are not counter-selected
during lymphocyte development. However, an outlier expres-
sion profile implies that conventional statistical tests, which
either simply aim at identifying generally upregulated CSGs
across many cancer samples (e.g. student’s t-test) or ignore
the strength of overexpression in a small subset of patients
(e.g. rank-based nonparametric tests), would fail to detect
such clinically relevant CSGs.

Therefore, we developed a scoring algorithm to scan tran-
scriptome-wide for CSGs by assigning an ‘outlier score’ (OS)
to each gene for high expression in a given cancer entity,
which is penalized by a ‘penalty score’ (PS) if high expression
in any normal tissue type is present.

Figure 1. Schematic illustration of the assembly, quality-check, and normalization of gene expression data as well as tasks executed by RAVEN.
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Both scores are calculated for each gene separately as the
mean expression level of the 95th and 75th percentile. Then,
we calculated an overall score for each gene named ‘CSG-
score’, which is built by subtracting the gene-specific PS from
the OS. This function highlights all genes overexpressed in
only a subset of cancer samples, while avoiding the misrepre-
sentation caused by extremely high outlier expression signals
in single samples.

In addition, our algorithm takes into account gender-spe-
cific normal tissue types such as uterus and prostate.
Specifically, our algorithm calculated gender-specific CSG-
scores for each gene excluding normal tissues of sexual organs
specific for the other gender (see Materials and Methods).

To analyze the expression profiles of human genes in nor-
mal and cancer tissues we compiled 83 Affymetrix HG-U133-
Plus2.0 microarray datasets for 71 normal tissues and 50 cancer
types with a focus on oligo-mutated pediatric cancers and
sarcomas, totaling to 2,678 high-quality and simultaneously
normalized samples (Supplementary Table 1). In prospect of
a future exploitation of our CSGs as clinical immunotargets, we
included graft versus host disease (GvHD)-sensitive normal
tissue types such as retina and colonic mucosa as well as normal
B and T cells to obviate fratricide effects, which can compro-
mise adoptive T cell therapies.19,20

Applying our scoring algorithm to this well-curated gene
expression dataset, RAVEN identified 806 non-redundant
CSGs (defined by a CSG-score above the 99.9th percentile of

all scores across 50 cancer entities) (Figure 2, Supplementary
Table 5). Among them we found not only many established
CSGs such as LIPI for Ewing sarcoma,21 PRAME for
neuroblastoma22,23 and members of the MAGE-family for
germinoma,24 neuroblastoma,25 synovial sarcoma,26 multiple
myeloma,27 diffuse large B cell lymphoma (DLBCL),28 and
osteosarcoma,29 but also many novel candidates of which
some appear to be suitable for targeting multiple cancer
entities (Figure 2, Supplementary Table 5, Supplementary
Figure 1).

The specific expression of nine selected CSGs was con-
firmed by qRT-PCR in a panel of cancer cell lines from six
different tumor entities. As shown in Figure 3A, there was a
high concordance of calculated CSG-scores and expression
intensities measured by microarrays in primary tumors with
relative mRNA expression levels measured by qRT-PCR in
corresponding cancer-derived cell lines.

In particular, the transcription factor PAX7 (paired box 7)
showed a very high CSG-score (>4) in multiple cancer entities
including oligo-mutated Ewing sarcoma. Therefore, we vali-
dated its strong overexpression on protein level in a subset of
these cancer entities by immunohistochemistry in a compre-
hensive tissue microarray (TMA, n = 409 samples) also con-
taining somatic and germline normal tissue types. As shown
in Figure 3B,C, PAX7 was exclusively expressed in cell nuclei
of cancer entities with high CSG-scores, while being virtually
not expressed in normal tissues. Collectively, these data

Figure 2. Overexpressed CSGs in multiple cancer entities identified with RAVEN. Relative gene expression intensities of the top-5 CSGs for each cancer entity
(excluding overlapping CSGs with other tumor entities) indicated in greyscale with black color representing high and white color low expression. Each line represents
an individual CSG (for a complete list see Supplementary Table 5); each column represents one primary tumor/leukemia/normal tissue sample. The bar graph on the
right displays the number of different cancer entities in which the corresponding CSG reached a CSG-score above the 99.9th percentile of all CSG-scores. ALL, acute
lymphoblastic leukemia; AML, acute myeloid leukemia; ATRT, atypical teratoid/rhabdoid tumor; CLL, chronic lymphatic leukemia; CML, chronic myeloid leukemia;
DLBCL, diffuse large B cell lymphoma; GIST, gastrointestinal stromal tumor; MALT, mucosa associated lymphatic tissue; MPNST, malignant peripheral nerve sheath
tumor; PNET, primitive neuroectodermal tumor.
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demonstrate that RAVEN can reliably identify CSGs with
specific overexpression in multiple cancers as compared to
normal tissues.

Prediction of non-redundant CSG-encoded peptides with
high MHC-affinity by RAVEN

To identify peptides encoded by CSGs suitable for a targeted
immunotherapy, we implemented the artificial neural net-
work (ANN) algorithm30,31 provided by the immune epitope
database IEDB 3.0.32 RAVEN can apply this ANN algorithm
to predict peptide-affinities for different peptide lengths and
the most common human and murine MHC-subtypes.

In our list of 806 CSGs, RAVEN predicted potential highly
affine peptides for 9-mers, which usually show optimal bind-
ing to most MHC class I molecules,30,33 and for HLA-A02:01,
which is the most common MHC-I in Caucasians34 with an
allele frequency of 0.2755.35 RAVEN automatically cross-
checked these peptides by a text search algorithm with
ApacheLucene36,37 against the human reference-proteome
(UniProt release 2015_06) to exclude sequence identity with
non-specifically expressed proteins. In total, RAVEN

predicted 7247 9-mer peptides with high MHC-I-affinity
(defined as a dissociation constant Kd ≤ 150 nM) of which
6589 had no sequence identity with any other protein
(Supplementary Table 6).

Predicted CSG-encoded peptides exhibit strong affinity to
MHCs

We next sought to confirm the predicted affinity of peptides to
humanHLA-A02:01 proposed by RAVEN. Therefore, we selected
among the unique 6589 peptides 79, which covered all analyzed
tumor entities except of Pediatric ALL-BCP and AML and which
had high to very high CSG-scores. For these 79 peptides, we
designed a customized solid-phase synthesized peptide-library
and assessed whether they can stabilize MHC-I on the surface of
TAP2-deficient cells in T2-binding assays. As shown in Figure 4A,
38 of 79 tested peptides (48.1%) achieved at least 50%of theMHC-
stabilizing effect of a highly immunogenic influenza control pep-
tide (GILGFVFTL, Supplementary Table 6) at a saturation dose of
100 µM. For these CSG-peptides, we repeated the T2-assays with
six different peptide concentrations (0.1 to 100 µM). Strikingly,
some of them, including the one encoded by PAX7, showed

Figure 3. Validation of the expression pattern of selected CSGs by qRT-PCR and IHC. A) Upper and middle panel: CSG-scores and corresponding expression intensities
(natural scale) of selected genes in primary Ewing sarcoma (EwS, n = 50), neuroblastoma (NB; n = 49), rhabdomyosarcoma (RMS; n = 101), liposarcoma (LPS; n = 50),
leiomyosarcoma (LMS, n = 50) and osteosarcoma tumors (OS, n = 40). Lower panel: Relative expression levels of the same genes as determined by qRT-PCR in EwS
(n = 9), NB (n = 4), RMS (n = 5) and LPS (n = 3), LMS (n = 3) and OS (n = 6) cell lines. B) Analysis of nuclear PAX7 immunoreactivity by IHC in indicated primary
tumors and normal tissues. ASPS, alveolar soft part sarcoma; GIST, gastrointestinal stromal tumor. Numbers of analyzed samples are given in parentheses. C)
Representative images of nuclear PAX7 IHC staining in cancer and selected normal tissues. Scale bar = 300 µm. UPS, undifferentiated pleomorphic sarcoma. Note: In
renal proximal tubules non-specific cytoplasmic staining for PAX7 was observed, while all nuclei showed no PAX7 immunoreactivity. This non-specific cytoplasmic
stain has been previously described for the employed anti-PAX7-antibody.56
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MHC-stabilization kinetics similar to the influenza peptide
(Figure 4B). Taken together, these experiments demonstrated
that RAVEN can identify highly affine CSG-encoded peptides
suitable for targeting multiple cancer types by leveraging publicly
available gene expression data.

Discussion

High-throughput gene expression analyses of cancers and
normal tissues generated comprehensive and freely available
transcriptome datasets.15 However, identification of CSGs and
derivative peptides with high affinity to MHCs continued to
be laborious and slow.16

Here, we reported on the development and application of a
mathematical scheme for transcriptome-wide detection of CSGs
and their corresponding highly MHC-affine peptides as immu-
nologic and clinical targets, and provide a use-friendly software
(RAVEN) along with a detailed user manual, which automatizes
this process. Applying RAVEN to a large gene expression dataset
comprising multiple and often oligo-mutated pediatric cancer
types as well as a broad spectrum of normal tissues revealed
many CSGs with diagnostic and therapeutic potential.
Moreover, we provide an analogous dataset including 19 of the
most common carcinoma entities (1,462 samples; Supplementary
Table 1, https://github.com/JSGerke/RAVENsoftware/relaeses),
which can be used for identification CSG-encoded peptides in
these tumor types. The CSG-scores for this ‘carcinoma’ dataset are
given in Supplementary Table 7.

In both the pediatric and carcinoma datasets, we observed
significant enrichments (P < 0.0001, two-tailed Chi2-test with
Yates’ correction) of established cancer-testis antigens
(Supplementary Figure 1, CTDatabase, www.cta.lncc.br38),
but also identified many novel candidates including the pio-
neer transcription factor PAX7.39 PAX7 encodes a paired box
transcription factor required for embryonal neural
development40 and renewal of skeletal muscle stem cells.41

Translocations involving PAX7 and FKHR are found in the
majority of alveolar rhabdomyosarcomas (ARMS), indicating
a role of PAX7 in the pathogenesis of myogenic tumors.42

Using RAVEN, we identified PAX7 as a strong CSG in multi-
ple oligo-mutated cancer entities such as Ewing sarcoma,
Ewing-like sarcomas with a BCOR-CCNB3-translocation
and embryonal as well as alveolar fusion-negative rhabdo-
myosarcoma. Its exclusive expression in these cancer entities
was confirmed on protein level by IHC. Strikingly, PAX7
encodes a 9-mer peptide (GLVSSISRV) with very high affinity
for the most frequent MHC-I subtype in Caucasians
(HLA-A02:01),34 rendering PAX7 as an attractive target for
immunotherapy for multiple oligo-mutated cancers. As we
focused here on the validation of peptide affinities for
HLA-A02:01, future experimental validation for predicted
peptides for other HLAs is required.

The parameters of the analysis applied in RAVEN have
been optimized to discover CSGs, which are virtually not
expressed in most somatic tissues. Although some identified
CSGs did not encode peptides suitable for immunotargets, a

Figure 4. Validation of MHC-affinity of CSG-encoded peptides in a T2-binding assay. A) Relative MHC-I-affinity of 79 selected peptides at 100 µM in T2-binding assays
as compared to a highly affine influenza peptide (peptide sequences are given in Supplementary Table 6). The colored boxes at the right side of the graph represent
the number and type of cancer entities in which the corresponding CSG encoding the indicated peptide is overexpressed. Peptides with an MHC-affinity of ≥ 50% of
the influenza peptide are highlighted in red color. Data are presented as mean and SEM of n ≥ 3 experiments. ALL, acute lymphoblastic leukemia; AML, acute
myeloid leukemia; ATRT, atypical teratoid/rhabdoid tumor; CLL, chronic lymphatic leukemia; CML, chronic myeloid leukemia; DLBCL, diffuse large B cell lymphoma;
GIST, gastrointestinal stromal tumor; MALT, mucosa associated lymphatic tissue; MPNST, malignant peripheral nerve sheath tumor; PNET, primitive neuroectodermal
tumor. B) Normalized fluorescence signals of 16 selected peptides with high MHC-affinity as compared to that of a highly affine influenza peptide in T2-binding
assays. Data are presented as mean and SEM of n ≥ 3 experiments. P values of a Spearman’s rank-order correlation are reported.
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subset of them could constitute interesting targets for con-
ventional pharmacotherapy. In fact, the CSGs FGFR4, CDK4,
and several MMPs, which are specifically overexpressed in
rhabdomyosarcoma (FGFR4), liposarcoma (CDK4), and des-
moid tumors, leiomyoma, osteosarcoma and adamantinoma-
tous craniopharyngioma (MMPs) (Supplementary Table 5),
respectively, could be targeted by specific inhibitors currently
in clinical trials.43–45

Besides their potential utility as (immune)-therapeutic tar-
gets, some CSGs may harbor the potential to serve as diag-
nostic markers: While CSGs expressed in multiple tumor
entities could be utilized for cancer-screening, CSGs exclu-
sively expressed in certain cancer types can be used to identify
and differentiate specific tumor entities. This could be impor-
tant for determining treatment options, which is often diffi-
cult in cancers of unknown primary.

As RAVEN can also be applied to datasets only contain-
ing cancer samples, RAVEN can easily identify potential
diagnostic markers among several cancers in parallel. In
principle, our work-flow embedded in RAVEN provides
an unbiased approach for transcriptome-wide detection of
CSGs, which can be adapted to many specific applications,
such as the identification of autoantibody signatures,
biomarkers, tumor vaccine targets, or membrane antigen
targets. Its performance could be further enhanced by
combining it with other datasets, on cancer plasma or
membrane proteomics. Since our algorithm provides a
quantitative and gender-specific value for each gene in
each tumor entity (Supplementary Table 5), the preferential
expression of each CSG in different cancers is apparent at a
glance. With more and more deep transcriptome sequen-
cing data available and the advent of digital gene expression
technology, we expect that RAVEN will be a highly bene-
ficial tool to maximize the identification of CSGs and,
hence, new diagnostic markers and therapeutic targets
based on these data.

Materials and methods

Microarray data

Publicly available gene expression data generated with Affymetrix
HG-U133Plus2.0 microarrays for 3,078 samples comprising 50
tumor entities and 71 normal tissue were retrieved from the Gene
Expression Omnibus (GEO) or the Array Express database at the
European Bioinformatics Institute (EBI). Accession codes are
reported in Supplementary Table 1. Microarray quality checks
were performed by analyzing the Relative Log Expression (RLE)
andNormalized Unscaled Standard Error (NUSE) scores with the
Bioconductor packages affyPLM46 and hgu133plus2hsentrezgcdf47

in the statistical language R.48 The cut-offs for defining high
quality were set as (1st quartile – [1.5 × interquartile range]) and
(3rd quartile + [1.5 × interquartile range]).

All microarrays were pre-processed (normalized) simulta-
neously in R with the Robust Multi-chip Average (RMA)
algorithm49 including background adjustment, quantile nor-
malization and summarization using custom brainarray Chip
Description Files (CDF; ENTREZG, v21) yielding one opti-
mized probe-set per gene.47

Identification of CSG-scores from normalized expression
intensities

To identify CSGs in any given gene expression dataset, we
calculated the outlier expression of a gene x in a specific
cancer c by considering the adjusted upper quartile mean of
its expression signals, as such approach avoids bias through
extreme outliers in a tiny subset of samples (above 95th

quantile).18 The adjusted upper quartile mean, named
‘Outlier Score’ (OS), of gene x in cancer type c is given as

OS x; cð Þ ¼ log ðMean Q75;Q95ð Þ; 2Þ:
Next, a ‘Penalty Score’ (PS) for gene x was calculated on the
basis of its adjusted upper quartile mean among different
types of normal human tissues n as

PS x; nð Þ ¼ Max½log ðMean Q75;Q95Þ; 2Þð �:
The CSG-score of a gene x in a given cancer type c was then
calculated as

CSG x; cð Þ ¼ OS x; cð Þ � PS x; nð Þ:
Previously reported algorithms included weighting scores for
each normal tissue type based on their possible degree of esti-
mated ‘immuno-privilege’ or even excluded highly immune-
privileged organs such as testis from calculation of a PS.18,50

In contrast, we considered each normal tissue type including
testis as equally relevant for calculating the PS of a given gene, as
otherwise our list of CSGs would be exceedingly enriched in
established cancer-testis antigens. However, as gender-specific
normal tissue types such as uterus/ovary or prostate/testis,
respectively, are irrelevant to nominate CSGs for the respective
other gender, we calculated gender-specific CSG-scores omit-
ting gender-specific tissue types for calculation of the PS of a
given gene for the respective other gender (Supplementary
Table 1). A meaningful CSG-score was determined statistically
as being equal or above the 99.9th percentile of all CSG-scores
calculated across all cancer entities. Using this cut-off, the CSG-
scores for CSGs potentially suitable for immunotherapeutic
targets in a given cancer entity were usually greater than 2.
CSG-scores greater than 3 were empirically considered as high
and those greater than 4 as very high.

Development of RAVEN (rich analysis of variable gene
expressions in numerous tissues)

We developed an application named RAVEN that incorpo-
rates several statistical methods to easily identify putative
highly immunogenic peptides encoded by CSGs from any
gene expression dataset including RNA sequencing data.

RAVEN and a detailed user manual as well as associated
datasets can be downloaded free of charge and for academic use
only under https://github.com/JSGerke/RAVENsoftware.

The graphical interface of RAVEN is simple and designed for
scientists without bioinformatics background. The current pro-
gram version developed with Java (for Windows, Linux andMac)
requires at least a Java 8 runtime environment.

RAVEN can interrogate gene expression datasets and com-
pare expression levels of different genes in the same tissue or
of the same gene in different tissues applying our algorithm as

e1481558-6 M. C. BALDAUF ET AL.

https://github.com/JSGerke/RAVENsoftware


explained above. The statistical summary of such comparisons
can be obtained in spreadsheet format and visualized by Java
library JFreeChart. Additionally, the application enables users
to retrieve either gene- or tissue-specific subsets of the inter-
rogated gene expression dataset, which can then be further
analyzed in RAVEN or other commonly used software such as
Microsoft Excel or GraphPad Prism.

In addition, RAVEN includes a pipeline combining several
bioinformatic services to offer a quick and simple way to
obtain all peptide sequences of a pre-specified length
(encoded by identified CSGs) and their affinity to different
HLA-alleles. Furthermore, RAVEN nominates all MHCs that
are predicted to present the identified peptides. To access the
UniProtKB51 database via RAVEN, we used Protein API.52

RAVEN sends a query to match gene IDs with their corre-
sponding protein IDs of different databases such as UniProt
and NCBI as well as the proteins sequence. The implemented
peptide-matching pipeline accesses the MHC-I binding pre-
diction tool provided by the Immune Epitope Database
(IEDB) Analysis Resource32 via a RESTful interface (IEDB-
API). T Cell Epitope Prediction identifies peptides binding to
MHC class I of a certain protein sequence. Therefore, RAVEN
uses artificial neural networks (ANN) and a prediction algo-
rithm developed by NetMHC.30,31 The peptide search service-
36 of UniProt is queried via a RESTful web service which API
is provided and integrated by Protein Information Resource
(PIR) using ApacheLucene for peptide text searches.36,37 In
RAVEN, this approach is available for the most common
alleles in human and mouse. In contrast to other methods
provided by RAVEN, this pipeline is independent from the
analyzed gene expression dataset but requires an internet
connection.

Human cell lines and cell culture conditions

Cells were grown at 37°C in humidified 5% CO2 atmosphere
in RPMI 1640 medium (Biochrom, Berlin, Germany) supple-
mented with 10% FCS (Biochrom) and 100 U/ml penicillin
and 100 μg/ml streptomycin (Biochrom). TAP-deficient
HLA*A02:01+ T2 cell line (somatic cell hybrid) was obtained
from P. Cresswell (Yale University School of Medicine, New
Haven, CT, USA). T2 cells were maintained in RPMI 1640
medium additionally supplemented with 1 mM sodium pyr-
uvate and non-essential amino acids (both Biochrom). Cell
line purity was confirmed by short tandem repeat profiling
(latest profiling 15th December 2015) and cells were routinely
examined by PCR for the absence of mycoplasma. A list of the
used cell lines is provided in Supplementary Table 2.

RNA extraction, reverse transcription and qRT-PCR

RNA was extracted with the Nucleospin RNA kit (Macherey-
Nagel, Düren, Germany) containing a 15 min on-column DNA
digestion step to degrade genomic DNA. RNA was reverse-tran-
scribed using High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems). qRT-PCRs were performed using SYBR
Select Master Mix (Applied Biosystems). Oligonucleotides were
purchased from MWG Eurofins Genomics (Ebersberg,
Germany). Primer sequences are listed in Supplementary

Table 3. Reactions were run in 10–20 µl final volume on a CFX
Connect instrument and analyzed using the CFX Manager 3.1
(both Bio-Rad). Gene expression levels of specific genes were
normalized to that of the housekeeping gene RPLP0.53

Human samples and ethics approval

Human tissue samples were collected at the Institute of
Pathology of the LMU Munich (Germany) with approval of
the corresponding institutional review boards. The ethics
committee of the University Hospital of the LMU Munich
approved the study (approval no. 307–16 UE).

Immunohistochemistry (IHC) and evaluation of
immunoreactivity

IHC analyses were performed on formalin-fixed, paraffin-
embedded (FFPE) tissue samples. Paraffin blocks from several
institutions were collected at the Institute of Pathology of the
LMU Munich. From all blocks, we harvested 3 cores per
sample with a core-diameter of 1 mm to assemble a tissue
microarray (TMA). A list of the included tumor types and
normal tissues is given in Supplementary Table 4. Of each
TMA block 4 µm sections were cut and stained with an iView
DAB detection kit (Ventana Medical System, Tucson, AZ)
according to the company’s protocol. Subsequent antigen
retrieval was carried out using TRIS-buffer and blockage of
endogenous peroxidase with 7.5% aqueous H2O2. TMA sec-
tions were stained at a dilution of 1:180 for 60 min at room
temperature with a monoclonal antibody against human
PAX7 raised in mouse,40 which was purchased from the
Developmental Studies Hybridoma Bank (Cat.No. PAX7-c;
Iowa City, IA). Then slides were incubated with a secondary
biotinylated anti-mouse IgG antibody (ImmPress Reagent Kit,
Peroxidase-conjugated) followed by target detection using
ABC-kit chromogen for 10 min (Dako, K3461).

At least three high-power fields (40x) of each core for every
sample were assessed. Semi-quantitative evaluation of immunor-
eactivity was carried out by two independent physicians trained in
histopathology. The percentage of cells with marker expression
was scored and classified in five grades (grade 0 = 0–19%, grade
1 = 20–39%, grade 2 = 40–59%, grade 3 = 60–79% and grade
4 = 80–100%). In addition, the intensity of marker immunoreac-
tivity was determined as grade 0 = none, grade 1 = faint, grade
2 = moderate and grade 3 = strong. For calculation of overall
immunoreactivity for the given protein, wemultiplied both grades
in analogy to UICC guidelines for hormone receptor scoring in
human breast cancers.54

Peptide binding assay using TAP deficient T2 cells

All peptides were solid-state synthesized with the highly-paralle-
lized LIPS® technology (Elephants & Peptides, Potsdam,
Germany). As a positive control, we used an established highly
affine influenza matrix protein epitope (M158-66; sequence
GILGFVFTL).55 T2 cells were washed twice with PBS and seeded
in round-bottom 96-well plates (TPP, Trasadingen, Switzerland)
at a concentration of 2 × 105 cells/well in a final volume of 200 µl.
Cells were pulsedwith increasing amounts of peptide tomeasure a
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concentration dependency of MHC-I binding. Unpulsed cells
were used as a negative control. After incubation over-night,
cells were washed twice with FACS-buffer consisting of PBS
with 2% FCS and stained for HLA-A2 using a FITC mouse anti-
human HLA-A2 antibody (BD Pharmingen™, Clone BB7) for
30 min at 4°C. For isotype control a BB515 mouse IgG2Ak anti-
body (BD Horizon™, Clone G155-178) was used. Then, cells
were washed twice in FACS-buffer before being resuspended in
PBS and analyzed using a FACSCalibur flow cytometer
(Becton Dickinson). To determine the relative peptide binding,
the fluorescence intensity of a peptide at a defined concentration
was divided by the intensity of unpulsed T2 cells.
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