A Novel Blending Method for Automatic Seamless Image Mosaicing

Ahmet Hamdi VAROL, Emre SÜMER

Abstract—An image mosaic is a panoramic image generated by assembling sequential images belonging to the same scene. This method is mainly used in mapping applications, the evaluation of the images acquired from unmanned aerial vehicles, and various computer vision applications. In this study, we proposed a novel blending method for automatic seamless image mosaicing from ground level photos taken by a digital camera. For the correction of consistent seams occurred during the mosaicing, we measured the color differences around the overlapping regions. For this purpose, first, we determined the intensity values of image pixels inside and outside the overlapping region boundary within a 1 pixel wide zone. Secondly, the intensity values were averaged and finally, the average values of color differences were applied to overlapping regions. Besides, a motion blur filter was performed for the same boundary regions in order to reduce the seams. In order to test the accuracy, a subjective evaluation metric was used. According to the results obtained, the seamless image mosaics were generated with a subjective accuracy of 74%. Our results indicate that the seams can be substantially reduced or completely eliminated, and the illumination differences are minimized.

Keywords—seamless texture, image mosaicing, motion blur, color intensity

I. Introduction

An image mosaic is a panoramic image generated by assembling sequential images belonging to the same scene and it can be obtained by understanding geometric relationships between images. The geometric relations are coordinate transformations that relate the different image coordinate systems. By applying the appropriate transformations, like affine, perspective and polynomial transformations, via a warping operation and merging the overlapping regions of warped images, it is possible to construct a single image indistinguishable from a single large image of the same object, covering the entire visible area of the scene. In image mosaicing two input images are taken and these images are merged to form a single large image. This merged single image is the output mosaiced scene [7].

Image mosaicing process consists of five steps. The first step is image extraction. In this step, image features are detected for each input images. In this task, Harris Algorithm is typically used.

The second step, image registration, is the task of matching two or more images. Registration methods can be divided into the following classes: (i) algorithms that use image pixel values directly, (ii) algorithms that use the frequency domain, (iii) algorithms that use low level features such as edges and corners and (iv) algorithms that use high-level features. The third step is the computation of homography using RANSAC algorithm. In this step, outlier points are removed. The last step is image warping and blending. Image warping is the process of digitally manipulating an image such that any shapes portrayed in the image have been significantly destroyed. Image blending blends the color pixels and aims to resolve contrast differences in the overlapped region in order to avoid seams [7].

In this study, we proposed a novel blending method for automatic seamless image mosaicing. For this purpose, firstly, we determined the intensity values of image pixels inside and outside the overlapping region boundary within a 1 pixel wide zone. Secondly, the intensity values were averaged and finally, the average values of color differences were applied to overlapping regions. Besides, a motion blur filter was performed for the same boundary regions in order to reduce the seams.

II. Feature Extraction

Feature extraction is the first step in image mosaicing. Once features have been detected, a local image patch around the feature can be extracted. This extraction may involve quite considerable amounts of image processing task. Transforming the input data into the set of features is called feature extraction. If the extracted features are carefully chosen then it is expected that the feature set will extract the relevant information from the input data in order to get mosaic image i.e. output [4].

There are feature elements like edges, corners, blobs, ridges in input images. Corners are good features used in several matching applications. The features of corners are that they are more stable features over changes of viewpoint. The other important property of corner is that if there is a corner in an image than its neighborhood will indicate an abrupt change in intensity. Corners are detected in images by applying corner detection algorithms. Some of the well known corner detection algorithms are Harris Corner detection Algorithm, SIFT (Scale

Ahmet Hamdi VAROL
Baskent University
TURKEY

Emre SÜMER
Baskent University
TURKEY
In SIFT (Scale Invariant Feature Transform) corner detection algorithm, the machine learning based FAST (Features from Accelerated Segment Test) algorithm, SURF (Speeded-up robust feature)

A. **Harris Algorithm**

Harris corner detection is a point feature extracting algorithm based on Moravec algorithm based by C. Harris and MJ Stephens in 1988. A local detecting window inside the image is designed. The average variation in intensity that results by shifting the window by a small amount in different direction is determined. At this point the centre point of the window is extracted as corner point. Shifting the window in any direction gives a large change in appearance. Harris corner detector is used for corner detection. On shifting the window if it’s a flat region than it will show no change of intensity in all direction. If an edge region is found than there will be no change of intensity along the edge direction. But if a corner is found than there will be a significant change of intensity in all direction. Harris corner detector gives a mathematical approach for determining whether the region is flat, edge or corner. Harris corner technique detects more features and it is rotational invariant and scale variant. The result of feature matching using Harris corner detector is shown in Figure 1. For the change of intensity for the shift $[u, v]$ [5].

$$E(u,v) = \sum_{x,y} w(x,y) [(I(x+u+y+v) - I(x,y))^2]$$

where $w(x, y)$ is a window function, $I(x+u, y+v)$ is the shifted intensity and $I(x, y)$ is the intensity of the individual pixel. Harris corner algorithm is given below as:

1. For each pixel (x,y) in the image calculate the autocorrelation matrix M as:

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

2. For each pixel of image has Gaussian filtering, get new matrix M, and discrete two-dimensional zero-mean Gaussian function as:

$$\text{Gauss} = \exp(-u^2 + v^2) / 2\sigma^2$$

3. Calculating the corners measure for each pixel (x,y), we get:

$$R = \{I_x^2 + I_y^2 \} - k\{I_x I_y\}^2$$

4. Choose the local maximum point. Harris method considers that the feature points are the pixel value which corresponding with the local maximum interest point.

5. Set the threshold T, detect corner points.

B. **SIFT Algorithm**

SIFT Algorithm is Scale Invariant Feature Transform. SIFT is a corner detection algorithm which detects features in an image [5]. SIFT extracts from an image a set of descriptors. Each one of the extracted descriptors is invariant to an image translation, rotation and zoom-out. SIFT descriptors have also proved to be robust to a wide family of image transformations, such as slight changes of viewpoint, noise, blur, contrast changes, scene deformation, while remaining discriminative enough for matching purposes [6]. It can be also used to identify similar objects in other images. SIFT produces keypoint-descriptors which are the image features [5]. Summary of the SIFT algorithm [6]:

1. Compute the Gaussian scale-space.
2. Compute the Difference of Gaussians (DoG).
3. Find candidate keypoints (3d discrete extrema of DoG)
4. Refine candidate keypoints location with sub-pixel precision.
5. Filter unstable keypoints due to noise.
6. Filter unstable keypoints laying on edges.
7. Assign a reference orientation to each keypoint.
8. Build the keypoints descriptor.

For a set of input frames SIFT extracts features, Image matching is done using Best Bin First (BBF) algorithm for estimating initial matching points between input frames. The false matches are removed in the image pair using RANSAC algorithm. Reprojection of frames are done by defining its size, length and width. Finally, stitching is performed to obtain a final output mosaic image. In stitching, each pixel in every frame of the scene is checked whether it belongs to the warped second frame. If so, then that pixel is assigned the value of the corresponding pixel from the first frame. It is a robust algorithm for image comparison but it is slow due to its running time [5].

C. **FAST Algorithm**

FAST is a corner detector algorithm founded by Trajkovic and Hedley in 1998. The detection of corner was prioritized
IV. Computing Homography

A. Homography

Homography is mapping between two spaces which often used to represent the correspondence between two images of the same scene. It is widely used for images where multiple images are taken from a rotating camera having a fixed camera centre ultimately warped together to produce a panoramic view [2].

A 2D point (x; y) in an image can be represented as a 3D vector \(x = (x_1; x_2; x_3) \) where \(x = X_1/X_3 \) and \(y = X_2/X_3 \). This is called the homogeneous representation of a point and it lies on the projective plane \(\mathbb{P}^2 \). A homography is an invertible mapping of points and lines on the projective plane \(\mathbb{P}^2 \). Other terms used for this transformation includes collineation, projectivity, and planar projective transformation. Hartley and Zisserman provide the specific definition that a homography is an invertible mapping from \(\mathbb{P}^2 \) to itself such that three points lie on the same line if and only if their mapped points are also collinear. They also give an algebraic definition by proving the following theorem: A mapping from \(\mathbb{P}^1 \rightarrow \mathbb{P}^2 \) is a projectivity if and only if there exists a non-singular 3\(\times\)3-matrix \(H \) such that for any point in \(\mathbb{P}^2 \) represented by vector \(x \) it is true that its mapped point equals to \(Hx \). This tells us that in order to calculate the homography that maps each \(x_i \) to its corresponding \(x'_i \). It is sufficient to calculate the 3\(\times\)3 homography matrix, \(H \). All of the homography estimation algorithms that are discussed require a set of correspondences as input. So far these algorithms are only robust with respect to noise if the source of this noise is in the measurement of the correspondence feature positions. There will be other situations where the input will be corrupted with completely false correspondences, meaning that the two features in the images don't correspond to the same real world feature at all. There is a need to discuss ways to distinguish inlier and outlier correspondences so that the homography can be estimated robustly using only inlier matches [8].

B. Ransac Algorithm

The RANdom SAmple Consensus (RANSAC) algorithm proposed by Fischler and Bolles is a general parameter estimation approach designed to cope with a large proportion of outliers in the input data. Unlike many of the common robust estimation techniques such as M-estimators and least-median squares that have been adopted by the computer vision community from the statistics literature, RANSAC was developed from within the computer vision community [3].

RANSAC is a resampling technique that generates candidate solutions by using the minimum number observations (data points) required to estimate the underlying model parameters. As pointed out by Fischler and Bolles, unlike conventional sampling techniques that use as much of the data as possible to obtain an initial solution and then proceed to prune outliers, RANSAC uses the smallest set possible and proceeds to enlarge this set with consistent data points [3].
The algorithm is summarized as follows:

1. Select randomly the minimum number of points required to determine the model parameters.
2. Solve for the parameters of the model.
3. Determine how many points from the set of all points fit with a predefined tolerance ε.
4. If the fraction of the number of inliers over the total number points in the set exceeds a predefined threshold T, re-estimate the model parameters using all the identified inliers and terminate.
5. Otherwise, repeat steps 1 through 4 (maximum of N times).

The number of iterations, N, is chosen high enough to ensure that the probability p (usually set to 0.99) that at least one of the sets of random samples does not include an outlier. Let u represent the probability that any selected data point is an inlier and $v = 1 - u$ the probability of observing an outlier. N iterations of the minimum number of points denoted m are required, where

$$1 - p = (1 - u^m)^N$$

and thus with some manipulation,

$$N = \frac{\log(1 - p)}{\log(1 - (1 - v)^m)}$$

v. Warping and Blending

A. Image Warping

Image Warping is the process of digitally manipulating an image such that any shapes portrayed in the image have been significantly distorted. Warping may be used for correcting image distortion as well as for creative purposes (e.g., morphing). While an image can be transformed in various ways, pure warping means that points are mapped to points without changing the colors. This can be based mathematically on any function from part of the plane to the plane. If the function is injective the original can be reconstructed. If the function is a bijection any image can be inversely transformed. The last step is to warp and blend all the input images to an output composite mosaic. First we need to make out the output mosaic size by computing the range of warped image coordinates for each input image. As described earlier we can easily do this by mapping four corners of each source image forward and computing the minimum x and y, maximum x and y coordinates to determine the size of the output image. Finally x-offset and y-offset values specifying the offset of the reference image origin relative to the output panorama needs to be calculated. The next step is to use the inverse warping as described above for mapping the pixels from each input image to the plane defined by the reference image, is there to perform the forward and inverse warping of points, respectively [8].

B. Image Blending

The final step is to blend the colour pixels in the overlapped region to avoid the seams. Simplest available form is to use feathering, which uses weighted averaging colour values to blend the overlapping pixels. An alpha factor is generally used, which is often called alpha channel. It takes the value of 1 at the center pixel and becomes 0 after decreasing linearly to the border pixels. In case at least two images overlap in an output panorama we will use the alpha values to compute the colour at a pixel in there [8]. An example image mosaicing result is illustrated in Figure 2.

In this study, we proposed a novel blending method for automatic seamless image mosaicing. For this purpose, firstly, we found the border of overlapping area and then determined the corner points of that border. Then, we constructed a closed frame using that corner points. To apply motion blur filtering and to determine the intensity values of image pixels inside and outside the overlapping region, we need the points, which are on the line segment. Besides, the angle of that line segment is also computed. Secondly, the intensity values were averaged and finally, the average values of color differences were applied to overlapping regions. Besides, a motion blur filtering was performed for the same boundaries in order to reduce the seams. This filtering is capable of linear, radial, and zoom movements. The blurring size and direction can be altered by adjusting the length and angle parameters. In this study, the linear type of filter was used so that the blurring occurs in a single direction either horizontally or vertically. By applying this filter, for each point, the blur intensity was kept as 3, and for the motion blurring angle, we took angle which is found in the last step and add 90°. In Figure 3, the overlapping region boundary and image pixels inside and outside the overlapping region boundary within a 1 pixel wide zone are presented.
VI. Results

In order to evaluate the accuracy, a web page has been prepared for subjective assessment (www.baskent.edu.tr/~avarol/tez). In the web page, ten image pairs were presented to be evaluated by the academic staff of Baskent University. The first image was created by merging two images without applying any blending process, while the second was obtained after removing seams in overlapping areas. We used a rating scale for assessment, which is adapted from [1], shown in Table I. The experimental test results were also presented in Table II. According to the results, the average ratings were found to be between 1.6 and 4.2. The most successful image pair was found to be image set#1 while the least successful pair was determined to be image set#9. As a result, the overall success rate was found to be 74%. The resulting images of set#1 and set#9 are illustrated in Figure 4 and 5, respectively.

<table>
<thead>
<tr>
<th>Value</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Excellent</td>
<td>The success of seamless mosaicing is extremely in high quality</td>
</tr>
<tr>
<td>2</td>
<td>Fine</td>
<td>The success of seamless mosaicking is in high quality</td>
</tr>
<tr>
<td>3</td>
<td>Passable</td>
<td>The success of seamless mosaicking is in acceptable quality</td>
</tr>
<tr>
<td>4</td>
<td>Marginal</td>
<td>The success of seamless mosaicking is in poor quality</td>
</tr>
<tr>
<td>5</td>
<td>Unusable</td>
<td>The success of seamless mosaicking is so bad</td>
</tr>
</tbody>
</table>

TABLE II. THE RESULT OF SUBJECTIVE ASSESSMENT FOR EACH IMAGE SET

<table>
<thead>
<tr>
<th>Avg. Rating</th>
<th>IMAGE SET #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>1.7</td>
</tr>
</tbody>
</table>

VII. Conclusion

In this paper, we described how to construct image mosaics, its well known methods and algorithms. Besides, we suggested a method to remove the seams after a mosaicing process. The proposed intensity based approach was found to be quite promising since 74% success rate was reached for a test data set, which is composed of ten image pairs. Moreover, motion blurring was found to be successful in elimination of the seams. Further, we adapted a well-known subjective assessment technique in order to evaluate the blending accuracy. Consequently, we believe that the proposed blending method enhanced the mosaicing results aesthetically by removing the sharp transitions and reducing the illumination differences remarkably.

References

About Author(s):

Ahmet Hamdi VAROL

Ahmet Hamdi Varol is a graduate student in the Department of Computer Engineering, Baskent University, Ankara, Turkey. His primary research interests are computer vision and image processing.

![Ahmet Hamdi VAROL](image)

Dr. Emre SÜMER

Dr. Emre Sümer received his Ph.D. degree in Geodetic and Geographic Information Technologies from Middle East Technical University, Ankara, Turkey in 2011. He is an assistant professor in the Department of Computer Engineering, Baskent University, Ankara, Turkey. His primary research interests are computer vision, image processing and pattern recognition.

![Dr. Emre SÜMER](image)