BASKENT UNIVERSITY
INSTITUTE OF SCIENCE AND ENGINEERING
DEPARTMENT OF COMPUTER ENGINEERING
MASTER OF SCIENCE IN COMPUTER ENGINEERING

END-TO-END, REAL TIME AND ROBUST BEHAVIORAL
PREDICTION MODULE WITH ROBOT OPERATING SYSTEM FOR
AUTONOMOUS VEHICLES

BY

TOLGA KAYIN

MASTER OF SCIENCE THESIS

ANKARA - 2023

BASKENT UNIVERSITY
INSTITUTE OF SCIENCE AND ENGINEERING
DEPARTMENT OF COMPUTER ENGINEERING
MASTER OF SCIENCE IN COMPUTER ENGINEERING

END-TO-END, REAL TIME AND ROBUST BEHAVIORAL
PREDICTION MODULE WITH ROBOT OPERATING SYSTEM FOR
AUTONOMOUS VEHICLES

BY

TOLGA KAYIN

MASTER OF SCIENCE THESIS

ADVISOR

ASST. PROF. DR. CAGATAY BERKE ERDAS

ANKARA - 2023

BASKENT UNIVERSITY
INSTITUTE OF SCIENCE AND ENGINEERING

This study, which was prepared by Tolga KAYIN, for the program of Master of Science in
Computer Engineering, has been approved in partial fulfillment of the requirements for the
degree of MASTER OF SCIENCE in Computer Engineering Department by following
committee.

Date of Thesis Defense: 11/ 10/ 2023

Thesis Title: End-to-End, Real Time and Robust Behavioral Prediction Module With

Robot Operating System For Autonomous Vehicles

Examining Committee Members Signature

Asst. Prof. Dr. Cagatay Berke ERDAS - Bagkent University ...

Prof. Dr. Ugur Murat LELOGLU —
University of Turkish Aeronautical Association ...

Assoc. Prof. Dr. Emre SUMER - Bagkent University ...

APPROVAL

Prof. Dr. Faruk ELALDI
Director, Institute of Science and Engineering
Date: ... /... /2023

BASKENT UNIVERSITY
INSTITUTE OF SCIENCE AND ENGINEERING
MASTER'S / DOCTORAL THESIS/ PROJECT ORIGINALITY REPORT

Date: 11/10/ 2023
Student's Name, Surname: Tolga KAYIN
Student ID : 22110457
Department: Computer Engineering

Program : Master of Science in Computer Engineering with Thesis

Advisor Title/Name, Surname: Dr. Asst. Prof. Cagatay Berke ERDAS
Thesis Title; End-to-End, Real Time and Robust Behavioral Prediction Module With

Robot Operating System For Autonomous Vehicles

The originality report of my master's thesis, as titled above, which consists of Introduction, Main
Chapters, and Conclusion sections, totaling 46 pages, was generated by applying the following filters via
the Turnitin plagiarism detection system by my thesis advisor on 11/10/2023. According to this
originality report, the similarity rate of my thesis is 14%. The applied filters were:

1. Excluding the bibliography
2. Excluding quotations
3. Excluding text segments with less than five (5) overlapping words

| have reviewed the "Procedures and Principles for Obtaining and Using the Originality Report for Thesis
Studies at Baskent University." I declare that my thesis conforms to the maximum similarity rates
stipulated in the application rules, and | accept any legal responsibility that may arise if it is determined
otherwise. | also affirm that the information provided above is accurate.

Student's Signature:

APPROVAL
Date: 11 /10 / 2023
Dr. Asst. Prof. Cagatay Berke ERDAS

Advisor's Signature:

ACKNOWLEDGEMENTS
I would like to thank to my advisor Asst. Prof. Dr. Cagatay Berke ERDAS for his advices

and guidance. His valuable advices helped me during the whole period of my research.

I would also like to thank my family for supporting me throughout writing this thesis and
my studies.

ABSTRACT

Tolga KAYIN

END-TO-END, REAL TIME AND ROBUST BEHAVIORAL PREDICTION
MODULE WITH ROBOT OPERATING SYSTEM FOR AUTONOMOUS
VEHICLES

Baskent University Institute of Science

The Department of Computer

Engineering 2023

In the world, where urbanization and population density are increasing, transportation
methods are also diversifying and the use of unmanned vehicles is becoming widespread. In
order for unmanned vehicles to perform their tasks autonomously, they need to be able to
perceive their own position, the environment and predict the possible movements/routes of
environmental factors, similar to living things. In autonomous vehicles, it is extremely
important for the safety of the vehicle and the surrounding factors, to be able to forecast the
probable future location of the objects around it with high performance so that the vehicle
can plan itself correctly. Due to the stated reasons, the behavioral prediction module is a very
important component for autonomous vehicles, especially in moving environments. In this
study, a robotic behavioral prediction module has been developed to enable the autonomous
vehicle to plan more safely and successfully. Data has been collected by driving with an
autonomous vehicle, and the developed module has been tested. The relevant module has
been integrated into the ongoing autonomy project. The proposed method has been observed

to operate accurately and fast within up to three seconds.

KEYWORDS: Behavioral Prediction, Trajectory Prediction, Autonomous Vehicles,
Robotic Operating System, ROS

Advisor: Asst. Prof. Dr. Cagatay Berke ERDAS, Baskent University, Department of

Computer Engineering.

OZET

Tolga KAYIN

OTONOM ARACLAR ICIN UCTAN-UCA, GERCEK ZAMANLI VE HATAYA
DIRENCLI DAVRANISSAL TAHMIN MODULU

Baskent Universitesi Fen Bilimleri Enstitiisii

Bilgisayar Miihendisligi Anabilim Dah

2023

Kiiresel olarak niifus yogunlugunun arttig1 sehirlesme siirecinde, ulasim segenekleri
cesitlenmekte ve insansiz araglar daha yaygin hale gelmektedir. Insansiz araglar, kendi
gorevlerini otonom bir sekilde yerine getirebilmek i¢in canli organizmalar gibi ¢evrelerini
algilayabilmeli, konumlarini belirleyebilmeli ve ¢cevresel faktorlerin olasi hareketlerini ya da
yollarini tahmin edebilmelidir. Otonom araglar, etkili bir planlama gergeklestirebilmek icin
cevredeki nesnelerin gelecekteki pozisyonlarinit dogru bir sekilde tahmin edebilmelidir. Bu,
hem aracin giivenligi hem de ¢evredeki faktorlerin giivenligi agisindan son derece kritik bir
unsurdur. Davranigsal tahmin yetenegi olmayan bir otonom arag, tim nesneleri sabit olarak
varsayarak planlama yapar, ancak bu, otoyol kosullar1 veya sehir i¢i trafik senaryolarinda
araclarin veya yayalarin potansiyel yollarim1 hesaba katmadiginda kazalarin kaginilmaz
oldugu anlamina gelir. Bu ¢alismada, giivenlik risklerini en aza indirmek amaciyla hizli ve
etkili bir robotik davranigsal tahmin modiilii gelistirilmistir. Otonom arag ile siiriis yapilarak
veri toplanmistir ve gelistirilen modiil test edilmistir. Ilgili modiil hali hazirdaki ¢alisilan
otonomi projesine entegre edilmistir. Onerilen metodun ¢ saniyeye kadar, belirli gevresel

obje sayisinda, basarili ve hizli bir sekilde calistig1 goriilmiistiir.

ANAHTAR KELIMELER: Davranigsal Tahminleme, Glizergah Tahminleme, Otonom
Araglar, Robot Isletim Sistemi

Damsman: Dr. Ogr. Uyesi Cagatay Berke ERDAS, Baskent Universitesi, Bilgisayar

Miihendisligi Bolumd.

TABLE OF CONTENTS

TABLE OF CONTENTS...citiiiiiiiiiiiiiiiiiiiiiiiiiiiietiatetieiatineenasnnees
LIST OF TABLES....ciiutiitiiiiiiiiiiiiiiiiiiiiiiiiiiitiitiitciatitcsssisccsssscsncene
LIST OF FIGURES.cutiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicicieiecenascneeaes

LIST OF SYMBOLS AND ABBREVIATIONS....cccctiiiiiiiiiniieiiiininnnnee.

1. INTRODUCTION...ctiiitiiiiiiiiiiiiiiiiiiiiieiieiitiieiieciseeiscisccscsasanes

1.1. Problem Definition.......ccccciviiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiinecieen.
1.2. Problem Solution.......cccccvveiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiciiiieen.
1.3. AImS & ODJECtiVeS..oiuvineiiiriiiieieiienieriiiierieeiierieeineieciacenns

1.4. Organization of the Thesis.......ccccviuviuiiiiiiiiiiiiiiieiiiiiiiiieiieineenns
2. LITERATURE REVIEW. ..cutiiiiiiiiiiiiiiiiiiiiiiititiietiecineieciacinccnenes

2.0, PrevVioUS LiteratllC....eeeeeeeeeeeeeeeeeeeesseeesseeeecssssnsssssecsessssnsssecnes

2.2. Limitati

0NS Of Previous ReSearch.eveeeiiiiiieeererieeieieenseeecesenenns

2.3. Contributions of the StUdY....eeeeeieeiiiiieiiiiiiiiiieieneiiieeeecnecnsnn
3. MATERIALS & METHODS.....ciiiiiiiitiiieiiinteieetecascsnssonascanscanascnnses
R 8 B) 1

3.2, EVAlUAtION M EtEiCS.euueeerueeeeneeeeenerereeesessnescssssssssessesssssasssssasses

3.3. Robotic

MIddIEWAT . . eereeiiereeiereneiereeeeereseeesssesesssesosssesonssencnses

3.4. Model ArChiteCtUTC..eee.eeeeeeeeenesreeeeeeeeeesseseseessssssssssessssssssoascns
3.5. The Developed Software Methodology.........cccccveveiuininrnrnrnrnnnnnnnne

V2 2] 1 T
4.1. Performance Evaluation Results........cceeeviiiniiniieiieriieiiecnecnnensen
ZAZ T 11 1 T

. CONCLUSION. . ttittutiinttseatesnecsesssesssssssssssssssssssssssssssssssssssassssssas

REFERENCES

Vi

© W W N NN P <

A OA W N NN PP R R R R PR
P O N A A O N O O W W N

LIST OF TABLES

Page

Table 2.1 Comparison of the trajectory prediction RMSE results of models using

various methods trained on NGSIM dataset under highway condition 10
Table 2.2 Comparison of the trajectory prediction FDE, ADE and MR results of

models using various methods trained in Argoverse data set under urban

[610] 1o 111 o] o SRR 11
Table 3.1 Collected R0ShAag fOr teSTINGcoviiiiiiieieieiee e 14
Table 4.1 FDE results of Trajectron++ model on nuScenes and Rosbag Dataset............ 35
Table 4.2 RMSE results of tested ROSDAJc.uiviiiiiiiieienseseee e 36
Table 4.3 minFDE , minADE and MR results of tested RoSbag..........cccccoeevvninininnnnne 37

LIST OF FIGURES

Page
Figure 2.1. Trajectory prediction methods............coovuiiiiiiiiiiiiiiiieeeeea, 3
Figure 2.2. Behavioral prediction research areasccccocvvvevvevciiesieese s 11
Figure 3.1 Trajectron++ model architeCture............ccoevvveiieii i 18
Figure 3.2 Flowchart of behavioral prediction module...........cccccoooeiieiiieieiicieee 22
Figure 4.1 Visualization of dense environment trajectory prediction-1...................... 25
Figure 4.2 Visualization of dense environment trajectory prediction-2...................... 26
Figure 4.3 Visualization of dense environment trajectory prediction-3..................... 27
Figure 4.4 Visualization of dense environment trajectory prediction-4...................... 27
Figure 4.5 Visualization of multi vehicle trajectory prediction-1...c.ccccevveviernnnen. 28
Figure 4.6 Visualization of multi vehicle trajectory prediction-2...c.ccceevviviernnnen. 29
Figure 4.7 Visualization of vehicle-1 trajectory predictioncccocovcerereieiesnnnnn. 30
Figure 4.8 Visualization of vehicle-2 trajectory predictioncccooevevincieineneenn. 30
Figure 4.9 Visualization of vehicle-3 trajectory predictioncccooevviiniieincnienn 31
Figure 4.10 Visualization of vehicle-4 trajectory predictioncccoceenireincnnenn 32
Figure 4.11 Visualization of vehicle-5 trajectory predictioncccoceorivreinennenn. 32
Figure 4.12 Visualization of vehicle-6 trajectory predictioncccoceeniiieincnienn 33
Figure 4.13 Visualization of vehicle-7 trajectory predictionccccceeerincrirnnnnnn. 33
Figure 4.14 Visualization of vehicle-8 trajectory predictionccccooeeieeiiiininene. 34
Figure 4.15 Visualization of vehicle-9 trajectory predictionccccceeeriiciinnnnnnn. 34

Vi

ADE
ANN
AV
CNN
ConvLSTM
CSAA
CSAV
CTRA
CTRL
CVv
CVAE
DBN
D-IRL
DNN
DP
FDE
KNN
GAIL
GAN
GCN
GAT
GP
GMM
GNN
GPS
GRU
HMM
HMTP*
IMM
IMU
IRL
KF
KNN
LSTM
ML
MPC
MR
RMSE
RNN
ROS
ROS2
SKF
ST-LSTM
SVM
VOl
ZMQ

LIST OF SYMBOLS AND ABBREVIATIONS

Average Displacement Error

Artificial Neural Networks
Autonomous Vehicle

Convolutional Neural Network
Convolutional Long Short-term Memory
Constant-Steering Angle & Acceleration
Constant-Steering Angle & Velocity
Constant-Turn Rate & Acceleration
Constant-Turn Rate & Velocity
Constant Velocity

Conditional Variational Auto-Encoder
Dynamic Bayesian Network

Deep Inverse Reinforcement Learning
Deep Neural Network

Dirichlet Process

Final Displacement Error

K-Nearest Neighbors

Generative Adversarial Imitation Learning
Generative Adversarial Network

Graph Convolutional Network

Graph Attention Network

Gaussian Process

Gaussian Mixture Model

Graph Neural Network

Global Positioning System

Gated Recurrent Unit

Hidden Markov Model

Hidden Markov model-based Trajectory Prediction Star
Interacting Multiple Model

Inertia Measurement Unit

Inverse Reinforcement Learning
Kalman Filtering

K-Nearest Neighbors

Long Short-term Memory

Machine Learning

Model Predictive Control

Miss Rate

Root Mean Square Error

Recurrent Neural Network

Robotic Operating System

Robotic Operating System 2

Switched Kalman filter
Spatio-Temporal Long Short-term Memory
Support Vector Machine

Value of Information

ZeroMQ

Vil

1. INTRODUCTION

The function and importance of autonomous vehicles are increasing day by day. It is
foreseen that autonomous vehicles will play an important role in the future in order to reduce
the density of transportation and to eliminate human-induced accidents. Apart from
transportation, autonomous vehicles are becoming more and more common in areas such as
agriculture, health and education.

Autonomous vehicles are inspired by living things; they consist of modules such as
perception to detect the environment, localization to determine its own position, planning to
where and how to go, control for its movement and behavioral prediction for possible
movement routes of surrounding objects. Middleware such as Robotic Operating System
(ROS) _[1], ZeroMQ (ZMQ)_[2] and Robotic Operating System 2 (ROS2) [3] are needed
for these modules to communicate with each other correctly and completely. These
middlewares enable modules to transmit the desired message to the relevant module. Thanks
to the ROS middleware tools that are used in the study, it also provides benefits such as
visualizing, recording and observing data.

1.1 Problem Definition

In autonomous vehicles consisting of modules such as control, canbus, perception,
localization, planning and behavioral prediction, it is extremely important to predict the
future position of the objects around it with high performance for the vehicle to plan
correctly. The module that predicts the possible routes of objects in the environment of
autonomous vehicles is the behavioral prediction module. Thus, the behavioral prediction
module is one of the most important factors for the accurate result of the planning module in
autonomous vehicles. The behavioral prediction module generates output that predicts future
positions by keeping the past positions of objects around the ego vehicle. This output creates
an input to the planning module by combining the objects found by the detection module.
An autonomous vehicle without a behavioral prediction module will consider all objects as
static and plan accordingly, but in highway conditions or urban traffic scenarios, an accident
will be inevitable if the possible routes of vehicles or pedestrians are not taken into account.
To give an example from scenarios that are frequently experienced in daily life, in order for
an autonomous vehicle to consider a pedestrian preparing to cross the street, the autonomous
vehicle must know the pedestrian's possible route. Similarly, while the autonomous vehicle

is changing lanes, it must calculate the possible route according to the speed of the vehicle

1

from behind, otherwise there will most likely be an accident. In this thesis, the problem of
finding the possible routes of moving objects around the autonomous vehicle was focused

on.

1.2 Problem Solution

A behavioral prediction module has been developed to solve the problem specified in
Section 1.1. The possible routes of the objects around the autonomous vehicle were
estimated so that the planning module could draw a path by taking the possible routes of
moving objects into account. Developing a fast and successful behavioral prediction module
in order to prevent the mentioned risks will make significant contributions to both the
literature and life.

The developed behavioral prediction module is based on ROS and works in real-time.
Features such as ROS middleware, dynamic history hold and release structure, direction
error correction, covariance distribution visualization, and message type matching suitable
for planning have been added to the multi modal Conditional Variational Auto Encoder
based (CVAE-based) model [4]. Thus, an end-to-end autonomy module structure was

created that sends the possible routes of the surrounding vehicles to the planning module.

1.3 Aims & Objectives

With the behavioral prediction module to be obtained as a result of this thesis, the
possibility of an autonomous vehicle making a mistake in the environment of moving objects
will be significantly reduced. Apart from contributions such as writing real time inference to
the current model, adding ROS infrastructure, and correcting or filtering erroneous data; the
addition of Convolutional Long Short-term Memory (ConvLSTM) to a GNN-based model
and the acceleration of this model by using TensorRT are the most important contributions
of the thesis to the literature.
1.4 Organization of the Thesis

In the next part of the study, behavioral prediction approaches and studies in the
literature review section will be summarized, then information about the methodology used
in the study will be given and the developed module will be explained in detail in the material
and methods section. Afterward, in the results section, the results obtained with the test data
will be shared and in the findings section test results and behavioral prediction module will
be discussed. Finally, the conclusion of the study will be expressed and deductions about the

test results will be shared in the conclusion section.

2. LITERATURE REVIEW

2.1 Previous Literature

In the literature, there is very little research in the field of behavioral prediction
compared to areas such as perception, localization, and planning of autonomous vehicles.
The biggest reason for this is that it is more difficult to determine the location of
environmental factors in the future than the problems in other areas. When the trajectory
prediction approaches are examined [5][6], although there are approaches such as
representation, contextual factors, modeling, situational awareness, the modeling approach
will be used as the main approach in categorizing the studies in this article. In addition,
information will be provided in terms of representation, output and situational awareness
types for the studies. When the studies are examined in terms of modeling methods;
behavioral prediction methods are shown in Figure 2.1, they consist of physics-based,
machine learning based, deep learning-based and reinforcement learning-based methods.

Classification of Trajectory Prediction Methods

Input \ \
—] Physics-related Factors Physics-based Machine Learning- Deep Learning- Reinforcement Leamning
Methods based Methods based Methods based Methods
Contextual Factors Road-related Factors :>) .) . . . B
Interaction-related 52 T Gaussian Process Sequential Network IRL
N Factors)) Methods
S ' Support Vector '
Output A Kalman Filtering L Machine) Graph Neural GAIL
Unimodal Trajectory Methods P, Network
— Hidden Markov Model
Qutput Types Multimodal Trajectory \ J
Monte Carlo Methods (Dynamic Bayesian) Generative Model DIRL
\ / \ ~ X 7\ ~ X =/

Figure 2.1 Trajectory Prediction Methods

Physics-based methods take information from the dynamics and kinematics of the
vehicle. They consist of single-trajectory, Kalman filter (KF) and Monte Carlo methods.

Models using a single trajectory mostly use the kinematic information of the vehicle.
Although there are also models that use the dynamic information of the vehicle, these models
are more complex. Dynamic models consider all forces that govern motion. Dynamic models
are highly complex due to the factors involved. For example, for a vehicle, the dynamic
model considers the forces acting on the tires, the driver’s actions and their effects on the
vehicle’s engine and transmission. For trajectory prediction, it does not make much sense to
use a dynamic model to model such complex behavior unless you intend to run a control-
oriented application [7]. Kinematic models are more commonly used than dynamic models
due to their simpler structure. One of the most commonly used is Constant Velocity (CV).
A simple example of a kinematic model is the CV model used in [8]. The CV model assumes
that the recent relative motion of an object determines its future trajectory. Similarly,
Ammoun et al. [9] and Schubert et al. [10] estimated the possible trajectories of the vehicle
using the Constant Acceleration (CA) method. The CA method estimates the future
acceleration of the vehicle from the past acceleration data, these acceleration estimates are
converted into position information and the possible position of the vehicle is found. Lytrivis
et al. [11] used Constant Turn Rate and Velocity (CTRL) and Constant Turn Rate &
Acceleration (CTRA) models and Batz et al. [18] used Constant Steering Angle & Velocity
(CSAV) and Constant Steering Angle & Acceleration (CSAA) models by adding wheel data

to the model.

The single trajectory methods given as an example [7]-[11] use non-noise data from
the vehicle. In contrast, the Kalman Filtering method can handle the uncertainty of present
vehicle conditions or noise such that the noise and its physical model are modeled by a
Gaussian distribution. The prediction and adjustment phases are integrated within a
continuous loop. The vehicle state mean and covariance matrices are determined at each
future time step and computed as mean trajectories with associated uncertainties. In their
work, Kempchen and colleagues [12] introduce an Interacting Multiple Model (IMM) for
generating multiple possible trajectories. The Switched Kalman Filter (SKF) [13], on the
other hand, relies on a series of Kalman filter techniques to model the vehicle's physical

behavior and transition between these models.

Apart from the Single Trajectory and Kalman filter method; there is the Monte Carlo

approach, which can imitate state distributions approximately. It involves random testing of
4

input variables and utilizes a physical model to generate potential future trajectories. In their
work, Okamot and colleagues [14] introduce a model based on maneuvers, employing Monte
Carlo methods to anticipate future trajectories based on identified maneuvers. Similarly,
Weng and their team [15] forecast trajectories using the Monte Carlo approach and optimize

the reference trajectory using MPC.

While the physics-based methods described above [7]-[15] kinematics and dynamics
were used as inputs, road-related factors were also used as inputs in Coelingh et al. [16] and
Xie et al. [17] studies. These studies mostly output unimodal trajectory. There are also

studies that outputs multimodal trajectory or intention as in Hermes et al. [19].

Unlike physics-based methods, machine learning methods are based on the principle
of obtaining predicted trajectories by data mining. On the other hand, learning-based models
tend to capture and incorporate changes caused by long-term dependencies and external
factors, compared to physics-based models that are limited to low-level motion
characteristics and are poor at estimating long-term motion dependencies. The most widely
used machine learning methods are Decision Tree, Hidden Markov Model (HMM), Support
Vector Machine (SVM), K-Nearest Neighbors (KNN), Dynamic Bayesian Network (DBN)
and Gaussian Process (GP) methods.

When applying GP to predict a trajectory, the trajectory is considered as GP samples
tested along the time axis. A sample is symbolized by N discrete points for mapping into N-
dimensional space. The samples then fill an N-proportional Gaussian distribution in N-
proportional area. GP could also be applied to model interaction-related components,
Trutman et al. [20] use GP to avoid joint collisions and solve frozen robot problems. GP and
Dirichlet process (DP) are applied to determine the motion process, and a non-parametric

Bayesian network is applied to extricate potential movement models by Guo et al. [21].

Kumar and colleagues [22] suggested that as Support Vector Machines (SVM) are
capable of providing classification probability attributes, they proposed a multi-layer
architectural approach that combines SVM with Bayesian filtering to recognize lane change

maneuvers and get more error-free identification results.

In real life, only visible states can be observed on vehicles, but we cannot intuitively
express the hidden states. Hence, there is a requirement to create a Markov process that
incorporates concealed states and identify the inherent state of an event through a collection
of observable states associated with the likelihood of the concealed state. This concept is

5

known as the hidden Markov model (HMM). Building upon the HMM framework, Qioa and
their team [23] introduce an algorithm called HMTP, which dynamically selects parameters
to replicate real-world scenarios characterized by variable speeds. In [24], their HMM
connection with fuzzy logic is applied to predict driver maneuvers. The author of [25]
presents a DBN representing driver behavior and vehicle trajectory. DBNs have Markov
properties. We can extend the state with more information to satisfy the Markov assumption.
In [25], this is done by adding all relevant information about the process to the DBN in the

form of a vector.

Although the outputs of the studies in this method are mostly multimodal, it has been
observed that the model's performance increases as the situational awareness states such as

map-aware, scene-aware and interaction-aware increase.

One of the situational awareness scenarios in the field of behavior prediction is "map
aware," where an HdMap is provided as input to the model, annotated with roadways, lanes,
traffic signs, and similar elements. HdMap, short for High-Definition Map, is a specialized
type of digital map that provides highly detailed and accurate information about the road
network, traffic infrastructure, and surrounding environment. "Scene-aware" involves
incorporating the objects in the vicinity and areas on the map, such as intersections and road
junctions, into the model together. On the other hand, "interaction-aware" entails including

the interactions between objects in the environment in the model along with the map as input.

Deep-learning based methods are based on the principle of obtaining a predicted
trajectory as a result of the model obtained by performing various feature extraction and
regression operations of the historical trajectory. Most of the studies in the field of trajectory
prediction consist of deep learning-based approaches. There are more than a hundred studies

based on deep learning. Only mainstream studies are considered in this study.

Deep-learning based methods consist of sequential networks, graph neural network
(GNN) and Generative Model methods. Sequential network methods consist of
Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), RNN and CNN
and Attention Mechanism, while Generative Model methods consist of Generative
Adversarial Network and Conditional Variational Auto Encoder methods.

One of the most popular studies with RNN & CNN is DESIRE [26], whose goal is to
predict the future positions of multiple interacting agents in a dynamic (driving) scene. This
takes into account the multimodal nature of future projections. For example, even in the same

6

situation, the future can be different. It can predict potential future outcomes and make
strategic predictions based on them, making inferences based not only on past movement
history but also on scene context and agent interactions.

Another example of work with a sequential network is [27] the modified version of
LSTM i.e. ST-LSTM (Spatio-temporal LSTM) is used in [27] where the interaction of
multiple vehicles and its effect on the trajectory of Value of Information (VOI) is estimated.

When the studies conducted with GNN are examined, Deal and colleagues [28] employ
two widely recognized graph networks: Graph Convolutional Networks (GCN) and Graph
Attention Networks (GAT) for predicting trajectories based on interaction-related elements
and validate their effectiveness. To explain further, GCN's main concept revolves around
learning a mapping function that can extract features recognizing interactions from a node's
features within the figure and those of its neighboring nodes. On the other hand, GAT utilizes
an attention mechanism to determine the weights between nodes when combining feature
data. Another instance of Graph Neural Networks (GNN) is presented by Li and team [29]
in their GRIP model, which utilizes both static and dynamic graph networks to forecast the
trajectories of road users. Notably, in the latter part of 2019, GRIP achieved the top position
in the Baidu Apolloscape dataset [30]. It's worth mentioning that previous iterations of GRIP
employed the LSTM encoder/decoder, whereas the current version uses the GRU for both

encoding and decoding.

Another deep learning approach is the generative model approach. Trajectory
prediction generative models include Generative Adversarial Networks (GANs) and
Conditional Variational Autoencoders (CVAES). Gupta and colleagues [31] employ a
Generative Adversarial Network (GAN) known as SGAN for predicting pedestrian paths.
The generator in SGAN utilizes an LSTM encoder, a pooling module, and an LSTM decoder
to generate estimated trajectories, while the discriminator employs LSTMs to assess the
quality of the predicted trajectories. On a related note, Sohn and their research team [32]
introduce a method involving conditional Variational Autoencoder (CVAE) to address
structured prediction tasks. When it comes to predicting trajectories, combining variations
of CVAE and RNN in the roles of encoder and decoder proves to be an effective approach

for trajectory generation.

Deep learning-based studies can provide more comprehensive output and input
compared to physics and machine learning-based studies. These studies mostly take

interaction-aware inputs and provide multimodal or intention type output.

The reinforcement learning approach, which has been extensively studied in recent
years, also appears in predicting trajectory. The reinforcement learning method is based on
the decision-reward principle, focusing on finding the decision that will maximize the

reward.

The Reinforcement Learning method consists of Inverse Reinforcement
Learning(IRL), Generative Adversarial Imitation Learning(GAIL) and Deep Inverse

Reinforcement Learning(D-IRL) methods.

Based on research using these methods; In Sun et al. [33] study, interaction related
elements are taken into account to achieve probabilistic estimation for AVs by using IR.
Future trajectory distribution is defined by driving manoeuvers. Kufler et al. [34] extended
GAIL to their RNN optimization to show the behavior of a human driver, discriminators
evaluate steps and actions. Choi et al. [35] combine the partially observable Markov decision
process (POMDP) within the GAIL framework and propose a method to train the model
using the discriminator reward function. The prediction problem is nonlinear, so nonlinear
mapping should be used for generalizable function approximation. Wulfmeier et al. [36]
propose a deep inverse reinforcement learning (DIRL) framework for approximating
complex nonlinear reward functions. Some D-IRL approaches get history tracks as input.
Considering driving characteristics and route shape, the researchers in reference [37] began
by applying reinforcement learning (RL) to create a Markov Decision Process (MDP). They
then acquired the best driving strategy through Inverse Reinforcement Learning (IRL) and
employed a Deep Neural Network (DNN) to formulate a reward system. In a separate work,
Jung and colleagues [38] introduced a convolutional Long Short-Term Memory (LSTM)
approach to extract feature representations from their LIDAR and trajectory data,
considering factors like inertia, the environment, and societal influences. These extracted

features are combined with the resulting reward map to predict the traversability map.

Reinforcement learning methods, similar to deep learning methods, can take extensive
inputs such as road and scene related factors and provide comprehensive outputs in the form

of unimodal and intention.

When Table 2.1 and Table 2.2 are examined, although physics-based and machine-
learning-based methods require low computational load, their accuracy notably decreases,
especially after 2 seconds. Compared to these two methods, deep learning and
reinforcement-based learning methods can predict longer time successfully, although they
overlay more computation load. When deep learning and reinforcement-based methods are

compared, it is seen that the deep learning-based method is more successful.

2.2 Limitations of Previous Research

Previous researches are basically based on model studies. Studies on the integration of
models with planning, detection and localization modules are limited. The majority of
models are concentrated on predicting either vehicle-only or pedestrian-only trajectories. In
many research articles, comparisons and tests have been made on displacement metrics, but

there is no information about the working speed of the algorithms.

As seen in Table 2.2, some studies give multi trajectory and some single outputs.
Integration of multi-trajectory output algorithms with planning algorithms is more complex.
However, it is important to assign the correct cost values to the multi-trajectory outputs for
the system to give accurate output.

An open source, ROS structured, end to end, configurable, robust, multi-class
behavioral prediction module could not be found. The most related work found [39] is one

that predicts pedestrian-only trajectories with ROS.

Table 2.1 Comparison of the trajectory prediction RMSE results of models using various methods trained on
NGSIM dataset under highway condition [5]

Classification Methods Models RMSE(m)

1s 2s 3s 4s 55
Single Trajectory Constant Velocity[40] 0.73 1.78 3.13 4.78 6.68
Kalman Filtering IMM-KF[41] 0.58 1.36 2.28 3.37 4.35
HMM C-VGMM+VIM[42] 0.66 1.56 2.75 4.24 5.99
RNN M-LSTM[43] 0.58 1.26 2.12 3.24 4.66
RNN MEFP-1[44] 0.54 1.16 1.90 2.78 3.83
CNN and RNN CS-LSTM(M)[45] 0.62 1.29 2.13 3.20 4.52
Attention Mechanism MHA-LSTM[46] 0.41 1.01 1.74 2.67 3.83
GNN GRIP++[29] 0.38 0.89 1.45 2.14 2.94
GNN GISNet[47] 0.33 0.83 1.42 2.14 3.23
Generative Model MATF-GAN[48] 0.66 1.34 2.08 2.97 4.13
Generative Model TS-GAN[49] 0.60 1.24 1.95 2.78 3.72
IRL L-IRL[50] 1.12 2.29 2.31 3.38 4.45
GAIL GAIL-GRU|[51] 0.69 1.51 2.55 3.65 4.71
DIRL MEDIRL[52] 1.35 2.57 2.83 3.69 41.88
DIRL DN-IRL[53] 0.54 1.02 1.91 2.43 3.76

10

Table 2.2 Comparison of the trajectory prediction FDE, ADE and MR results of models using

various methods trained in Argoverse data set under urban condition [5]

Anti-perturbation

Figure 2.2 Behavioral Prediction research areas [5]

11

Classification Models K'=6 K'=1
Methods minFDE | minADE |MR |minFDE |minADE |MR
Physics-based CVI[54] 7.57 3.39 0.82|7.89 3.53 0.84
Machine Leamning- NN+map[54] 4.03 2.08 0.58 |8.12 3.65 0.84
based
RNN LSTM+map[54] 5.44 2.34 0.69 |6.81 2.96 0.81
RNN Jean[55] 1.49 0.93 0.19 |4.18 1.86 0.63
Attention Mechanism |SceneTransformer[S6] 1.23 0.80 0.13 |- - -
Attention Mechanism |mmTransformer[57] 1.34 0.84 0.15 |- - -
GNN LaneGCNI[58] 1.36 0.87 0.16 |3.78 1.71 0.59
GNN DenseTNT[59] 1.45 0.93 0.11 |- - -
GNN LaneR|CNN[60] 1.45 0.90 0.12 |3.69 1.69 0.57
Generative Model PRIME[61] 1.56 1.22 0.12 |3.82 1.91 0.59
! output trajectory numbers
New Training
Structures Methods
Interaction Adva'nced
Algorithms Benchmark
Dataset
Map
More S o Standard
Traffic . enchmar Merits
Signs Information Future
Dzrecfmns for Benchmark
. Trajectory Models
Trattic Prediction
Rules
. Noises
Planning Integration Robustness
o Credibility
Decision
Control Making

2.3 Contributions of the Study
In the thesis study, research has been conducted on the areas of behavioral prediction

shown in Figure 2.2, as outlined below:

« Efforts have been made to accelerate the model using TensorRT, aiming to achieve
advanced algorithms as a result.

* The developed module has been integrated with the planning module.

* Data has been collected for testing the algorithm and benchmarking it against other

datasets.

* Robustness has been enhanced through the correction and filtering of data from the

perception system.

* The model has been enriched by feeding it with additional heading data, providing

more information to the model.

12

3. MATERIALS & METHODS

3.1 Datasets

Data sets are required for training or testing deep learning, machine learning and
reinforcement-based behavioral prediction models. These data sets may consist of sensor
data such as LIDAR, camera, radar, GPS, IMU, map data such as HDmap, vector map and
their annotations, as well as perception or localization layer output for higher-level autonomy
studies such as behavioral prediction. The main ones are KITTI [62], nuScenes [63],
Argoverse [64] and NGSIM [65] datasets.

The model that is worked on in this thesis is trained on nuScenes dataset. NuScenes
dataset is a large-scale autonomous driving dataset that has several distinct datasets such as
nuPlan [66] for planning, nuScenes for perception, nulmages [67] for image level operations.
For this purpose, 1,000 driving scenes were collected in Boston and Singapore, two cities
known for heavy traffic and extremely challenging driving conditions. 20-second scenes are
manually selected to depict a variety of interesting driving maneuvers, traffic situations, and
unexpected behavior. The complexity of nuScenes encourages the development of methods
that enable safe driving on urban roads with dozens of objects per scene. In addition, by
collecting data on different continents, developers can work on generalizing computer vision
algorithms for different locations, vegetation, vehicle types, road signs, weather conditions,
left-hand and right-hand traffic.

To assist common computer vision tasks, such as object detection and tracking, it is
annotated 23 object classes with accurate 3D bounding boxes at 2Hz over the entire dataset.

Additionally, it is annotated object-level features such as visibility, movement and pose.

In March 2019, the full nuScenes was released dataset with all 1,000 scenes. The full
dataset comprises approximately 1.4M camera images, 390k LIDAR sweeps, 1.4M RADAR
sweeps and 1.4M object bounding boxes in 40k keyframes. However, new features (map
layers, raw sensor data, etc.) are being added day by day. It is also organized the nuScenes

3D detection challenge as part of the Workshop on Autonomous Driving at CVPR 2019.

The nuScenes dataset leverages the KITTI dataset. nuScenes is the first large dataset
to provide data from the entire autonomous vehicle sensor suite (6 cameras, 1 LIDAR, 5
radars, GPS, IMU). Compared to KITTI, nuScenes contains seven times more object

annotations.

13

In order for the study to be tested, a Rosbag was collected with sizes 19.2 GB and 17.8

GB by 10- and 12-minute driving in the Mustafa Kemal district of Ankara/Turkey. As seen

in Table 5.1 Rosbag data consists of the ego vehicle’s localization output and perception

output obtained by sensor fusion which includes positions, orientations, speeds, sizes of

adjacent objects, transform information, camera images and visualization markers which

include bounding box markers. In detail ego vehicle’s localization output includes the ego

vehicle’s position, orientation and speed, perception output includes positions, orientations,

speeds, sizes of adjacent objects, transform information includes relative positions and

orientations of global map, local map and sensors, visualization markers includes bounding

box markers of vehicles, pedestrians and unknown objects.

Dataset Type: Rosbag

Size : 39 GB

Duration: 13 min

Data

Data Description

e Image Data

Image data from camera

e Localization data

Position and orientation data from

localization module

e Camera Object Detections

Obiject detections from camera

e Sensor fusion output

Object detections from perception

module

e Tfand Tf static

Static and dynamic transformations of

sensors, local and global map

e Lidar Data

Pointcloud data from Lidar

e Visualization Markers

Visualization Markers for 3D
Worldmodel

Table 5.1 Collected Rosbag for testing

14

3.2 Evaluation Metrics
Reliable and generic metrics are needed to measure the success of the studies. Some
metrics that can be used to compare related works are given below:

Root Mean Squared Error (RMSE): Root mean square error computes the square root
of the mean squared forecast error. As shown in the equation (1) while yi stands for estimated
value (m), yi indicates observed value and n represents the quantity of samples.

RMSE =

()

Average displacement error (ADE): The mean separation between the forecasted
trajectory and the actual path. In the formulas (2) given below, x; and y; stand for predicted
trajectory for one second interval in meters at x and y axes respectively, xi®" and yi®" indicate
observed trajectory for one second interval in meters at x and y axes respectively, and T is
time in seconds.

T
1
g =23 [ri=xf2 + (1 - ¥y
t=1

(2)

Final displacement error (FDE): As shown in the equation (3) FDE represents the gap
between the ultimate prediction outcomes and the actual observed position. In the equation
(3) given below, xr and yr stand for predicted trajectory for one second interval in meters at
x and y axes respectively, xr®T and yr°T indicate observed trajectory for one second interval
in meters at x and y axes respectively, and T is time in seconds.

2 2
FDE = | (e —x8)" + (yp — ¥57)

©)

15

Miss Rate (MR): Miss rate is the ratio of trajectories estimated outside 2 meters or
more according to ground truth to all trajectory estimates. In the equation (4) given below,
‘misses’ are the forecasted paths located more than 2 meters away from the ground truth,
while 'hits' are the predicted paths found within a 2-meter proximity of the ground truth.

M _ misses

hits+misses

(4)

3.3 Robotic Middleware

Robotics middleware refers to the intermediate software layer utilized within intricate
control systems of robots. This kind of middleware is purposefully designed to manage the
intricacies and diversity of both hardware and applications involved in robot control. Its role
encompasses the seamless integration of emerging technologies, simplification of software
architecture, concealing the intricacies of lower-level communication and sensor disparities,
enhancement of software quality, reutilization of robot software infrastructure for various

research endeavors, and reduction of production expenses.

It can be likened to "software glue," streamlining the path for robot developers to
concentrate on their specific focal areas. Among the array of available middleware options,
ROS (Robot Operating System) emerged as the preferred choice due to its extensive presence
in existing literature and its incorporation within the ongoing project. ROS represents a
compilation of software frameworks tailored for the creation of robotics software across
heterogeneous computing clusters. It offers standard services akin to those provided by an
operating system, including hardware abstraction, control over low-level devices,
implementation of frequently utilized functions, inter-process communication, and management

of software packages.

Among the array of available middleware options, ROS emerged as the preferred choice

due to the following reasons;
e ltis prevalent middleware in the literature.
e It provides bridge and communication between hardware and software
e It has peer to peer structure, system consists of separate nodes which is called Rosnode,

16

3.4

As it is tool-based, has useful tools for visualization, diagnostics, data recording,
logging, data plotting,

It has a multi-lingual structure; Rosnodes can be written in C++, Python, MATLAB,

Julia, Java etc.

Due to Rosnodes are in simple structures, it is easy to modify and adapt to other

structures

ROS and its libraries are open source and expanding day by day.

Model Architecture

Trajectron++ has been used as the model in this thesis study for the following reasons;

It is in a multi-classification structure that can give a trajectory output according to both

vehicle and pedestrian.

Compared to other datasets, the nuScenes dataset in which the model is trained is new

and contains map data and interaction information of objects.

As mentioned in the literature review section, many studies are showing that graph-
structured recurrent models are more successful. However, the Trajectron++ model

uses a CVAE in a graph structured neural network,

It provides both unimodal and intent output, so that more and more flexible information
can be provided to the planning module,

It is an open-source model,

It is a scene-aware model that takes into account the map and the interactions of other

nodes with each other.

Trajectron++ is in a map and interaction-aware structure as shown in Figure 4.1. The model

consists of a 2-part structure, encode and decode. In the encoding section, environmental objects

such as vehicle pedestrians enter the LSTM first. Briefly, LSTM is a kind of recurrent neural

network capable of learning long-term dependencies. In RNN output from the last step is fed as

input in the current step. In general, RNNs have a vanishing gradient problem. The vanishing

17

gradient problem in RNNs refers to a challenge where the gradients (derivatives) used for
updating the network's parameters during training become extremely small as they are
propagated backward through time. This issue leads to the network’s weights being updated
very slowly, or not at all, which can result in poor convergence and slow learning. LSTM can
overcome this problem with a forget gate, which is designed to pass information between

memory cells to store the most important previous information.

\
Node History Decoder

e
F
(1) P) M Cx
xli& A x XZX A x
C

=

eee |[LSTM LSTM qo(z|x<,\'.l\l.y“) e, wziy)] [e, w2y
(t-1), @ (t) a S d
*Xir St oy i oy
(F =P
CNN @
MY LEGEND
\ J
. o Dynamics Integration
Robot Future 5
ese (LSTM LSTM 8 Dense Layer
xx“'“” x‘(‘”“ Random Sampling
> 7 0 Concatenation
(= 3\
Node Future)} ——— Offline Training
see(LSTM LSTM Online Inference
(t4+(T-1)), = (t+T) <
X, coomers X e ——— Both
. J -

Figure 3.1 Trajectron++ model architecture

Edge parts enter the attention mechanism in addition to LSTM. The attention
mechanism looks at an input sequence and decides at each step which other parts of the
sequence are important. Map data enters the CNN model. CNN is the extended version of
artificial neural networks (ANN) which is predominantly used to extract the feature from the
grid-like matrix dataset. CNN is a simple sequential architecture. The flight path history is used
as input and is fed through a fully connected layer of fixed size. Convolutional layers are
stacked and used to ensure temporal uniformity. Finally, the features of the last convolutional
layer are combined and passed through a fully combined layer to generate all predicted

locations simultaneously.

After the CNN layer, the map data enters the dense layer. The dense Layer is a simple

layer of neurons in which each neuron receives input from all the neurons of the previous layer.
18

Dense layers are the most commonly used layers in models. In the background, the dense layer
performs matrix-vector multiplication. The values used in the matrix are actually parameters
that can be trained and updated using backpropagation. The output produced by the dense layer
is an 'm' dimensional vector. So basically, dense layers are used to change the dimension of the

vector. Dense layers also apply operations such as rotation, scaling, and translation to vectors.

Node history, edge history, map, robot future and node future information are entered
into the decode section by concatenating and entering the dense layer. This information is
decoded by going through the Gated Recurrent Unit (GRU), Gaussian Mixture Model (GMM)

and Dynamic Integration stages, respectively.

GRUs are very similar to LSTM. Just like LSTM, GRU uses gates to control the flow
of information. Unlike LSTM, it does not have a separate cell state. It only has a hidden state.
GRU (Gated Recurrent Unit) aims to solve the vanishing gradient problem associated with
standard recurrent neural networks. To solve the vanishing gradient problem in standard RNNSs,
the GRU uses so-called update and reset gates. Basically, these are two vectors that determine
what information is passed to the output. What makes them special is that they can be trained
to retain information long ago without obscuring it over time or removing information

irrelevant to the prediction.

A GMM is a category of probabilistic models in which every data point generated is
derived from a finite mixture of Gaussian distributions with no known parameters. Finally,
dynamic integration means that the dynamic constraints of the vehicle or pedestrian are also
taken into account. When some clusters may be ‘wider’ than others or clusters may overlap,
GMM should be used. If one Gaussian model is used, it cannot handle the data set generated
by multi-Gaussian models, so GMM is introduced -- use multi-Gaussian models and mix them

into one with certain weights.

Studies on this model; ROS middleware has been added, the data from the perception
module has been adapted to the input data format in the model. In addition, a dynamic history
hold/drop structure has been created, so the history of tracked objects is accumulated, and the
untracked object is prevented from entering the model. Heading from point cloud data and
heading from position data are handled correctly so the behavior prediction module gets the

accurate headings of surrounding objects.

19

3.5 The Developed Software Methodology

Due to the added ROS middleware, this software processes the incoming data from
the perception subsystem, finds possible trajectories and sends them to the planning
subsystem. In this way, the vehicle also considers the trajectories of its moving objects while

planning.

The developed behavioral prediction module is shown in Figure 3.1 as a flowchart and
pseudo code. First, by listening to the output of the perception module, information such as
the position, class and orientation of the surrounding objects is obtained, and then dictionaries
are created for the object at a certain speed and attention radius. As long as the ROS
connection is open, the object information from the perception output is accumulated in the
relevant dictionaries. This dictionary sizes have been chosen as twelve timesteps due to the
detection system operating at 10fps, the common usage of a 2-second history in the literature,
and the consistent results obtained in the conducted tests. When the objects reach enough
history, they are converted into a data structure suitable for the model and entered as input to
the model. 6-second predicted trajectories are output from the model. This estimated trajectory
information is converted into the message types for the planning module and visualization.

These messages are published to relevant modules by ROS middleware.

If the functions are examined in more detail, with the append history function, the
heading, position and classification information of the tracked objects are passed by the
distance and speed filters, and the history is appended in the related Python dictionaries. With
the update history function, the untracked object is deleted from the dictionary and only
vehicle and pedestrian type entries are entered into the model.

Heading data entered as input to the model is obtained from both the direction
information coming from the segmentation output and the direction information found from
the ego vehicle position. Although the segmentation output gives the right direction of the
vehicle, due to errors emerging from lidar segmentation, it often reverses the direction by 180
degrees. While heading from the position information, the heading value is incorrect,
especially when the vehicle is maneuvering. If the heading value from the position
information and the value from the segmentation is more than 90 degrees, the direction
information from the segmentation is rotated 180 degrees, thus a more robust heading
information structure is created. In addition, a velocity and attention radius filter has been
created for the tracked objects, and objects that are far from the ego vehicle or at very low

20

speeds from the detection system do not enter the model so that the algorithm works more
efficiently. The predicted trajectory information from the model was converted into a message
type suitable for the planning module and visualized. A configuration file was created in order
to easily understand and configure message types and Rostopics which is the name of Ros

messages.

Apart from Rostopics and message types, the behavioral prediction module can be
configured with various parameters to operate efficiently under different conditions. These

parameters include:

e History time step: This parameter determines the number of past time steps to be
retained. The perception system operates at 10 frames per second, and since a 2-
second history is commonly used in the literature, it has been set as 20 time steps.

e Attention radius: It represents the distance of objects in the vicinity of the ego vehicle
in meters. Due to the perception system's error rate being low in the vicinity of the
vehicle, the vehicle's low speed (30 km/h), and it being deemed sufficient in

conducted tests, an attention radius of 30 meters has been chosen.

e Speed Threshold: This is the minimum speed required for environmental objects
entering the model, measured in meters per second (m/s). A speed threshold of 1 m/s
has been set to prevent very slow objects or erroneous speed data from entering the

model.

e Output Tag: This parameter specifies which model to use. Options include Base,
Dynamic Integration, Dynamic Integration + Maps, Dynamic Integration + Maps +
Robots Future. Due to the absence of vehicle dynamics and map information in the

collected dataset, the base model has been used.

e Predict Horizon: It defines the time length for prediction in seconds. Since it is
commonly used in the literature and provides an adequate amount of time for

planning, a 6-second duration has been chosen.

These parameters allow for the customization and optimization of the Behavioral

Prediction module to suit different scenarios and operational requirements.

21

Initialize: history

dictionary

}

) Is object in
APPE’."" G.b JE.!CT features 4-Yes— attention radius
in dictionary
or has speed?
Is object in Mo Delete untracked
dictionary? o objects in dictionary
Yes
- Does object
Apperi"g 3;{?0'3‘” afea'“res — » have 20 history
v timestep?
Yes
Convert history
dictionary to model <«——— Filter heading data
input
Run modal) Create and publish

trajectory message

l

Create and publish
visualization message

Figure 3.2 Flowchart of Behavioral prediction module

22

MNo

Mo

e Pseudo code of behavioral prediction module;
subscribe perception output
initialize history dictionary
while ROS is UP
if object is in attention radius and has speed
Append object id, x, y, heading, yaw in dictionary
if object is in dictionary
Append object id, x, y, heading, yaw in dictionary
else
delete object dictionary
if object has 20 history timestep
filter heading data
convert history dictionary to model input
input object history to model
create trajectory message from model output
create visualization marker from model output
publish trajectory message

publish visualization message

23

4. RESULTS

4.1 Performance Evaluation Results

The trajectory prediction module was tested by replaying the Rosbag dataset on a laptop
equipped with a T1000 graphics card, an i7 9th Gen. Processor, and 16 GB of RAM. The developed
software was executed in a Docker and Conda virtual environment with CUDA 11.3 and PyTorch.

The collected Rosbag data was analyzed separately for highway conditions (Sabanci
Boulevard) and inner-city conditions (Mustafa Kemal District). The urban segment covers the time
interval from the first to the eighth minute of the Rosbag, while the highway segment spans from the
eighth to the thirteenth minute. Trajectory predictions were generated and visualized using green
sphere markers by executing the trajectory prediction ROS module on the Rosbag data.

As depicted in Figures 4.1, 4.2, and 4.3, during urban driving, the vehicle frequently
encountered densely populated environments. In these figures, images captured by the vehicle's top-
mounted camera are displayed on the right side, while the outputs of the behavioral prediction
module have been juxtaposed with the perception and localization module outputs of the vehicle on
the left side.

When the figures from dense environments were inspected, although the speed and attention
radius filter was added, incorrect speed information from the perception layer for the standing
vehicles caused the algorithm to work slowly in a dense environment. Sudden changes in the
direction of vehicles and pedestrians in dense areas are a factor that reduces the performance of the

behavior prediction module.

In Figure 4.1, the route prediction of the vehicles around the autonomous vehicle was made
when approaching the intersection in the Mustafa Kemal district. As can be seen in the world model
on the left side, due to the filter used, while there is no prediction for stopping vehicles, trajectory

prediction estimates of vehicles turning at the intersection have been made.

24

3L

94970703125boxyawt.
1D:40535, 0.162 miS ARABA

Figure 4.1 Visualization of dense environment trajectory prediction-1

In Figure 4.2, route estimates of pedestrians crossing the street were made. Pedestrians
are also difficult to track because they are small in size compared to vehicles. For this reason,

the possible route of only one of the pedestrians crossing the street could be estimated.

25

Figure 4.2 Visualization of dense environment trajectory prediction-2

In Figure 4.3, route estimates of the vehicle on the left side and the vehicle coming from the
opposite lane were made. As the vehicle approaches the intersection, the route prediction of the
turning vehicles in the opposite lane, the vehicles in the back cross and the vehicle in front are made

in Figure 4.4.

26

9, 0.224 m/s ARABA

1036207 "SR bn ARAIK

ID:44198, 0.551 m/s

0.245 nv: 8A

Figure 4.3 Visualization of dense environment trajectory prediction-3

PR PR B

ARABA

753 s, BASA

10 45466, 4564 mis ARABA

oA 108, AR

2.249 mis ARABA

04

2, 0083 s ARRSMESSS, 0109 mis A

1D:45434, 1.209 mis AR/ DA

13000 7 HPHEFEE PRI IR AV
192.04

1D:45548, 0.354 m/s ARABA

1D:44997, 0.065 m/s ARABA

1D:44818ad1335 0169 ARREFS763427734boxy

Figure 4.4 Visualization of dense environment trajectory prediction-4

27

In Figures 4.5 and 4.6, while the vehicle was being driven at a speed of about 50 km/h on
Sabanci Boulevard, the route estimation of multiple vehicles displayed on the left side was made.
The estimated routes are quite close to the actual routes of the vehicles.

Figure 4.5 Visualization of multi vehicle trajectory prediction-1

28

Figure 4.6 Visualization of multi vehicle trajectory prediction-2

Rosbag's highway condition driving between 8 min and 13 min has achieved better results
compared to the urban section. Approximately 5 km of driving has been done under highway
conditions. Nine vehicles have been tracked by perception without error. Behavioral estimation
of nine vehicles in highway condition from Figure 4.7 to 4.15, respectively, was performed. The
green dots on the figures indicate the possible routes of the vehicles. In addition, as seen in Figures
4.5 and 4.6, the trajectory predictions of two or three vehicles have been made at the same time

without loss of performance.

29

Figure 4.7 Visualization of vehicle-1 trajectory prediction

Figure 4.8 Visualization of vehicle-2 trajectory prediction

30

Figure 4.9 Visualization of vehicle-3 trajectory prediction

In Figure 4.7, the autonomous vehicle was tracked while leaving the main road to Sabanci
Boulevard and route prediction was made. In Figure 4.8 and Figure 4.9, the route prediction of
vehicles leaving the left lane has been successfully performed. In Figure 4.10 and Figure 4.11, the
behavior prediction output of larger commercial vehicles compared to passenger cars was visualized.
In Figure 4.15, the behavior prediction output of a pickup truck is visualized.

31

Figure 4.10 Visualization of vehicle-4 trajectory prediction

Figure 4.11 Visualization of vehicle-5 trajectory prediction

32

Figure 4.12 Visualization of vehicle-6 trajectory prediction

Figure 4.13 Visualization of vehicle-7 trajectory prediction

33

Figure 4.14 Visualization of vehicle-8 trajectory prediction

Figure 4.15 Visualization of vehicle-9 trajectory prediction

34

The outcomes of the Trajectron++ model are presented in Table 4.1. The model underwent
testing on the test dataset of the nuScenes dataset on which it was trained. As outlined in the table,
according to these results, the FDE for vehicles is 0.42 meters in the first second, and it increases to

2.48 meters by the fourth second.

In the Trajectron++ paper [4], the authors assert, based on their experience, that the error of
the detection system in the nuScenes dataset ranges from 22 to 24 cm and subtracts this error margin
from their own results. In Table 4.1, since the Rosbag dataset results encompass the detection system
error, 24 cm has been incorporated into the nuScenes dataset results. Upon comparing these results
with those derived from Rosbag testing, it becomes apparent that the disparity, approximately 0.5

meters at the first second, intensifies with each subsequent second, ultimately reaching 2.5 meters

by the fourth second.
Table 4.1 FDE(2) results of Trajectron++ model on nuScenes and Rosbag Dataset
Methods FDE(m)
Vehicle-only
nuScenes Rosbag Dataset (Our Dataset)
1s 2s 3s 4s 1s 2s 3s 4s
Trajectron++ 0.42 0.81 1.49 2.48 0.92 1.87 3.70 4.85
Trajectron++ +[,M | 0.07 0.69 1.38 2.44 - - - -

Legend: | = Considering Dynamics , M = Map Encoding

The average RMSE of these nine vehicles and the RMSE of five vehicles of 5 seconds are
given in Table 4.2. The longer the estimation period, the greater the amount of error. Similar to the
urban roads section, although the incorrect perception output or the inability of the perception
module to track the surrounding vehicle is a factor that reduces my performance, erroneous data has
not been received from the perception module very often. One of the reasons for incorrect data
coming from the perception module is incorrect data coming from GPS and IMU. However, since

the data was collected at an off-peak time of the day, there was a few erroneous data.

35

Table 4.2 RMSE (1) results of tested Rosbag

Objects RMSE(m)

1s 2s 3s 4s 5s
Vehiclel 0.87 2.13 4.14 5.68 7.25
Vehicle2 0.92 2.09 4.28 5.82 6.43
Vehicle3 0.70 1.90 391 5.11 6.12
Vehicle4 1.20 242 4.72 6.23 8.04
Vehicle5 0.78 1.75 3.78 5.02 6.10
Vehicle6 1.45 2.10 3.99 4.97 7.05
Vehicle7 0.75 2.78 341 6.01 7.73
Vehicle8 1.28 2.35 4.66 5.28 6.87
Vehicle9 1.12 1.99 4.03 6.36 8.80
Overall 1.07 2.17 4.10 5.61 7.15

Table 4.3 displays the FDE, ADE, and MR outcomes for the nine vehicles that were accurately
tracked by the detection module over a 5-second interval. It was determined that the average FDE
result is approximately 7 meters, the average ADE result is 4 meters, and the average MR result is

70 percent.

36

Table 4.3 FDE (2), ADE (3) and MR (4) results of tested Roshag

Objects FDE(m) ADE(m) MR(m)
Vehiclel 8.52 5.78 0.75
Vehicle2 9.12 6.89 0.85
Vehicle3 7.88 4.45 0.77
Vehicle4 6.56 3.24 0.62
Vehicle5 5.14 3.15 0.62
Vehicle6 5.82 2.01 0.76
Vehicle7 6.11 4.46 0.64
Vehicle8 7.15 5.14 0.70
Vehicle9 4.77 2.03 0.68
overall 6.78 412 0.71
4.2 Findings

Throughout the tests, when a single vehicle or pedestrian is present within the environment,
the module operates at 6 fps. As environmental factors increase, the module's operating frequency
inversely decreases relative to the number of factors. Specifically, the system operates at 6 fps with
one environmental object and 3 fps with four environmental objects. Under the condition that the
vehicle is moving at a maximum speed of 30 km/h, and considering that other autonomy modules
such as planning and perception can operate smoothly at 5 fps, as well as taking into account the
more powerful processor of the onboard computer, it is anticipated that the system will function
without speed issues in environments containing up to four objects. In order not to reduce the
performance, model parallelization methods such as converting TensorRT can be used. However,
the TensorRT library does not yet support the conversion of some modules of the Trajectron++
model, such as GRU and GMM.

The inclusion of an attention radius and a speed filter prevented distant, stationary, or very

slow objects from entering the model, leading to improved model efficiency.

The discrepancy between the results presented in Table 4.1 of the Trajectron++ paper and
the outcomes from Rosbag testing arises from multiple factors. These factors encompass the

nuScenes dataset being collected in a more organized traffic setting compared to the collected
37

Rosbag data, the higher error rate of the detection system within the Rosbag data, and the greater
velocities of tracked vehicles in the Rosbag data.

Considering that the distance between the two lines is 3 m for side roads and 3.50 m for main
roads, and taking into account that lane changes typically occur over 2-4 seconds, the results for
highway vehicles provided in Table 4.2 suggest that vehicles up to two seconds exhibit an acceptable
level of RMSE.

RMSE can be reduced by getting more accurate data from the perception layer. Speed and
heading information, which is one of the data from the perception layer, comes to the perception
layer from the localization layer and it comes to the localization layer from GPS and IMU sensors.
Therefore, accurate data should be received from GPS and IMU sensors for the successful
performance of the behavior prediction module; otherwise, incorrect results will emerge from the
speed and heading data entered as input to the model. However, the results in Table 4.3 also support
the results in Table 4.2. According to Table 4.3 results, it has been observed that the algorithm is

prone to error in real life during long prediction times.

During drives in urban conditions, as depicted in the dense environment from Figure 4.1 to
4.4, inputs are simultaneously fed into the model, thereby reducing the model's operational speed.
However, the fact that the route that both pedestrians and vehicles will take is more uncertain than
highway roads is one of the negative factors affecting this structure in urban use. Similar to highway
roads, speed and heading information from GPS and IMU are also important in urban areas. Even in
the city, since the speeds of vehicles are lower, errors in speeds affect the system more. Although the
slow speed makes it difficult to find the heading data correctly, more accurate heading data can be
obtained thanks to the added binary heading data structure. In order for the behavior prediction
module to be used in the city, the environment must be controlled and run on more advanced
computers. Controlled environment refers to the environments in which the algorithm is fed with
HDMap, traffic rules, traffic signs, node interactions and objects move within the framework of these

rules.

In the field of behavioral prediction, as it can be understood from the related work section,
many models have been studied and continue to be studied. Although the studied models generally
give successful results for the test sets of their own datasets, their speed and performance decrease
in dense environments such as urban areas. Successful results can be obtained by creating more
complex datasets and developing better model architectures. However, especially since pedestrians

can change direction suddenly, people even in real life have difficulty predicting the possible

38

movement of pedestrians and vehicles. Therefore, the behavior prediction problem is a difficult
problem for robots as well as for living beings. Especially as the estimated time gets longer, the
results are moving away from availability. In order for the behavior prediction module to be used in
public, the environment must be controlled, that is, the map must be used, and the surrounding

vehicles and pedestrians must act in accordance with the traffic rules and the map.

From a broader perspective apart from transportation vehicles, this software can be used in
any autonomous ground vehicle such as health care robots, agricultural robots, shuttle services etc.
and it increases the accuracy of planning module. In the future, it is planned to add ConvLSTM to

the model to increase accuracy and accelerate this model using TensorRT.

39

5. CONCLUSION

Since the possible routes of environmental objects will be taken into consideration, with the
behavioral prediction module obtained as a result of this study, the ratio of an autonomous vehicle
making a mistake in the environment of moving objects can be significantly reduced. An end-to-end,
real-time and robust behavioral prediction structure has been established from the detection module
to the planning module, with contributions such as writing real-time inference to the current model,

passing it to the ROS infrastructure and correcting or filtering faulty data.

Once for all, when the literature is examined, although there are autonomy modules such as
open-source localization planning perception, there is no multi-model real-time behavior prediction
module working with ROS. However, Trajectron++ is used as the model; also, there is no open-
source study for end-to-end integration of a model into an autonomous vehicle. The study is
innovative in these aspects. The module works more efficiently and robustly due to the added history
hold/drop structure and data filtering and correction features. In order to test the developed module,
data were collected by traveling both in the city and on the highway conditions with an autonomous
vehicle. The developed module has been tested on the data collected by an autonomous vehicle, and
RMSE, FDE, ADE and MR results are calculated and shown.

In this study, trajectory prediction methods were examined, compared with each other, and
as a result of these comparisons, graph-structured structures were seen to be more successful.
Afterwards, the data was collected and the content of the data was explained. The developed software

is explained, tested and the results are expressed.

40

REFERENCES

[1] Koubaa, A., “Robot Operating System (ROS): The Complete Reference (Volume
2)”, Springer, 2017, doi: 10.1007/978-3-319-54927-9.

[2] Hintjens, P., “ZeroMQ: Messaging for Many Applications”, O'REILLY, CA, 2013.

[3] Macenski, S., Foote, T., Gerkey, B., Lalancette, C., Woodall, W., “Robot operating
system 2: Design, architecture, and uses in the wild”, Sci. Robot., 7 (66) (2022),
doi: 10.48550/arXiv.2211.07752.

[4] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data,” in European
Conference on Computer Vision. Springer, 2020, pp. 683 700, doi: 10.1007/978-3-
030-58523-5_40.

[5] Y.Huang,J. Du, Z. Yang, Z. Zhou, L. Zhang, and H. Chen, “A survey on trajectory-
prediction methods for autonomous driving,” IEEE Transactions on Intelligent
Vehicles, 2022.

[6] M. Gulzar, Y. Muhammad, and N. Muhammad, “A survey on motion prediction of
pedestrians and vehicles for autonomous driving,” IEEE Access, 2021.

[7]1 S. Lefévre, D. Vasquez, and C. Laugier, ‘A survey on motion prediction and risk
assessment for intelligent vehicles,”” ROBOMECH J., vol. 1, no. 1, pp. 1-14, 2014.

[8] C. Scholler, V. Aravantinos, F. Lay, and A. Knoll, ‘“What the constant velocity model
can teach us about pedestrian motion prediction,”” IEEE Robot. Autom. Lett., vol. 5, no.
2, pp. 1696-1703, Apr. 2020.

[91 S. Ammoun and F. Nashashibi, “Real time trajectory prediction for collision risk
estimation between vehicles,” IEEE 5th International Conference on Intelligent

Computer Communication and Processing, 20009.

[10] R. Schubert, E. Richter, and G. Wanielik, “Comparison and evaluation of advanced
motion models for vehicle tracking,” 11th International Conference on Information
Fusion, 2008.

[11] P. Lytrivis, G. Thomaidis, and A. Amditis, “Cooperative path prediction in vehicular
environments,” Intelligent Transportation Systems, 2008. ITSC 2008. 11th
International IEEE Conference, 2008.

[12] N.Kaempchen, K. Weiss, M. Schaefer, and K. C. J. Dietmayer, “Imm object tracking
for high dynamic driving maneuvers,” in Intelligent Vehicles Symposium, 2004

41

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

B. Jin, J. Bo, S. Tao, H. Liu, and G. Liu, “Switched kalman filterinteracting multiple
model algorithm based on optimal autoregressive model for maneuvering target
tracking,” let Radar Sonar & Navigation, vol. 9, no. 2, pp. 199-209, 2015.

K. Okamoto, K. Berntorp, and S. Di Cairano, “Driver intention-based vehicle threat
assessment using random forests and particle filtering,” IFAC-PapersOnLine, vol.
50, pp. 13 860-13 865, 07 2017.

Y. Wang, Z. Liu, Z. Zuo, Z. Li, L. Wang, and X. Luo, “Trajectory planning and safety
assessment of autonomous vehicles based on motion prediction and model predictive
control,” IEEE Transactions on Vehicular Technology, vol. 68, no. 9, pp. 8546-8556,
2019.

E. Coelingh, A. Eidehall, and M. Bengtsson, ‘‘Collision warning with full auto brake
and pedestrian detection—A practical example of automatic emergency braking,’” in
Proc. 13th Int. IEEE Conf. Intell. Transp. Syst., Sep. 2010, pp. 155-160.

G. Xie, H. Gao, L. Qian, B. Huang, K. Li, and J. Wang, ‘‘Vehicle trajectory prediction
by integrating physics-and maneuver-based approaches using interactive multiple
models,”” IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5999-6008, Jul. 2018.

Batz, K. Watson, and J. Beyerer, “Recognition of dangerous situ ations within a
cooperative group of vehicles,” in Intelligent Vehicles Symposium, 2009.

C. Hermes, C. Wohler, K. Schenk, and F. Kummert, “Long-term vehicle motion
prediction,” in Intelligent Vehicles Symposium, 2010.

P. Trautman and A. Krause, “Unfreezing the robot: Navigation in dense, interacting
crowds,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2010, pp. 797-803.

Y. Guo, V. V. Kalidindi, M. Arief, W. Wang, J. Zhu, H. Peng, and D. Zhao,
“Modeling multi-vehicle interaction scenarios using Gaussian random field,” in 2019
IEEE Intelligent Transportation Systems Conference (ITSC), 2019, pp. 3974-398.

P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier, “Learning-based = approach for
online lane change intention prediction,” in IEEE Intelligent Vehicles Symposium, 2013.
S. Qiao, D. Shen, X. Wang, N. Han, and W. Zhu, “A self-adaptive parameter selection
trajectory prediction approach via hidden markov models,” IEEE Transactions on
Intelligent Transportation Systems, vol. 16, no. 1, pp. 284-296, 2015.

Q. Deng and D. Softker, “Improved driving behaviors prediction " based on fuzzy logic-
hidden markov model (fl-hmm),” in 2018 IEEE Intelligent Vehicles Symposium (1V),

2018, pp. 2003-2008.
42

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

T. Gindele, S. Brechtel, and R. Dillmann, ‘A probabilistic model for estimating driver
behaviors and vehicle trajectories in traffic environments,”” in Proc. 13th Int. IEEE
Conf. Intell. Transp. Syst., Sep. 2010, pp. 1625-1631.

Lee, N., Choi, W., Vernaza, P., Chor, C. B., Torr, P. H. S., And Chandraker, M. K.
“DESIRE: distant future prediction in dynamic scenes with interacting agents.” CoRR
abs/1704.04394, 2017.

S. Dai, L. Li, and Z. Li, ‘“Modeling vehicle interactions via modified LSTM models for
trajectory prediction,”” IEEE Access, vol. 7, pp. 3828738296, 2019.

F. Diehl, T. Brunner, M. T. Le, and A. Knoll, “Graph neural networks for modelling
traffic participant interaction,” in 2019 IEEE Intelligent Vehicles Symposium (1V), 2019.
X. Li, X. Ying, and M. C. Chuah, “Grip++: Enhanced graph-based interaction-aware
trajectory prediction for autonomous driving,” arXiv preprint arXiv:1907.07792, 2019.
X. Huang, P. Wang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The apolloscape open
dataset for autonomous driving and its application,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), 2018.

A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan: Socially
acceptable trajectories with generative adversarial networks,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

K. Sohn, H. Lee, and X. Yan, “Learning structured output representation using deep
conditional generative models,” Advances in neural information processing systems,
vol. 28, pp. 3483-3491, 2015.

L. Sun, W. Zhan, and M. Tomizuka, ‘“Probabilistic prediction of interac tive driving
behavior via hierarchical inverse reinforcement learning,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018, pp. 2111-2117.
A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer, “Imitating driver behavior
with generative adversarial networks,” in 2017 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2017, pp. 204-211.

S. Choi, J. Kim, and H. Yeo, “Trajgail: Generating urban vehicle trajec tories using
generative adversarial imitation learning,” Transportation Research Part C: Emerging
Technologies, vol. 128, p. 103091, 2021.

M. Waulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep in verse
reinforcement learning,” arXiv preprint arXiv:1507.04888, 2015.

C. You, J. Lu, D. Filev, and P. Tsiotras, “Advanced planning for autonomous vehicles

using reinforcement learning and deep inverse reinforcement learning,” Robotics and
43

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[49]

[46]

[47]

[48]

[49]

Autonomous Systems, vol. 114, pp. 1-18, 2019.

C. Jung and D. H. Shim, “Incorporating multi-context into the traversability map for
urban autonomous driving using deep inverse reinforcement learning,” |IEEE Robotics
and Automation Letters, vol. 6, no. 2, pp. 1662-1669, 2021.
https://github.com/enyen/Deep-Trajectory-Prediction (Accessed: 20 April 2023)

N. Deo and M. M. Trivedi, “Convolutional social pooling for vehicle trajectory
prediction,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2018.

V. Lefkopoulos, M. Menner, A. Domahidi, and M. N. Zeilinger, “Interaction-aware
motion prediction for autonomous driving: A multiple model kalman filtering scheme,”
IEEE Robotics and Automation Letters, vol. 6, no. 1, pp. 80-87, 2021.

N. Deo, A. Rangesh, and M. M. Trivedi, “How would surround vehicles move? a unified
framework for maneuver classification and motion prediction,” IEEE Transactions on
Intelligent Vehicles, pp. 129-140, 2018.

N. Deo and M. M. Trivedi, “Multi-modal trajectory prediction of surrounding vehicles
with maneuver based Istms,” in 2018 IEEE Intelligent Vehicles Symposium (1V), 2018,
pp. 1179-1184.

C. Tang and R. R. Salakhutdinov, “Multiple futures prediction,” Advances in Neural
Information Processing Systems, vol. 32, pp. 15 424-15 434, 2019.

N. Deo and M. M. Trivedi, “Convolutional social pooling for vehicle trajectory
prediction,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2018.

K. Messaoud, I. Yahiaoui, A. Verroust-Blondet, and F. Nashashibi, “Attention based
vehicle trajectory prediction,” IEEE Transactions on Intelligent Vehicles, vol. 6, no. 1,
pp. 175-185, 2020.

7. Zhao, H. Fang, Z. Jin, and Q. Qiu, “Gisnet: Graph-based information sharing network
for vehicle trajectory prediction,” in 2020 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2020, pp. 1-7.

T. Zhao, Y. Xu, M. Monfort, W. Choi, C. Baker, Y. Zhao, Y. Wang, and Y. N. Wu,
“Multi-agent tensor fusion for contextual trajectory prediction,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Y. Wang, S. Zhao, R. Zhang, X. Cheng, and L. Yang, “Multi-vehicle collaborative
learning for trajectory prediction with spatio-temporal tensor fusion,” IEEE

Transactions on Intelligent Transportation Systems, vol. PP, no. 99, pp. 1-13, 2020.
44

[50]

[51]

[52]

[53]

[4]

[59]

[56]

[57]

[58]

[59]

[60]

K. Saleh, M. Hossny, and S. Nahavandi, “Long-term recurrent predic tive model for
intent prediction of pedestrians via inverse reinforcement learning,” in 2018 Digital
Image Computing: Techniques and Applications (DICTA). IEEE, 2018, pp. 1-8.

A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer, “Imitating driver behavior
with generative adversarial networks,” in 2017 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2017, pp. 204-211.

M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and 1. Posner, “Large-scale cost
function learning for path planning using deep inverse reinforcement learning,” The
International Journal of Robotics Research, vol. 36, no. 10, pp. 1073-1087, 2017.

T. Fernando, S. Denman, S. Sridharan, and C. Fookes, “Neighbourhood context
embeddings in deep inverse reinforcement learning for predicting pedestrian motion
over long time horizons,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops, 2019, pp. 0-0.

M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr,
S. Lucey, D. Ramanan et al., “Argoverse: 3d tracking and forecasting with rich maps,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 8748-8757.

J. Mercat, T. Gilles, N. El Zoghby, G. Sandou, D. Beauvois, and G. P. Gil, “Multi-head
attention for multi-modal joint vehicle motion forecasting,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp. 9638-9644.

J. Ngiam, B. Caine, V. Vasudevan, Z. Zhang, H.-T. L. Chiang, J. Ling, R. Roelofs, A.
Bewley, C. Liu, A. Venugopal et al., “Scene transformer: A unified multi-task model
for behavior prediction and planning,” International Conference on Learning
Representations (ICLR), 2021.

Y. Liu, J. Zhang, L. Fang, Q. Jiang, and B. Zhou, “Multimodal motion prediction with
stacked transformers,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021, pp. 7577-7586.

M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun, “Learning lane
graph representations for motion forecasting,” in European Conference on Computer
Vision. Springer, 2020, pp. 541-556.

J. Gu, C. Sun, and H. Zhao, “Densetnt: End-to-end trajectory prediction from dense goal
sets,” in Proceedings of the IEEE/CVF International Conference on Computer Vision,
2021, pp. 15 303-15 312.

W. Zeng, M. Liang, R. Liao, and R. Urtasun, “Lanercnn: Distributed representations for
45

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

graph-centric motion forecasting,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 532-539.

H. Song, D. Luan, W. Ding, M. Y. Wang, and Q. Chen, “Learning to predict vehicle
trajectories with model-based planning,” arXiv preprint arXiv:2103.04027, 2021.

A. Geiger, P. Lenz, C. Stiller, R. Urtasun. “The KITTI Vision Benchmark Suite”,
cvlibs.net/datasets/kitti/ (Accessed: 20 April 2023).

Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A., Pan,
Y., Baldan, G. and Beijbom, O., nuScenes: A multimodal dataset for autonomous
driving, CVPR, (2020), 11618-11628, doi: 10.1109/CVPR42600.2020.01164.

Chang, M.-F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang, D., Carr,
P., Lucey, S., Ramanan, D. and Hays, J., Argoverse: 3D Tracking and Forecasting With
Rich Maps, IEEE Conference on Computer Vision and Pattern Recognition, (2019),
8748-8757, doi: 10.1109/CVPR.2019.00895.

Coifman, B. A critical evaluation of the next generation simulation (NGSIM) vehicle
trajectory dataset, Trans. Res. B Methodol., 105 (2017), 362-377, doi:
10.1016/j.trb.2017.09.018.

Caesar, H., Kabzan, J., Tan, K., nuPlan: A closed-loop ML-based planning benchmark
for autonomous vehicles, CVPR ADP3 workshop, (2021), doi:
10.48550/arXiv.2106.11810

Caesar, H., Kabzan, J., Tan, K. nulmages. “Nuscenes.org”, nuscenes.org/nuimages
(Accessed: 20 April 2023).

Batz, K. Watson, and J. Beyerer, “Recognition of dangerous situations within a

cooperative group of vehicles,” in Intelligent Vehicles Symposium, 2009.

46

