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Objective: This study compared the dosimetry of

volumetric-arc therapy (VMAT) and intensity-modulated

radiotherapy (IMRT) with a dynamic multileaf collimator

using the Monte Carlo algorithm in the treatment of

prostate cancer with and without simultaneous inte-

grated boost (SIB) at different energy levels.

Methods: The data of 15 biopsy-proven prostate cancer

patients were evaluated. The prescribed dose was 78Gy

to the planning target volume (PTV78) including the

prostate and seminal vesicles and 86Gy (PTV86) in 39

fractions to the intraprostatic lesion, which was de-

lineated by MRI or MR-spectroscopy.

Results: PTV dose homogeneity was better for IMRT

than VMAT at all energy levels for both PTV78 and

PTV86. Lower rectum doses (V30–V50) were significantly

higher with SIB compared with PTV78 plans in both

IMRT and VMAT plans at all energy levels. The bladder

doses at high dose level (V60–V80) were significantly

higher in IMRT plans with SIB at all energy levels

compared with PTV78 plans, but no significant difference

was observed in VMAT plans. VMAT plans resulted in

a significant decrease in the mean monitor units (MUs) for

6, 10, and 15MV energy levels both in plans with and those

without SIB.

Conclusion: Dose escalation to intraprostatic lesions with

86Gy is safe without causing serious increase in organs at

risk (OARs) doses. VMAT is advantageous in sparing

OARs and requiring less MU than IMRT.

Advances in knowledge: VMAT with SIB to intraprostatic

lesion is a feasible method in treating prostate cancer.

Additionally, no dosimetric advantage of higher energy is

observed.

Randomized trials have shown a gain in biochemical
relapse-free survival using dose escalation for prostate can-
cer.1 However, isolated local failure is still reported in nearly
one-third of patients, even with higher radiotherapy (RT)
doses.1 Local recurrence is of clinical importance because
a relationship has been suggested between local control,
distant metastasis and survival.2 It has also been demon-
strated that intraprostatic failure mainly originates at the
initial tumour location as a result of intrinsic resistance
of a fraction of the tumour clones, which implies that
selective dose escalation to the dominant intraprostatic
lesion using simultaneous integrated boost (SIB) might
be beneficial.3

With new RT techniques, such as intensity-modulated RT
(IMRT) and volumetric-arc therapy (VMAT), SIB could be
delivered without increasing acute toxicity.4–7 Several re-
cent studies have performed dosimetric comparison of
IMRT and VMAT plans in prostate cancer;8–10 however,
dosimetric evaluation of IMRT and VMAT plans delivering

SIB is rare. In these studies, target volume and organs at
risk (OARs) doses may vary with different treatment
planning systems. Another aspect not often addressed in
these planning studies is the photon energy level.4,8,9,11

Although higher energy photons have the potential ad-
vantage of reduced attenuation with depth, this may in
turn increase the risk of secondary malignancies because of
the presence of neutrons generated in the accelerator head
at treatment energies .8MV.12

Functional imaging techniques can clearly demonstrate
tumour within the prostate. MRI, MR spectroscopy (MRS)
and positron emission tomography are capable of dem-
onstrating intraprostatic lesions (IPLs).13 The advent of
combined MRI with MRS or dynamic contrast enhanced
(DCE)-MRI improves the detection rate of tumours within
the prostate.13–15

The aim of the present study was to make dosimetric
comparisons of VMAT and 7-field IMRT with dynamic
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multileaf collimators (MLCs) using the Monte Carlo algorithm
with XVMC code in the treatment of prostate cancer with or
without SIB, which can provide improved dose calculation ac-
curacy and has been implemented successfully in the clinical
setting.16,17 Additionally, the impact of three photon energies on
target volumes, OARs and normal tissue was evaluated in IMRT
and VMAT plans.

METHODS AND MATERIALS
The CT and MRI/MRS data of 15 consecutive intermediate risk
prostate cancer patients were selected for the present study. The
inclusion criterion was the presence of an MRI or MRS detected
IPL, which was defined as an MRI- and/or MRS-detected prostate
tumour with characteristics suggesting a high probability of ma-
lignancy according to the criteria of Cruz et al18 for MRI and
Villeirs et al13 for MRS.

CT and MRI
All patients had undergone 2.5-mm slice thickness CT with
a comfortably full bladder and empty rectum.19 MRI scans
were acquired with the same conditions as CT. Because of the
negative effects of androgen deprivation on the metabolism of
prostate cancer cells, MRS examinations were performed in the
absence of or before hormone therapy.20 The MRI scans used
for image fusion and treatment planning were acquired on a
1.5 T Siemens Avanto® MRI System (Siemens Healthcare,
Erlangen, Germany). T2 weighted (T2W) diffusion weighted
images and DCE-MRI examinations were performed using an
eight-element phased array coil during the scans without an
endorectal coil. T1, T2, MRS, apparent diffusion coefficient
(ADC) and DCE images of the prostate were reviewed by an
experienced radiologist (GE). The IPLs identified on T2, ADC,
DCE images or MRS were used for SIB planning.21 The CT and
MRI data were digitally transferred to an Eclipse™ (Varian
Medical Systems, Palo Alto, CA) workstation and coregistered
to delineate the regions of interest. The CT and MRI fusion was
done by automated computerized fusion and then checked
manually, as described in other IPL boost studies.14,21,22

Clinical target volume (CTV) included the prostate and the
entire seminal vesicles. The planning target volume for 78Gy
(PTV78) was defined as CTV with a margin of 5mm posterior
and 8mm in other directions.19,23 The delineation of IPL was
done together with a radiologist (Figure 1). The PTV for 86Gy
(PTV86) was created using a three-dimensional, isotropic, 4-mm
margin around the IPL.6 The OARs included the rectum,
sigmoid, bladder and femoral heads. The rectum was delineated

from the anal verge to the recto-sigmoid junction.24 The femoral
heads were contoured to the level of ischial tuberosities.

Treatment plans
The treatment plans were generated using IMRT and VMAT
techniques. The IMRT plans consisted of seven coplanar fields, at
gantry angles of 0°, 37°, 75°, 135°, 225°, 285° and 327°. The plans
were calculated with Monaco treatment planning system (CMS;
Elekta, Crawley, UK) using the Monte Carlo algorithm and a
sliding window MLC delivery technique. The VMAT plans con-
sisted of a single 360° arc. Gantry speed, MLC leaf position and
dose rate varied continuously during VMAT delivery.25 For each
patient, three different plans with 6, 10, and 15MVenergies were
generated for both IMRTand VMAT techniques. Additionally, the
same plans were made with SIB. All plans were created for de-
livery on an Elekta linear accelerator (Elekta) equipped with an
MLC and designed for dynamic IMRT and VMAT. The leaf width
of the Elekta accelerator used in the present study was 0.4 cm, and
the leaves did not interdigitate.

Dose prescription
Two plans were generated and each plan was normalized to
deliver 99% of CTV and 95% of PTV78 and PTV86 receiving at
least 78 and 86Gy, respectively. All treatments were planned to
be delivered in 39 fractions. Dose constraints for the rectum and
bladder were based on Radiation Therapy Oncology Group
recommendations,26 where V50 and V70 for the rectum were
50% and 20% and V55 and V70 for the bladder were 50% and
30%, respectively. Normal tissue complication probability values
for rectum and bladder were ,10% and #5%, respectively.27,28

The femoral heads were limited to receive a maximum of 50Gy.

Plan evaluation
We evaluated the treatment plans by comparing the planning results
with the planning and physical indices (Table 1). D2 and D98 were
used as surrogates for maximum and minimum doses for target
volumes, respectively. Target dose homogeneity index (TDI) was
calculated as: TDI5 [(D2–D98)/D50], where D50 is the minimal
dose to 50% of target volume. Additionally, the heterogeneity index
(HI) was defined as HI5D1/D95, where D1 and D95 are minimal
dose to 1% and 95% of target volume, respectively. For the rectum,
D2cc was defined as the minimum dose value in the 2-cc volume
receiving the highest dose. To quantify the dose to normal tissues,
relative volumes of the 50% isodose (V50%) was determined.

Dose verification
Dose verification for the treatment plan was performed using
a two-dimensional (2D) ion chamber array detector (IMRT

Figure 1. Representative image demonstrating intraprostatic lesion (a) in diffusion weighted MR scan and (b) coregistered MR and

CT scans. (c) PTV86 and PTV78 are generated with given margins to intraprostatic lesion and prostate.
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MatriXX™; IBA Dosimetry, GmbH, Germany) that consists of
1020 ion chambers. For dose verification, the MatriXX was
inserted into a MULTICube Plastic Water® phantom (CIRS,
Norfolk, VA). All IMRT and VMAT plans were recalculated on
the MatriXX phantom for each energy level, which was pre-
viously scanned and defined as a quality assurance phantom on
the planning system. Dose map of the plan at effective 2D array
depth was transferred to the dosimetry system. Dose verification
used for calculation of 2D g index, percentage of the g, 1
averaged 96.876 1.61 using 3% dose 3-mm distance criteria.

Statistical analysis
Statistical analysis was performed using SPSS® software v. 17.0
(SPSS Inc., Chicago, IL). The Wilcoxon’s matched-pairs test was
used to determine statistical differences between volumes and
doses in IMRT vs VMAT plans. The dose–volume parameters of
target volumes and OARs for each energy level were also mea-
sured and compared across energy levels. The comparison was
also made for 78 and 86Gy plans. TheMann–WhitneyU-test was
used to compare volumes or dose values in independent patient
groups. All p-values reported are two-sided and a p, 0.05 was
considered significant.

RESULTS
The mean CTV and PTV78 volumes were 34.2 cm3 (range,
19.8–74.6 cm3) and 148.3 cm3 (range, 98.6–225.8 cm3), respectively.

The mean IPL and PTV86 volumes were 1.4 cm3 (range,
0.4–5.3 cm3) and 6.6 cm3 (range, 3.3–12.2 cm3), respectively.
Figure 2 shows representative axial sections depicting dose
distributions for IMRT and VMAT plans with different energy
levels.

Target volume doses
The dosimetric parameters for target volumes are summarised
in Table 1. The average maximum doses for CTV and PTV78
(D2) were significantly higher in VMAT plans than IMRT plans
for all energy levels; however, minimum doses (D98) did not
differ significantly. No significant difference was found for D2

and D98 values between IMRT and VMAT plans at all energy
levels for PTV86. The mean dose of PTV86 was significantly
higher in VMAT plans than in IMRT plans at 15MV, while the
difference was close to the level of significance at 6 and 10MV.

PTV dose homogeneity was better in IMRT plans than in
VMAT plans at all energy levels for both PTV78 and PTV86.
For PTV78, the HI had a borderline significance, whereas the
HIs of PTV86 were significantly better in IMRT plans than in
VMAT plans at all energy levels (Figure 3). No significant
difference was observed in normal tissue doses between IMRT
and VMAT plans. SIB technique did not cause a significant
increase in normal tissue doses both with IMRT and VMAT
techniques.

Figure 2. Representative axial CT slices showing 50% of prescribed dose distributions for (a) 6MV, (b) 10MV, (c)15MV energy

intensity-modulated radiotherapy (IMRT) plans and (d) 6MV, (e) 10MV, (f) 15MV energy volumetric-arc therapy (VMAT) plans.
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Organ at risk doses
A comparison of the dosimetric parameters of OARs for each of
the plan types is listed in Table 2. Compared with IMRT, VMAT
plans achieved lower doses for all OARs for nearly all dosimetric
end points. Only femur doses were higher in VMAT plans. Al-
though lower rectum doses (V30–V50) were significantly higher
in SIB plans than PTV78 plans in both IMRT and VMAT plans
at all energy levels; there were no significant differences at high
dose levels (Figure 4). The bladder doses at high dose levels
(V60–V80) were significantly higher in IMRT plans with SIB at all
energy levels compared with PTV78 plans (Figure 5). However,
there was no significant difference in bladder doses between SIB
plans and PTV78 plans with VMAT at all energy levels.

Compared with IMRT plans, VMAT plans achieved 8.1%, 7.4%
and 7.3% relative decreases in the mean number of monitor
units (MUs) required for RT delivery in PTV78 plans at 6, 10
and 15MV energy levels, respectively. VMAT plans with SIB
achieved 9.1%, 7.0% and 6.3% decrease in the mean number of
MUs at 6, 10 and 15MV energy levels, respectively.

Dose verification
Dose verification used for calculation of 2D g index, percentage
of the g ,1 using 3% dose and 3-mm distance criteria averaged
97.866 0.98 at 6MV, 97.426 1.11 at 10MV and 96.836 1.35
at 15MV for SIB-IMRT plans. For SIB-VMAT plans, it was

97.896 0.93, 97.736 0.92 and 96.816 0.91 at 6, 10, and 15MV
plans, respectively.

DISCUSSION
This study evaluated the dose distribution of target volumes, and
OARs were assessed with two different RT techniques at three
energy levels. Moreover, the SIB technique, where higher radi-
ation doses were delivered to the IPL, did not cause any serious
increment in OAR doses except for low-dose regions in the
rectum and high-dose regions in the bladder. The most prom-
inent advantage of VMAT is a significant decrease in treatment
MUs, which means less radiation and shorter treatment time.

Dose escalation for prostate cancer causes improved biochemical
control and reduced distant metastasis.1 However, local failure
still occurs in one-third of patients after 78Gy external RT
(ERT).1 The original IPL is the most frequent location of re-
lapse.3 Therefore, selectively boosting radiation to these lesions
to a very high dose has been hypothesized to be a more effective
method to improve the therapeutic ratio than a homogeneous,
but more modest, dose escalation to the entire prostate.29

The accuracy of MRI and MRS in localizing prostate cancer was
82–85%, and the authors emphasized the importance of in-
corporating functional imaging techniques such as MRS for
prostate cancer RT planning.30,31 Although MRI with endorectal

Figure 3. Representative axial CT slices showing 95% of prescribed dose distributions for (a) 6MV, (b) 10MV, (c) 15MV energy

intensity-modulated RT (IMRT) plans and (d) 6MV, (e) 10MV, (f) 15MV energy volumetric-arc therapy (VMAT) plans.
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coil has higher sensitivity for staging, this coil can distort the
prostate.32 Therefore, appropriate image fusion was only possi-
ble in MRI and CT acquired using the same conditions. In this
study, we preferred to use MRI or MRS in detecting the IPL for
treatment planning. To obtain adequate images, MRI scans were
acquired with the same conditions as CT. Additionally, one ex-
perienced radiologist who was aware of detailed histopatholog-
ical findings contoured the tumour in coregistered CT and MRI
images on an Eclipse work station.

Techniques such as VMAT and IMRT are able to generate con-
formal isodoses, which significantly reduce the OAR doses and
normal tissue toxicity. There are numerous dosimetric studies
comparing plans with and without SIB. Early results are en-
couraging, with patients who were treated even up to 94.5 Gy with
acceptable early toxicity rates. In these studies, although the de-
livery techniques for IMRT and VMAT were similar, the results
were conflicting. These heterogeneous results may be due to
different target definitions and dose constraints. De Meerleer

Figure 4. Rectum doses at different energy levels (a–c) in intensity-modulated RT (IMRT) plans and (d–f) volumetric-arc therapy

(VMAT) plans. Solid lines represent plans with simultaneous integrated boost (SIB, PTV86). Dashed lines represent plans without

SIB.

Full paper: Simultaneous integrated boost in prostate cancer BJR
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et al14 compared IMRT plans with 74Gy prescribed to PTV with
or without a simultaneous dose of 80Gy to the gross tumour
volume with no margin detected by MRI and found that the
rectum dose levels (V70 and Dmax) were increased with SIB plans.
Similarly, Pinkawa et al6 demonstrated improved dose escalation
to the macroscopic tumour with minor rectum and bladder
dose changes, similar to our findings. In this study, we escalated
the IPL dose to 86Gy with 78Gy delivered to prostate and
seminal vesicles. For estimated a/b ratios of 1.5 and 3.0, IPL

dose corresponds to a total dose of 89 and 90Gy, respectively, in
conventional fractionation according to the linear-quadratic
model.

There are few clinical studies assessing acute toxicity in patients
treated with dose escalated SIB plans.5,29 Fonteyne et al5 did not
find increased severity or incidence of acute toxicity in a group of
118 prostate cancer patients after dose escalation with SIB to an
MRI/MRS-detected IPL (76Gy median dose to PTV and 80Gy

Figure 5. Bladder doses at different energy levels (a–c) in intensity-modulated RT (IMRT) plans and (d–f) volumetric-arc therapy

(VMAT) plans. Solid lines represent plans with simultaneous integrated boost (SIB, PTV86). Dashed lines represent plans without

SIB.
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median dose to gross tumour volume prescribed). In another
study by Geier et al,29 acute side effects and dose–volume histo-
gram data were evaluated in 40 intermediate risk prostate cancer
patients treated with a definitive daily image-guided SIB-IMRT
protocol via helical tomotherapy. The PTV was treated with 70Gy
in 35 fractions. The boost volume containing the prostate and
3-mm safety margins (5mm craniocaudal) was treated as SIB to
a total dose of 76Gy (2.17Gy per fraction) without increasing acute
toxicity. In this study, we first evaluated the treatment plans dosi-
metrically. However, the acute toxicity with this escalated dose is
a question for an ongoing study.

The techniques of IMRT and VMAT, planning strategies, opti-
mization algorithm and beam angles affect the dosimetric out-
come. With different dose calculation algorithms used in these
studies, 3–4% deviations in target volume and OAR doses were
seen.5 The Monte Carlo algorithm can improve dose calculation
accuracy, which has been implemented successfully in clinical
settings. Lafond et al33 recently compared the Monaco TPS and
Pinnacle™ TPS (Philips Medical Systems, Madison, WI) for
VMAT plans, and found that the bladder wall, femoral heads
and healthy tissue doses were significantly lower in Monaco
plans. For PTV doses, Monaco plans had higher conformity than
Pinnacle plans. In this study, similar to previous studies, we
compared the dose distributions of IMRT and VMAT plans
using Monaco 3.2 TPS (CMS; Elekta, Crawley, UK). For normal
tissues surrounding the target volume, VMAT is superior to
IMRT, as was in our study.23

The photon energy may contribute to dose distribution. Re-
cently, Ost et al4 compared IMRT and VMAT plans at 6 and
18MV for primary prostate RT with SIB and showed no ad-
vantage of high-energy photons over low-energy photons. Pasler
et al8 compared IMRT and VMAT plans with 6, 10 and 15MV
photon beams for prostate cancer involving pelvic lymph nodes
and did not show advantages of 15MV over 6 and 10MV
photon beams in large volume pelvic plans. In this study, we
additionally investigated the effect of photon energy levels over
dose distributions of IMRT and VMAT plans for only prostate
and seminal vesicle, with or without SIB, which was not

investigated before. We found no advantage of higher energy
levels over lower energy levels both for target volume and OARs
doses. Furthermore, we found no difference in low-dose irra-
diated volume in normal tissue surrounding the target with 6, 10
or 15MV photons. However, concerning neutron generation for
photon energies .8MV, it was demonstrated that the neutron
component is not negligible at 15MV.34 Therefore, IMRT or
VMAT delivery with low-energy photons may be adequate,
since high-energy photons did not result in a significant
benefit in terms of target coverage and OAR doses. Addi-
tionally, VMAT spares normal tissue surrounding the target
volume better than IMRT; thus, rather than IMRT plans with
higher energy, VMAT plans with lower energy may be a safe
treatment strategy.

This study is not without limitations. First, with its retrospective
nature, we only compared the dosimetric parameters of IMRT
and VMAT plans in a limited number of patients. To make
definitive conclusions, a large number of patients with different
planning algorithms are essential. Additionally, the efficacy and
toxicity of SIB plans with longer follow-up is required for
making clinical decisions. Second, we prefer only single-arc
plans in VMAT plans, rather than two or more arcs. Another
study addressing the dose distributions of single and double arc
VMAT plans with Monaco TPS could be considered.

CONCLUSION
Our study showed that dose escalation to the IPL is a safe tech-
nique without any serious increase in OAR doses. Additionally,
although IMRT plans resulted in more homogenous dose distri-
bution within the target volumes than VMAT plans, VMAT is
better in sparing the rectum and bladder compared with IMRT
plans. VMAT also had the added advantage of reducing the MUs
required for treatment compared with seven-field IMRT. More-
over, high-energy photons had no advantage over low-energy
photons. However, additional studies are needed to evaluate
whether SIB plans result in improved biochemical control without
increased toxicity and whether long-term follow-up is required
to determine the potential effects of dose escalated SIB on local
control and survival.
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