т ̈̈вітак

Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2020) 44: $342-347$
© TÜBİTAK
doi:10.3906/mat-1908-108

Coefficient estimates for the class of quasi q-convex functions

Osman ALTINTAŞ ${ }^{1}$, Melike AYDOĞAN ${ }^{2, *}$
${ }^{1}$ Department of Mathematics Education, Faculty of Education, Başkent University, Ankara, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Science, İstanbul Technical University, İstanbul, Turkey

Received: 29.08.2019 • Accepted/Published Online: 14.01.2020 • Final Version: 20.01 .2020

Abstract: In this paper we introduce and investigate the class of $P_{q}(\lambda, \beta, A, B)$, which is called quasi q-starlike and quasi q-convex with respect to the values of the parameter λ. We give coefficient bounds estimates and the results for the main theorem.

Key words: q-Derivative, starlike function, convex function, q-starlike function, q-convex function, quasi q-starlike function, quasi q-convex function, close-to-quasi q-starlike function, close-to-quasi q-convex function

1. Introduction

Let A denote the class of analytic functions in the open unit disc $U=\{z \in C:|z|<1\}$ of the form

$$
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, a_{n} \geq 0
$$

We say that the function $f(z)$ is subordinate to $g(z)$ and can be represented as $f \prec g$, if there exists a function $w(z)$ such that $w(0)=0,|w(z)|<1$, and $f(z)=g(w(z))$. If $g(z)$ is univalent the above subordination is equivalent to $f(0)=g(0)$ and $f(U) \subset g(U)$ (see [3]). $S^{*}(\alpha)$ and $C(\alpha)$ are starlike and convex functions of order α respectively such that

$$
\begin{gathered}
S^{*}(\alpha)=\left\{f \in A: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in U\right\} \\
C(\alpha)=\left\{f \in A: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in U\right\}
\end{gathered}
$$

for $\alpha=0, S^{*}=S^{*}(0)$ and $C=C(0)$ are respectively starlike and convex functions in U (see [3]). Jackson (see [4]) introduced q-derivative operator of the functions $f(z)$ as follows:

$$
D_{q} f(z)=\left\{\begin{array}{lc}
\frac{f(z)-f(q z)}{(1-q) z}, & \text { if } z \neq 0 \tag{1.1}\\
f^{\prime}(0), \quad \text { if } & z=0
\end{array}\right.
$$

for $q \in(0,1)$. It is clear that

$$
\lim _{q \rightarrow 1^{-}} D_{q} f(z)=f^{\prime}(z)
$$

*Correspondence: aydogansm@itu.edu.tr
2010 AMS Mathematics Subject Classification: 30C45

For $n \in N, D_{q} z^{n}=[n]_{q} z^{n-1},[n]_{q}=\frac{1-q^{n}}{1-q},[0]_{q}=0$. Recently Uçar Özkan (see [8]) studied some properties of q-starlike and q-close to convex functions. Ramachandran [6] studied q-starlike and q-convex functions with respect to symmetric points. Polatoǧlu [5] investigated q-starlike functions and obtained growth and distortion theorems for this class.
Quasi-starlike and quasi-convex functions were studied by Altıntaş (see [1]). Altıntaş and Mustafa studied q-starlike and q-convex functions (see [2]).
We have the following properties:

Remark 1.1 We have symbols for the following classes:
i. $C V(\beta)$ is the class of convex functions of order β.
ii. $S T(\beta)$ is the class of starlike functions of order β.
iii. $C C V(\alpha)$ is the class of close-to-convex of order α.
iv. $\operatorname{CST}(\alpha)$ is the class of close-to-starlike of order α.
v. $Q C V(\alpha)$ is the class of quasi-convex of order α.
vi. $Q S T(\alpha)$ is the class of quasi-starlike of order α.
vii. $C C_{q} V(\alpha)$ is the class of close-to- q convex of order α.
viii. $C S_{q} T(\alpha)$ is the class of close-to- q starlike order α.
ix. $Q C_{q} V(\alpha)$ is the class of quasi- q convex of order α.
x. $Q S_{q} T(\alpha)$ is the class of quasi- q starlike of order α.

Remark 1.2 We have definitions of the following classes.
i. $C V=\left\{f \in A: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0\right\}$.
ii. $S T=\left\{f \in A: \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0\right\}$.
iii. $C V(\beta)=\left\{f \in A: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\beta, \quad 0 \leq \beta<1\right\}$.
iv. $S T(\beta)=\left\{f \in A: R e \frac{z f^{\prime}(z)}{f(z)}>\beta, \quad 0 \leq \beta<1\right\}$.
v. $C C V(\beta)=\left\{f \in A: \operatorname{Re} \frac{f^{\prime}(z)}{g^{\prime}(z)}>\beta, \quad 0 \leq \beta<1, \quad g \in C V\right\}$.
vi. $\operatorname{CST}(\beta)=\left\{f \in A: \operatorname{Re} \frac{f(z)}{g(z)}>\beta, \quad 0 \leq \beta<1, \quad g \in S T\right\}$.
vii. $C C V(\beta, A, B)=\left\{f \in A: \frac{f^{\prime}(z)}{g^{\prime}(z)} \prec \frac{1+A z}{1+B z}, \quad g \in C V(\beta), \quad-1 \leq B<A \leq 1\right\}$.
viii. $\operatorname{CST}(\beta, A, B)=\left\{f \in A: \frac{f(z)}{g(z)} \prec \frac{1+A z}{1+B z}, \quad g \in S T(\beta), \quad-1 \leq B<A \leq 1\right\}$.
ix. $Q C V(\beta, A, B)=\left\{f \in A: \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)} \prec \frac{1+A z}{1+B z}, \quad g \in C V(\beta), \quad-1 \leq B<A \leq 1\right\}$.
x. $\operatorname{QST}(\beta, A, B)=\left\{f \in A: \frac{z f^{\prime}(z)}{g(z)} \prec \frac{1+A z}{1+B z}, \quad g \in S T(\beta), \quad-1 \leq B<A \leq 1\right\}$.
xi. $Q C_{q} V(\beta, A, B)=\left\{f \in A: \frac{D_{q}\left(z D_{q}(z)\right)}{D_{q} g(z)} \prec \frac{1+A z}{1+B z}, \quad g \in C V(\beta), \quad-1 \leq B<A \leq 1, \quad q \in(0,1)\right\}$.
xii. $Q S_{q} T(\beta, A, B)=\left\{f \in A: \frac{z D_{q} f(z)}{g(z)} \prec \frac{1+A z}{1+B z}, \quad g \in S T(\beta), \quad-1 \leq B<A \leq 1, \quad q \in(0,1)\right\}$.

Remark 1.3 i. $f \in C V(\beta) \Rightarrow z f^{\prime} \in S T(\beta),(0 \leq \beta<1)$.
ii. $f \in C C V(\alpha) \Rightarrow z f^{\prime} \in \operatorname{CST}(\alpha),(0 \leq \alpha<1)$.
iii. $f \in Q C V(\alpha) \Rightarrow z f^{\prime} \in Q S T(\alpha)$.
iv. $f \in Q C_{q} V(\alpha) \Rightarrow z f^{\prime} \in Q S_{q} T(\alpha)$.

Lemma 1.4 If $h(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ is analytic in U and $h(z) \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1$, then we have

$$
\begin{equation*}
\operatorname{Reh}(z)>\frac{1-A}{1-B} . \tag{1.2}
\end{equation*}
$$

(see [7]).
Lemma 1.5 If $f(z) \in C_{q} V(\beta)$ or $\operatorname{Re}\left[1+\frac{z D_{q}^{2} f(z)}{D_{q} f(z)}\right]>\beta,(0 \leq \beta<1)$, then

$$
\sum_{n=2}^{\infty}\left([n]_{q}-\beta\right)[n]_{q} a_{n}<1-\beta .
$$

For the proof of this lemma, we use the following equation:

$$
\begin{equation*}
D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right) . \tag{1.3}
\end{equation*}
$$

(see[2].Corallary 2.5)
Definition 1.6 A function $f(z) \in A$ in the form of (1.1) is said to be in the class $P_{q}(\lambda, \beta, A, B)$ if the following condition is satisfied:

$$
\begin{equation*}
\frac{D_{q} f(z)+\lambda z D_{q}^{2} f(z)}{D_{q} g(z)} \prec \frac{1+A z}{1+B z}, \tag{1.4}
\end{equation*}
$$

where $g(z) \in C V(\beta), q \in(0,1), 0 \leq \lambda \leq 1,0 \leq \beta<1,-1 \leq B<A \leq 1$. If $\lambda=0$ then we have

$$
\frac{D_{q} f(z)}{D_{q} g(z)}=\frac{z D_{q} f(z)}{z D_{q} g(z)}=\frac{z D_{q} f(z)}{h(z)} \prec \frac{1+A z}{1+B z},
$$

ALTINTAŞ and AYDOGAN/Turk J Math

and $h(z) \in S T(\beta)$, so $f(z) \in Q S_{q} T(\beta, A, B)$.
If $\lambda=1$ then we have

$$
\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} g(z)} \prec \frac{1+A z}{1+B z}
$$

and $g(z) \in C V(\beta)$. Hence, $f(z) \in Q C_{q} V(\beta, A, B)$.

2. Main results

Theorem 2.1 If $f(z) \in P_{q}(\lambda, \beta, A, B)$ then we have

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n]_{q}\left[1+\lambda[n-1]_{q}\right] a_{n} \leq 1-\alpha+\alpha \frac{1-\beta}{[2]_{q}-\beta} \tag{2.1}
\end{equation*}
$$

where $q \in(0,1), 0 \leq \lambda \leq 1,0 \leq \beta<1, \alpha=\frac{1-A}{1-B},-1 \leq B<A \leq 1$.
Proof From Lemma 1.3 and Definition 1.5 we have

$$
h(z) \prec \frac{1+A z}{1+B z} \Rightarrow \operatorname{Reh}(z)>\frac{1-A}{1-B}=\alpha
$$

and

$$
\operatorname{Re} \frac{1-\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1}-\lambda \sum_{n=2}^{\infty}[n]_{q}[n-1]_{q} a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty}[n]_{q} b_{n} z^{n-1}}>\alpha
$$

If we choose z real and $z \rightarrow 1^{-}$then we have

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n]_{q}\left[1+\lambda[n-1]_{q}\right] a_{n} \leq 1-\alpha+\alpha \sum_{n=2}^{\infty}[n]_{q} b_{n} \tag{2.2}
\end{equation*}
$$

From Lemma 1.4 if $g(z) \in C_{q} V(\beta)$ and $g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n},\left(b_{n} \geq 0\right)$, then we let

$$
\sum_{n=2}^{\infty}\left([n]_{q}-\beta\right)[n]_{q} b_{n} \leq 1-\beta,
$$

or

$$
\left([2]_{q}-\beta\right) \sum_{n=2}^{\infty}[n]_{q} b_{n} \leq 1-\beta,
$$

and

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n]_{q} b_{n} \leq \frac{1-\beta}{[2]_{q}-\beta} \tag{2.3}
\end{equation*}
$$

Using (2.3) in (2.2) we find the equality (2.1). The result is sharp for the function

$$
f(z)=f_{n}(z)=z-\frac{1-\alpha+\alpha \frac{1-\beta}{[2]_{q}-\beta}}{[n]_{q}[1+\lambda][n-1]_{q}} z^{n}
$$

From Theorem 2.1 for the different values of q, λ, β, A, B we can obtain the following results and all results are sharp.

Corollary 2.2 If $f \in Q C_{q} V(\beta, A, B)$ then we have

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n]_{q}\left(1+[n-1]_{q}\right) a_{n} \leq 1-\alpha+\alpha \frac{1-\beta}{[2]_{q}-\beta} \tag{2.4}
\end{equation*}
$$

We let $\lambda=1$ in Theorem 2.1.

Corollary 2.3 If $f \in Q C V(\beta, A, B)$ then we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{2} a_{n} \leq 1-\alpha+\alpha \frac{1-\beta}{2-\beta} \tag{2.5}
\end{equation*}
$$

We let $q \rightarrow 1^{-}$and $\lambda=1$ in Theorem 2.1.

Corollary 2.4 If $f \in Q C V(0, A, B)$ then we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{2} a_{n} \leq 1-\alpha+\frac{\alpha}{2}=\frac{2-\propto}{2} \tag{2.6}
\end{equation*}
$$

We let $q \rightarrow 1^{-}, \lambda=1$ and $\beta=0$ in Theorem 2.1.

Corollary 2.5 If $f \in \operatorname{QCV}(0,1,-1)$ then we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{2} a_{n} \leq 1 \tag{2.7}
\end{equation*}
$$

We let $q \rightarrow 1^{-}, \lambda=1, B=-1$, and $A=1$ in Theorem 2.1.

Corollary 2.6 If $f \in Q S_{q} T(\beta, A, B)$ then we have

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n]_{q} a_{n} \leq 1-\alpha+\alpha \frac{1-\beta}{[2]_{q}-\beta} \tag{2.8}
\end{equation*}
$$

We let $\lambda=0$ in Theorem 2.1.

Corollary 2.7 If $f \in Q S T(\beta, A, B)$ then we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} n a_{n} \leq 1-\alpha+\alpha \frac{1-\beta}{[2]_{q}-\beta} \tag{2.9}
\end{equation*}
$$

We let $q \rightarrow 1^{-}$and $\lambda=0$ in Theorem 2.1.

Corollary 2.8 If $f \in Q S T(0, A, B)$ then we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} n a_{n} \leq\left(1-\alpha+\frac{\alpha}{2}\right)=\frac{2-\propto}{2} \tag{2.10}
\end{equation*}
$$

We let $q \rightarrow 1^{-}, \lambda=0$, and $\beta=0$ in Theorem 2.1.
Corollary 2.9 If $f \in \operatorname{QST}(0,1,-1)$ then we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} n a_{n} \leq 1 \tag{2.11}
\end{equation*}
$$

We let $q \rightarrow 1^{-}, \lambda=0, \beta=0, A=1$, and $B=-1$ in Theorem 2.1.
Corollary 2.10 If $f \in C C_{q} V(\beta, A, B)$ then we have

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n]_{q} a_{n} \leq 1-\alpha+\alpha \frac{1-\beta}{[2]_{q}-\beta} \tag{2.12}
\end{equation*}
$$

We let $\lambda=0$ in Theorem 2.1.
Corollary 2.11 If $f \in C C_{q} V(\beta, A, B) \Leftrightarrow f \in Q S_{q} T(\beta, A, B)$ we let $\lambda=0$ in Theorem 2.1 and then we have

$$
\begin{equation*}
\frac{D_{q} f(z)}{D_{q} g(z)}=\frac{z D_{q} f(z)}{z D_{q} g(z)} \prec \frac{1+A z}{1+B z}, \tag{2.13}
\end{equation*}
$$

and $g(z) \in C V(\beta) \Rightarrow z D_{q} g(z)=h(z)$, or

$$
\begin{equation*}
\frac{z D_{q} f(z)}{h(z)} \prec \frac{1+A z}{1+B z}, \tag{2.14}
\end{equation*}
$$

and $h(z) \in S T(\beta)$ so $f(z) \in Q S_{q} T(\beta, A, B)$. Hence, we have $C C_{q} V(\beta, A, B)=Q S_{q} T(\beta, A, B)$.

References

[1] Altıntaş O, Kılıc ÖÖ. Coefficient estimates for a class containing quasi-convex functions. Turkish Journal of Mathematics 2019; 42: 2819-2825.
[2] Altıntaş O, Nizami M. Coefficient bounds and distortion theorems for the certain analytic functions. Turkish Journal of Mathematics 2019; 43: 985-997.
[3] Goodman AW. Univalent Functions, Vol. I and Vol. II. Tampa, FL, USA; Mariner Publishing, 1983.
[4] Jackson FH. On q-derivative integrals. Quarterly Journal of Pure and Applied Mathematics 1910; 41: 193-203.
[5] Polatoğlu Y. Growth and distortion theorem for generalized q-starlike functions. Advances in Mathematics Scientific Journal 2016; 5 (1): 7-12.
[6] Ramachandran C, Kavitha D, Soupramanien T. Certain bound for q-starlike and q-convex functions with respect to symmetric points. International Journal of Mathematics and Mathematical Sciences 2015; 2015: 205682.
[7] Srivastava HM, Altıntaş O, Serenbay SK. Coefficient bounds for certain subclasses of starlike functions of complex order. Applied Mathematics Letters 2011; 24 (8): 1359-1363.
[8] Uçar Özkan HE. Coefficient inequality for q-starlike functions. Applied Mathematics and Computation 2016; 276: 122-126.

