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ABSTRACT 

 

Ali BAŞER 

ESTIMATION OF PERMEABILITY VALUES IN GEOTHERMAL FIELDS WITH 

MACHINE LEARNING METHODS 

Institute Of Science And Engineering  

Department of Computer Engineering 

2021 

Numerical modeling of geothermal fields is a very time-intensive task. Modeling the natural 

state of a geothermal field, where there is no production or reinjection in the field, is vital in 

this process. Natural state modeling is generally conducted by employing a trial and error 

procedure that depends on intuition in determining the rock properties to match the 

temperature and pressure readings. This study proposes a method for the distribution of 

permeability estimation in natural state modeling of geothermal fields using machine 

learning algorithms. In the study, firstly, a synthetic dataset is created by giving several 

permeability distributions to a numerical simulator called TOUGH2. Temperature and 

pressure outputs of the numerical simulator are then collected, and a dataset is created. 

Random Forest, Support Vector Regression, Multilayer Perceptron, Convolutional Neural 

Networks, and Transfer Learning methods are trained in this study to learn the relation 

between the pressure and temperature data and the distribution of permeability values in the 

field. The study results show that the proposed method can estimate the permeability 

distributions and help the geothermal field modeling process by decreasing the required time 

and costs. 

 

KEYWORDS: Geothermal Modeling, Natural State Modeling, Convolutional Neural 

Networks, Simulation, TOUGH2 
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ÖZET 

 

Ali BAŞER 

JEOTERMAL SAHALARDAKİ GEÇİRGENLİK DEĞERLERİNİN MAKİNE 

ÖĞRENMESİ YÖNTEMLERİ İLE KESTİRİMİ 

Başkent Üniversitesi Fen Bilimleri Enstitüsü  

Bilgisayar Mühendisliği Anabilim Dalı  

2021 

 

Jeotermal rezervuarların sayısal olarak modellenmesi yoğun uzmanlık gerektiren ve oldukça 

zaman alan bir süreçtir. Sayısal modellemenin en önemli adımlarından biri olan doğal durum 

modellemesinde, ilgili sahanın üretim ve reenjeksiyon gibi insan kaynaklı faaliyetlerle 

değiştirilmeden önceki yapısının tespiti için çalışmalar yapılır. Sahaya yönelik bilginin ve 

uzman deneyiminin önemli olduğu bu aşamada genellikle kayaçların ve sistemin özellikleri 

tahmin edilmeye çalışılarak ölçülen sıcaklık ve basınç değerleriyle eşleşme sağlanması 

hedeflenir. Bu çalışmada makine öğrenmesi yardımı ile jeotermal kaynakların doğal durum 

modellemesinin kilit değişkenlerinden biri olan geçirgenlik değerlerinin belirlenmesi 

amaçlanmıştır. Öncelikle, TOUGH2 sayısal modelleme yazılımına çeşitli geçirgenlik 

dağılımları girdi olarak verilmiştir. Sıcaklık ve basınç değerlerinden oluşan çıktılar işlenerek 

sentetik bir veri kümesi hazırlanmıştır. Bu veri kümesi ile doğal durumdaki belirli bir basınç 

ve sıcaklık dağılımını sağlayan geçirgenlik değerlerinin tespiti için Rassal Orman, Destek 

Vektör Regresyonu, Çok Katmanlı Algılayıcı, Evrişimsel Sinir Ağları ve Öğrenme Aktarımı   

yöntemleri kullanılmıştır. Sonuçlar, önerilen yöntemin geçirgenlik değerlerini tahmin 

edebildiğini göstermektedir. Söz konusu tahminin makine öğrenmesi yoluyla daha hızlı bir 

şekilde yapılabilmesi jeotermal sahaların modellenmesine zamansal ve ekonomik katkılar 

sağlayacaktır.  

 

ANAHTAR KELİMELER: Jeotermal Modelleme, Doğal Durum modellemesi, 

Evrişimsel Sinir Ağları, Simülasyon, TOUGH2  
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1. INTRODUCTION 

 

The development of civilization and society has always been dependent on energy. 

Throughout history, the planet’s population and the average person’s energy consumption 

have been growing rapidly. Even though the primary energy sources are still fossil fuels, 

there is a growing transition from fossil fuels to renewable sources such as wind, solar and 

geothermal. With the effects of climate change and pollution become more visible with every 

passing year, the importance of renewable energy is also growing. In order to execute the 

transition to renewable energies, it is vital to advance the technologies used in these sectors 

as well. Like in every other industry, digital technologies are also pivotal in developing the 

energy sector. With the implementation of digital technologies, firms could reduce the 

workforce, the time, and the cost of projects undertaken. Machine learning, also the primary 

tool used in this study, has proven to be one of the most valuable advances in digital 

technologies. Machine learning is also gaining popularity in the energy sector by providing 

solutions to everyday problems, especially in the oil and gas industry. In drilling, production, 

and transportation operations, many firms include machine learning applications in their 

solutions. Following the advances of the oil & gas industry and transforming most of them 

for their uses, the geothermal industry is also implementing machine learning applications 

in its inner workings. Using natural language processing to check daily drilling and 

operations logs, image processing to analyze the drilling cuttings, enhancing the seismic 

interpretations with advanced algorithms are common applications of machine learning used 

in the industry, which will also be migrated to the geothermal industry with time. One of the 

most promising fields of the geothermal industry in which machine learning is being used is 

reservoir engineering and modeling. 

 

1.1. Problem 

During geothermal modeling, one of the main challenges is determining the 

permeability distributions for natural state conditions. One of the critical points in 

geothermal modeling is creating the natural state model, which depends on correct 

permeability distributions and is generally determined by trial and error procedures. The trial 

and error process, by its nature, takes much time. Thus, increases the cost of the projects. 
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Other approaches to determining the parameters include inverse calculation methods, which 

automate the trial and error processes by implementing optimization functions. These 

methods are generally helpful if optimization starts from an acceptable point in determining 

the parameters, thus might not provide a starting point for permeability distributions.  

Geoscience problems are generally hard even to define because of having blurry 

boundaries both in space and time. The problem we try to solve also depends on the location, 

it is overly multi-variate and does not follow linear relationships, so it can not be solved by 

linear approaches [1]. 

Numerical reservoir simulation in geothermal reservoirs is a powerful technique for 

visualizing and better understanding the real-world situation of the reservoir. It also allows 

the immediate execution of any desired operation and observation of its consequences 

without doing so in the real world, saving time and money. With numerical reservoir 

simulation, researchers can determine the optimum production and injection rates of the 

geothermal fields,  predict the problems before they became hard to deal with, and guide the 

management of the field. Thus, numerical simulation is vital in developing the fields to use 

this renewable energy source to its fullest potential. 

 

1.2. Aim 

This study proposes a machine learning-based permeability distribution determination 

method for natural state modeling of geothermal fields from temperature and pressure 

readings. Using five proven machine learning algorithms(RF, SVR, MLP, CNN, Transfer 

Learning), we present the results using the normalized root mean squared errors and visual 

representations of the predictions versus expected values. 

 

1.3. Importance of the Study 

This study is the first in its field to use the fundamental tools of machine learning in a 

comprehensive way to determine the permeability values in geothermal fields. With our 

approach, we have generated a method to mimic nature roughly while creating the base 

models. By introducing the constant permeability zones to the model as cap rocks or 

reservoir rocks and the shuffling of the sections to capture the folds and faults, our proposed 
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method could generate models that would better resemble the natural process. This also 

results in a more detailed model with more rock sections to assign the permeabilities. 

Furthermore, experts can still influence the model to increase its performance by creating 

the base model with their field knowledge using our proposed method. 

Being an addition to the inversion methods, our study can also be used with other 

inversion tools as an initial estimator. Users of PEST or iTOUGH2 can start the 

optimizations with the permeability distributions created by our method and increase their 

success.  

Our proposed method is an essential addition to the field by introducing new 

opportunities for cost savings and giving researchers new tools to model the geothermal 

fields better and use this renewable energy to its full potential. 
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2. BACKGROUND AND LITERATURE REVIEW 

 

2.1. Modeling of Geothermal Fields 

The numerical modeling of a geothermal field happens in several steps. In each step, 

it demands the dedication and the experience of the engineers. A successful model of a field 

can take months to create. The first step in geothermal modeling is creating the conceptual 

model of the field. This conceptual model is created from the information gathered by direct 

methods such as analysis of drilling core plugs or well logs and also indirect methods such 

as seismic analysis, magnetotelluric analysis, and well test analysis. Direct measurements, 

especially the core plug analysis, give critical information about the rock properties. One of 

the essential features of these rock properties is called permeability. Permeability is one of 

the main parameters used in numerical modeling. It is a property that measures how well a 

fluid travels in a porous medium or rock.  

Using the conceptual model, identified rock properties are assigned to the numerical 

model, composed of many cells to mimic the underground structure. A typical geothermal 

model includes the thermal anomaly, which creates the geothermal field. This thermal 

anomaly can usually be introduced to the model as a high-temperature water flow area or 

high heat flux region. After setting the position of the thermal anomaly, other features such 

as the air pressure, ambient temperature, and underground aquifers might be inserted into 

the model as boundary conditions. With these steps, the basic structure of the geothermal 

field is created.  

Following the creation of the basic model, the numerical simulation software, which 

models the three-dimensional flow of fluid and heat, is used to check if the model is valid 

by running the model until it reaches the natural state conditions. Steady or quasi-steady-

state condition is reached when the changes in the model between a set amount of time steps 

are small enough to be neglected. At this stage, the model could be compared with the data 

gathered from the geothermal field, such as measured temperature and pressure data (Figure 

2.1). If the pressure and temperature values of the actual well measurements are matched 

with the created model results, we may conclude the status of the geothermal field before 

any wells opened is closely modeled, and the model could be further improved with 

historical production matches. 
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Figure 2.1 - A temperature match from a geothermal numerical model [2] 

To summarize, modeling a geothermal field start with the creation of the conceptual 

and the geological model. Then rock and fluid properties are assigned to the model. After 

setting up the model’s boundary conditions according to the conceptual model, the numerical 

simulators are finally run to predict the production of the wells and the change of temperature 

and pressure of the fields. Modeling of the geothermal fields is mainly performed to achieve 

these future predictions. However, it is hard to determine the correct values to be assigned 

to the rocks, and inversion of the models is required. In inverse modeling, engineers collect 

field data and find the rock properties that match the data after running it on simulation 

software, thus validating the assigned rock properties. While being vital in geothermal 

modeling, the inversion procedures also take too much time, and because of that, new 

methods are being developed for inversion procedures. 

 

2.2. Literature Review 

During numerical modeling of the geothermal fields, assigning correct rock properties 

to the model is very important, and at the same time, a challenging task. To validate the 

assigned rock properties, engineers collect field data first, assign the rock properties to the 

created model, and try to match the collected data with the results from the numerical 

simulators. This method is called inverse modeling. Trial and error is the most common 

inversion method in determining the properties, but automatic inversion tools and statistical 
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approaches [3], [4] are also used. While being vital in geothermal modeling, the inversion 

procedures also take too much time, and because of that, new methods are being developed 

for inversion procedures. 

Usage of inversion software attracted some attention with an automatic inversion tool 

iTOUGH2 [5]. In this first study, researchers calibrated the field’s permeabilities during the 

natural state by setting five different rock types to the field and asking the inversion tool to 

find the optimum permeability values of these rocks [6]. Following these studies, other 

researchers also employed automatic tools in their workflow [7], [8]. Later increasing the 

number of rock types in their models, researchers optimized fields with up to a hundred 

different permeability values [9]. While working on numerical simulations, the trade-off 

between the computational costs and the model’s precision is always an issue. Therefore, 

researchers have always tried to balance the number of rock types and the computation time 

[10],[11]. The inversion software named PEST [12] is another option, which finds increasing 

interest in the field [13], [14].  

Using inversion software helps the researchers, but they also come with their problems. 

First of all, inversion is still a very computationally heavy task, and determining the 

properties of increased rock numbers still takes too much time. Also, generally, inversion 

software is helpful in optimization only if the starting permeability distributions are good 

enough [15]. In practice, because of common convergence errors, experts usually use their 

own experiences and rely on train and error procedures. 

With the increase of machine learning applications in geoscience, inversion problems 

also found interest. Researchers tried SVR to find a solution to the problem with some 

success [16].  

 

2.3. Machine Learning Methods 

In this study, permeability distributions of the geothermal systems for natural state 

modeling are trained from the generated synthetic data composed from the related 

temperature and pressure distributions. By using our dataset, Random Forest, Support Vector 

Regression, Multi-Layer Perceptron, Convolutional Neural Networks, and Transfer 

Learning methods are trained, and their success is compared to each other by the Normalized 

Root Mean Squared Error of each model.  
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 Random Forest  

Random Forest (RF) is a versatile supervised learning method that can be used for both 

regression problems and classification problems. Random Forest belongs to one of the most 

popular and best-known ensemble methods known as Bagging methods [17]. In ensemble 

methods, many weak learners are aggregated to create a stronger learner. In the Random 

Forest case, the weak learners are Decision Trees.  

A Decision Tree is a tree-like structure in which a node is a conditional decision point 

to split the flow into two different branches in numeric cases. A tree greedily looks for the 

best point to split the whole training data from the root [18]. The Decision Tree algorithm 

learns the data by calculating the cost function and splitting the data according to this. The 

procedure tries and tests the splitting points and calculates the errors of the results according 

to this cost function. This cost function is generally chosen as the sum of squared errors 

(SSE) in regression problems. In equation 2.1, y represents the expected outcome of the 

training sample and �� represents the prediction [19], [18]. �� and �� represents the two sets 

that are dvided in a decision node. 

��� � 	
�� � ����
�∈��

� 	
�� � ����
�∈��

 (2.1) 

��� � 1|��| 	 ��
��

���  
 

��� � 1|��| 	 ��
��

���  
 

 

The process of splitting continues until all data is split [17]. This may lead to 

overfitting the training data, in which the model memorizes the training data and can not 

generalize well. 

Random Forests, composed of Decision Trees, get most of their properties from trees 

themselves but also differ on application. In Random Forest, individual trees are trained from 

a sample of the dataset. In which the sample is selected from the whole dataset with 

replacement. Selecting the samples with replacement is called bootstrapping [19]. After 

bootstrapping, each tree would train and maybe overfit the data they are trained on, but each 
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tree would be trained on a different data so that the whole model would be free from 

overfitting problems. The training also does not depend on the calculation of the information 

gain anymore. Instead, for each split, the Random Forest picks features randomly to be 

assigned to a node, thus creating a more versatile forest. The combination of the trees, the 

forest can overcome the problem of overfitting and generalize well by either voting for a 

decision or averaging the values produced by individual trees [20]. 

 

 Support Vector Machines 

Support Vector Machine is a supervised learning method that is versatile and very 

powerful. Due to its capabilities of performing both classification and regression tasks, it has 

become a popular model with wide usage in machine learning tasks [17].  

The main idea behind SVM is to separate two linearly separable classes with a line 

or hyperplane that also stays at a maximum distance from each of the classes. It is possible 

to draw infinitely many lines between two linearly separable classes, but some drawn lines 

could be very close to the training instances and may not perform well with new data. In 

order to maximize the effectiveness of the line to separate the classes even with new data, it 

is essential to place it so that it stays away from the samples of the two classes (Figure 2.2). 

The distance between the closest data points and the separation line or hyperplane is called 

the margin. 

 

Figure 2.2 - Separation lines and the Decision Boundary [17] 

 While calculating the margin and the position of the line, only the closest points to the 

line are taken into account, and these points are called support vectors. These support vectors 

define the separation line or hyperplane, and only they are considered when the optimization 

is performed. SVM’s goal is to maximize the margin by learning from the training data [19]. 
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If we define the input vectors of the dataset as � � ∑ �⃗�����   where �⃗� � �����...� !. Then 

equation 2.3.2.1 describes the hyperplane, in which  "##⃗ $is the coefficients vector of the 

hyperplane. 

"���� � ⋯ � "&��& � ' � "##⃗ $�⃗� � ' � ( (2.3.2.1) 

 
The field composed of the hyperplane and the margin is called the decision boundary. 

Maximal Margin Classifiers do not allow any samples from the classes to be inside the 

decision boundary. Thus, if the classes could not be separated linearly, the model would fail, 

and this approach cannot solve most real-life problems. By relaxing the margin calculations 

rules, the decision boundary can include some samples from the classes. This relaxation is 

called Soft Margin Classification, and it gives SVMs the power to tackle outliers and 

problems which are not linearly separable. The new goal is then maximizing the margin 

while keeping the samples that violate the margin at a minimum. In Soft Margin 

Classification, a new set of coefficients is included, which gives the margin the ability to 

move in different dimensions, helping the new goal.  

SVMs can also handle nonlinear data by employing kernels. Polynomial kernels and 

Gaussian RBF are two of the most common kernels used in machine learning, which uses 

the principles of adding polynomial features and similarity functions to help separate the 

classes linearly. 

 

2.3.2.1. Support vector regression 

As previously mentioned, SVMs are very versatile, and they can be designed to suit 

many needs. SVMs can not only be used to classify linear and nonlinear problems; they can 

also be used in linear and nonlinear regression problems [17]. By reversing the goal of 

SVMs, trying to find the maximum margin possible with minimum violations, into the goal 

of finding a decision boundary that includes as many samples as possible and trying to limit 

the samples that are left outside, SVMs can be used in regression problems. In this study, a 

kernelized version of SVR is used (Figure 2.3).  
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Figure 2.3 - A Nonlinear SVR  [17] 

 Multilayer Perceptrons 

Getting their influence from the nature of biological neurons, Artificial Neural 

Network (ANN) is one of the essential tools in Machine Learning [17]. An ANN can be 

written as a nested function. A three-layered ANN is shown in equation 2.3.3.1. 

)**
� � )+ ,)�-)�
�./ (2.3.3.1) 

)0
�1 (2)� 30
405 � '0  

In this equation, l can span from 1 to any number of layers,  30 is an activation function 

such as relu, or tanh. The parameter 40 is a matrix and '0 is a vector, and they are learned 

using gradient descent and a cost function such as RMSE. 

 A sub-branch of ANNs, Feed Forward Neural Networks, in which calculations can 

only go in one direction and not cyclic, includes multilayer perceptrons.  A multilayer 

perceptron should contain at least three layers of perceptrons, the input, hidden, and output 

layers (Figure 2.4). The input layer is where the data enters the structure. The hidden layer 

resides in between input and output layers, and they can be more than one. The output layer 

is where the MLP either gives the training results or, using a supervised learning technique 

called backpropagation, recalculates the weights between connections according to the errors 

and restarts the process, thus learning. A perceptron calculates the outputs by multiplying 

the inputs with weights, adding the result together, and passing the results from an activation 

function. An activation function transforms the results passes thru them depending on the 
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type of the activation function. Each layer can use different activation functions, and by 

combining different layers with different weights and biases, MLP can solve nonlinear 

problems. 

 

Figure 2.4 - An MLP with one hidden layer [20] 

 Convolutional Neural Network 

A Convolutional Neural Network (CNN) is a deep learning network that specializes in 

grid-like data structures, such as images. CNN’s are very good at capturing the patterns on 

images such as lines, dashes, circles, ears, and faces. Because of that, they are widely used 

in computer vision. Unlike previous image computer vision algorithms, they do not need any 

preprocessing to be implemented.  

The human visual cortex inspires the creation of CNN. Different layers stacked on top 

of each other analyses and identify the images seen with increasing complexities in the visual 

cortex. Convolutional neural networks are a type of feed-forward neural networks with 

convolutional layers [17]. Like in the human visual cortex, each unit in a CNN can process 

and analyze data in its field of vision. By stacking a few of these convolutional layers on top 

of each other, bit by bit, a CNN can identify the handwritten digits. By staking more, a 

convolutional neural network can even help self-driving cars (Figure 2.5).  

Typically a convolutional neural network has three layers. These are a convolution 

layer, a pooling layer, and a dense or fully connected layer. 
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Figure 2.5 - A CNN Architecture [21] 

A CNN’s central unit is the convolutional layer. The convolutional layer contains the 

kernels, which are filters for different aspects of the image that is being processed. Just like 

looking at a picture thru a microscope, a kernel can only see and manipulate a small section 

of the image. By moving the kernel on the image, different aspects of the image can be 

collected. Later, to determine the most critical aspects of the images, these layers can be 

pooled into smaller ones by moving another layer on top of others called pooling layers. 

These pooling layers, either by averaging or filtering the maximum, condenses the features, 

thus enforcing the essential features to survive. The third type of layer in a CNN is a dense 

or fully connected layer. The convolutional layers and pooling layers manage to collect the 

features from the images by only seeing a portion of the image, thus not being in connection 

fully. However, dense or fully connected layers collect the gathered data and fully connect 

to the preceding and succeeding layers to learn the relationship between the image features 

and the output. Using the combination of these three fundamental layers and different 

activation functions, many different CNN architectures can be created to solve many 

problems. 

 

 Transfer Learning 

Transfer learning is a powerful supervised learning method, where the previously 

learned information from a model can improve the generalization performance of another 

model [22]. In computer vision problems, if there is a similar pre-trained model, it is usually 

very beneficial for the task to implement some low-level features from the pre-trained model. 

Since training deep learning, models can take quite a long time, when applicable, using 
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transfer learning can reduce the time spent by avoiding the random initialization of the 

weights and biases. 

When using a pre-trained model, the first step is removing the original classifier or 

regressor from the model. Later a new classifier and regressor suitable for the new problem 

are attached to the model [23]. Finally, the model can be fine tunes by either training the 

whole model, or freeze some layers and train the rest of the model, or freezing the 

convolutional base altogether Figure 2.6.  

 

Figure 2.6 - Fine-tuning for transfer learning 

The convolutional base performs the feature extraction in CNN, so it is vital to decide 

how much of it will be transferred from another model. Training the whole model is 

generally a very time and energy-consuming task. It is used when the current dataset is large 

enough, and the problem is different from the pre-trained one. Freezing some layers and 

training the rest of the model is usually preferred when having a large dataset and similar 

problems to the pre-trained one. In this case, the level of the frozen layers is determined by 

the similarity of the problem. The last case, freezing the convolutional base, can be beneficial 

if the dataset of the new problem is small and the problems are similar to each other.  
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VGG-16 is an architecture invented by the Visual Geometry Group. It has 13 

convolutional layers with ReLU activation functions and three fully connected layers. By 

stacking up the same convolutional layers, the model reaches 138m parameters. The VGG 

group also designed a deeper version of VGG-16, called VGG-19. 

 

Figure 2.7 - VGG-16 [24] 
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3. METHOD 

 

In this study, the permeability distributions used in natural state modeling of 

geothermal fields are determined from the temperature and pressure values, which are 

relatively easy to measure in the field. For this purpose: 

• A geothermal field model, called the base model, comprised of 2,744 cells 

(14x14x14), is created in Petrasim [25] 

• A permeability distribution method that crudely mimics real-life scenarios to 

generate appropriate geothermal fields is created. This method creates 11 

different regions of different permeabilities, whose values are chosen between 

0.01-200 md (~1.0E-17 m2, ~2.0E-13 m2) permeability values randomly. 

• Ten thousand different permeability distributions are generated by the 

mentioned method and fed into the base model. 

• The model is then run on TOUGH2 [26] for each different permeability 

distribution, and the output of temperature and pressure values are collected.  

• The synthetic dataset is created with 10,000 different permeability distributions 

and the corresponding temperature and pressure distributions.  

• This dataset is then split into three as the train(6,000), validate(2,000), and 

test(2,000) datasets. 

• The permeability distributions are trained from temperature and pressure 

distributions using RF, SVR, MLP, CNN, and Transfer Learning methods from 

this dataset. 

The data creation process can be seen in Figure 3.1. 
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Figure 3.1 – Data preparation process. 

3.1. Preparation of The Base Model 

In order to create the dataset to find the relationship between the temperature and 

pressure distribution of the geothermal fields with its permeability distributions, a base 

model is created. This base model is created in Petrasim, software commonly used as a 

graphical user interface for creating input files and analyzing the outputs of the TOUGH 

simulators family. The base model comprises 2744 cells, with 14 cells in x, y, and z. 

Deciding the number of cells to be included in a model is generally one of the most critical 

parts of numerical modeling. The computational power at hand dictates the number of cells, 

and the number of cells should be no more than the minimum with which one can capture 
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the geothermal field’s structure or the unique geometries that should be investigated in the 

model. Since the base model is to be run 10,000 times and the study aims to find the general 

distribution of permeability, the number of cells is kept relatively small. Inside the model, 

two cells away from the outer boundaries, a 10x10x10 region is chosen as the core region. 

The permeability values in the core area are later manipulated, and the dataset is generated 

from the results of these manipulations. The remaining outer cells, the shell, are kept as a 

buffer to limit the boundary effects of the numerical modeling. As seen in Figure 3.2, the 

outer cells have a bigger volume than the core cells. The reasoning behind this is again to 

prevent the boundary effects from reaching the core cells.  

 

Figure 3.2 - Base model, the shell and core regions 

The dimension of the base model is 5,000m in all directions. The detailed grid structure 

of the model is given in Table 3.1. 
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Table 3.1 The Grid structure of the base 
model 

Direction Cell # Cell Size 

X 1 1000 

X 1 500 

X 10 200 

X 1 500 

X 1 1000 

Y 1 1000 

Y 1 500 

Y 10 200 

Y 1 500 

Y 1 1000 
 

 

 

Figure 3.3 - Hot water source of the base model 
 

 

As boundary conditions, the upper layer of the model is set as an open boundary with 

a constant temperature of 62.9 °C and a constant pressure of 55.4 bar, which are typical 

values at 500 m depth in geothermal fields.   

The rock densities of the model are set as an expected value of 2600.0 kg/m³ for all 

cells. Similarly, the wet heat conductivity of the whole model is set as 2.0 W/m·K, and the 

specific heat is assigned as 1000.0 J/kg·K, which are typical values. Water source is 

introduced into the model from the bottom layer (Figure 3.3) with the rate of 0.15 kg/s and 

the enthalpy of 1.4E6 J/kg. 

The model’s porosity values are 0.01 and 0.05 for inner and outer regions, common in 

geothermal fields. The permeability values are set as 1 md (~10-15 m2) throughout the model. 

The permeability values that are used in this study are included as a multiplier to the 1md 

value previously set. This method lets the experts assign different permeability values to 

different regions, thus carrying the field experience of the experts to the model and leading 

the machine learning processes in the correct direction by constructing the base model the 

way they desire. 

Equation of state 1 (EOS1) is used for numerical simulation, and the initial conditions 

of the model are set as 12.0 bar + 0.0868 bar/m for pressure and 33.0 °C + 0.0598 °C/m for 

temperature. The simulation is set to be run for a million years to ensure that the model 

reached its natural state. 
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3.2. Preparation Of The Dataset 

A typical geothermal field usually has a reservoir section and a caprock section. The 

reservoir contains high-temperature fluid, and generally, it has high permeability due to the 

rock properties or the fault formations inside the reservoir. The caprock section is generally 

composed of rocks with very low permeability, and also it might have thermal insulation 

properties. In order to create the permeability distributions, which crudely resemble naturally 

occurring geothermal fields, it is essential to set some sections of the model as reservoirs 

and some sections as cap rocks. Also, keeping the natural processes in mind, the permeability 

distributions should have some recognizable patterns, some local groupings, and some 

displacements to mimic the depositions, erosions, and faulting.  

  

Figure 3.4 - Splitting the core model into eight pieces. 

 
In order to fulfill these requirements and at the same time represent the model with a 

relatively low resolution, the core model is split into eight regions randomly (Figure 3.4). 

Before assigning different permeability distributions to these regions, some randomly 

chosen layers are shuffled by batches of 2 or 3 layers Figure 3.5. Shuffling is included to 

mimic the natural processes such as erosions and displacements of the rock by faults or folds. 
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Figure 3.5 - Shuffling of layers in the base model 

Lastly, at least one and at most three layers are chosen randomly to become the 

constant permeability regions (Figure 3.5). These regions are included in the model as high 

permeability zones to become better reservoirs or possible cap rocks to limit the flow of 

fluids. If a constant permeability zone is assigned as a caprock, its permeability multiplier is 

multiplied by 0.01 to ensure the layer has a lower permeability. The constant permeability 

layers also have a chance to provide a connection between otherwise separate regions 

depending on the permeability of the layers. After including the constant permeability zones, 

the number of possible permeability zones in a model becomes 11 in total.  

  

Figure 3.6 - Assigning constant permeability regions to the base model 

 

Next, a table of 11 different permeability values for each run is created by selecting 

values from the range of 0.01md (~10-17m2) to 200 md (~2x10-13m2) Table 3.2. Figure 3.6 
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shows that the created permeability values table does not favor any particular value in the 

range that they are selected. These values are then assigned to 11 different regions of the 

core model for each of the 10,000 runs (Figure 3.7). 

Table 3.2 - Created random permeability table 
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Figure 3.7 - Stacked Histogram of 11 Random Permeability Values for 10,000 runs 

   

  

 
Figure 3.8 - A sample from the base model, showing the assigned permeability values 

 

 Created permeability distributions table is later used to alter the required sections of 

the input file of TOUGH2, generated from the base model discussed previously ( 
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Figure 3.8). During input file creation, first, the cells of the geothermal model related 

to the 11 regions are determined for each run. Next, for each run, the permeability values of 

the regions are assigned to the determined cells. When 10,000 input files are created and 

located in their designated folder, a subprocess written in python is called the TOUGH2 

EOS1 for running the simulations. After each run, TOUGH2 provided the output related to 

the permeability distributions given as an input (Figure 3.9 and Figure 3.10). These output 

temperature and pressure distributions are then collected into a single file with their 

corresponding permeability distributions. The created dataset has the dimensions of 

10,000x2,000 for features (temperature and pressure values)  and 10,000x1,000 for the 

targets (the permeability values creating the related temperature and pressure values). 

The dataset later split into three as the train (0.6), validate (0.2), and test (0.2) datasets. 

Train dataset contains 6,000 instances, while validate and test datasets contain 2,000 

instances each. 

 

 

Figure 3.9 - 3d Temperature Data 
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Figure 3.10 - 3d Pressure Data 

 

3.3. Preprocessing and Feature generation 

Feature generation is a process to produce new features from the raw dataset, which 

may be more informative for the models to be built upon or more representative of the data 

itself after the process. The temperature and pressure data and the permeability distributions 

are meaningful only if they are in a relationship with their neighbors. In order to represent 

these neighborhood relationships in one-dimensional space to be used in Random Forest, 

Support Vector Regression, and Multilayer Perceptron, it is decided to create the gradients 

of the cells with their first, second, and third neighbors in each layer (2d). The gradients are 

calculated as the difference between the cells’ value and the average of the four cells with 

the required step size in 4 cardinal directions. (Figure 3.11 and Figure 3.12) 
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Figure 3.11 - Neighborhood gradients of one, two and three-order 

 

Figure 3.12 - Temperature Neighborhoods 
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4. EXPERIMENTAL STUDY AND RESULTS 

 

Random Forest, Support Vector Regression, Multilayer Perceptron, Convolutional 

Neural Networks, and Transfer Learning models are applied to the dataset to test the 

proposed method of determining the permeability distributions from temperature and 

pressure distributions. The models are trained for each cell individually in each experiment, 

and Root Mean Squared Errors are calculated from the predicted permeability values and 

expected permeability values of 1,000 cells in each simulation run. Later these errors 

normalized by dividing them with the difference of the maximum values and the minimum 

values of the observed permeability to find the Normalized Root Mean Squared Errors. 

After each model, the predicted values and the model’s output are also shown 

graphically to understand better the models’ applicability for both the best and worse scored 

runs. 

 

4.1. Evaluation Metrics 

In order to assess the performance of a machine learning method, we can use several 

evaluation metrics to measure how well the predictions and expectations are matched [27]. 

For regression problems, the mean squared error is one of the most commonly used metrics. 

In equation 4.1, y represents the expected outcome of the training sample and �� represents 

the prediction from the training sample. 

6�� � 17 	
�� � �����
���  (4.1) 

If a model’s prediction is close to the observed or expected value, the resultant MSE 

will be small. The root of MSE is called root mean squared error, shown in equation 4.2. 

RMSE is very easy to interpret because it has the same unit as the predictions [28]. 

86�� � 1√7 :	
�� � �����
���  (4.2) 
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Since RMSE is also dependent on the scale of the problem, it can be used to compare 

different methods on the same dataset, but it can be challenging to compare the results 

between different datasets. Thus, adding normalization to RMSE, normalized root mean 

squared error (NRMSE) can be calculated. The NRMSE is calculated by dividing the RMSE 

by the difference of maximum and minimum values of training y values, the expected 

outcome. 

;86�� � 86�� �<�� � �<�� (4.3) 

 

4.2. Random Forest Model and Results 

In previous sections, different sets of neighborhood gradient datasets were already 

created. To continue the study, it is essential to assess the best combination of these datasets 

to be trained in the machine learning models. In order to determine the best combination, a 

decision matrix is constructed. This matrix includes the original temperature and pressure 

values as well as one, two, and three neighborhood gradients. Since running an entire dataset 

for all the cells with all the combinations in the matrix would take too much time. A sample 

of 23 is selected randomly from 1,000 cells to be trained by different datasets and rank the 

success. In Table 4.1, the default Random Forest model results for different neighborhood 

datasets can be seen. The temperature neighborhood of one performed best, which is 

expected. Since temperature readings differ significantly with changes in the readings’ 

location in geothermal fields, the one-neighborhood gradient of temperature would contain 

more information about the field than two or three neighborhood ones. As shown in Table 

4.1, the best results are obtained from the three-neighborhood pressure gradient dataset for 

pressure values. This is also expected since changes in pressure are not common in the same 

layer in geothermal fields. When the distance between the cells increases, the pressure 

difference would become more significant and carry more information about the field and 

the potential distribution of the permeabilities. Following this step, all the combinations of 

neighborhood gradients are also trained in the default Random Forest model. In Table 4.2, 

the results of these combinations are shown. As expected, the best performing combination 

is the Temperature Neighborhood-1 and Pressure Neighborhood – 3. 
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Table 4.1 - Neighborhood selection study results 

 Original 
Temperature 

Temperature 
Neighborhood - 1 

Temperature 
Neighborhood - 2 

Temperature 
Neighborhood - 3 

NRMSE 
of 23 cells 

0.17 0.145 0.151 0.159 

     

 Original 
Pressure 

Pressure 
Neighborhood - 1 

Pressure 
Neighborhood - 2 

Pressure 
Neighborhood - 3 

NRMSE 
of 23 cells 

0.196 0.214 0.194 0.186 

 

Table 4.2 - Neighborhood combination study results 

T= Temperature Neighborhood, P= Pressure Neighborhood 

  
T1  
P1 

T1  
P2 

T1  
P3 

T2  
P1 

T2  
P2 

T2  
P3 

T3  
P1 

T3  
P2 

T3  
P3 

NRMSE 
of 23 
cells 

0.145 0.139 0.136 0.150 0.144 0.141 0.159 0.151 0.149 

 

The best performing dataset (T1-P3) is created by concatenating the previous best 

performers. The final dataset has 6,000 training instances with 1,000 Temperature 

Neighborhood-3 gradient data and 1,000 Pressure Neighborhood-3 gradient data. This 

makes the dimensions of the T1-P3 dataset as 6,000x2,000 for training and 2,000x2,000 for 

both test and validation sets. Corresponding to these, the targets (the permeability values) 

have the dimensions of 6,000x1,000 for training and 2,000x1,000 for both testing and 

validation datasets. 

In order to find the hyperparameters to be used in Random Forest, a tuning method 

called random search is used on the validation set. Some of the overfitting problems faced 

in the future are negated by not tuning the parameters on the training dataset. The random 

search algorithm randomly assigns the values for the selected parameters to find the best 

performing combination of those parameters. The parameters included in the search are the 

maximum number of features to decide when to split the trees, the depth of the trees, the 

minimum sample number for assigning a leaf node, and the minimum number of samples to 

split the nodes. By implementing the RandomizedSearchCV algorithm of scikit-learn [20], 

the max_depth parameter is assigned four different values to be searched,10,60,110, and 
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None. Max_features are also searched with two possible values, auto, and sqrt. A total of 

three values are assigned into min_samples_leaf as, 1,2,4. Finally, min_samples are chosen 

as 2,5,10. After initializing the algorithm, the RandomizedSearchCV combined the 

parameters and ran the model with different parameters each time. The resulting 

hyperparameters matched the default values for max_features (auto), min_samples_leaf (1), 

min_samples_split (2), and the algorithm advised us to use max_depth at 60 instead of the 

default value of None. After these hyperparameters, the number of estimators is determined 

by trial and error. The number of estimators is not included in the random search because it 

generally dominated the results, meaning a higher number of estimators is often better even 

without considering the other parameters. With trial and error, the number of estimators is 

determined as 20. Above this value, a minimal performance gain is seen with a high cost of 

computing time. Since RandomizedSearchCV also performs the cross-validation when 

calculating the hyperparameters, overfitting might be overcome, or in this case, the assigned 

parameters would not be specific to the dataset provided but would also be applicable to the 

training dataset. 

 

Figure 4.1 - Normalized Root Mean Squared Errors of all Cell Models  

 After performing the hyperparameter tuning, a Random Forest model for each cell 

of the simulation model is created. The models are then run in python using scikit-learn’s 

RandomForestRegressor.  

In this study, a simulation model consists of 1,000 cells. Moreover, there are 2,000 

instances of these simulation models in the test dataset. In the simulation model, each cell is 
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trained by itself, called the cell model. The collection of these cell models creates the 

prediction for the simulation model for each instance. So, each of the 2,000 simulation 

models includes a combination of 1,000 cell models. Cell model 42 has 2,000 different 

predictions vs. the expected permeability values, each for the different simulation model. 

Figure 4.2 shows the general success of a cell model, having more points closer to the 45-

degree line. 

 

Figure 4.2 - Expected vs. Predicted Permeability values of cell 42 

While evaluating the success of the cell models, the normalized root mean squared 

error (NRMSE) metric is used. In order to determine the general success of the Random 

Forest algorithm, NRMSE is calculated from the expected and predicted permeability values 

of all runs as 0.134. 

Figure 4.1 shows the success of each cell model. Cells between 400 and 800 are located 

in the middle of the geothermal model, and their prediction is generally more challenging 

due to the interference from other cells, both from above and below. Permeability values of 

remaining cells performed relatively better because of being close to the model’s edges, and 

the permeabilities close to them could be predicted easier due to the undiluted effects of 

temperature and pressure nearby. The sudden step-like behavior in the graph is due to the 

layered structure of the geothermal base model. So the predictions of the model change 
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rapidly in every 100 cells, which composes a 10x10 layer. The NRMSE values of each 

layer’s cell models’ predictions have wide margins, leading to more diverse predictions on 

the layers. This helps the Random Forest cell models to capture sudden changes in 

permeability, but it also hinders the predictions when the layer has a single expected 

permeability value. 

 

Figure 4.3 - Normalized Root Mean Squared Errors of all Simulation Models 

 

 

Figure 4.4 - Histogram of NRMSE for all models 
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Figure 4.3 shows the Root Mean Squared Error of each simulation model (composed 

of cell models). It is evident that the test data was homogenous enough, and the model’s 

performance did not vary significantly throughout the dataset.  

 

 

Figure 4.4 shows the histogram (bins=100) of the NRMSE for all simulation models.  

When the simulation models are ranked according to their NRMSE values, model 420 

is one of the top performers. In 

Figure 4.5, the predictions of permeabilities vs. expected values of permeabilities of 

simulation model 420 are given. A total of nine different bands of permeability values could 

be seen in the figure, and the model’s predictions vary but are acceptable. On the other hand, 

one of the worst performers, simulation model 142 (Figure 4.6), has predicted ten bands of 

permeability values. The model underestimates the higher permeability values while 

overestimating the permeability values with lower values. Figure 4.7 and Figure 4.8 show 

the expected permeabilities and the predicted permeabilities from model 420. In these 

figures, drastic variations of the permeability predictions of the cell models can be seen. The 

RF model can capture the general structure of the field to a degree and would help predict 

the permeability distributions for natural state modeling. 
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Figure 4.5 - Expected Permeabilities vs. Predicted Permeabilities - Simulation Model 420  

 

Figure 4.6 - Expected Permeabilities vs. Predicted Permeabilities - Simulation Model 142 
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Figure 4.7 - 3D view of Predicted and Expected Permeability values of RF for Simulation 
Model 420 
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Figure 4.8 - Expected permeabilities and the Predicted permeabilities from model 420 

4.3. Support Vector Regression Model and Results 

In this part of the study, Support Vector Machines, one of the most popular and 

versatile tools in machine learning, is used to discuss further the prediction of permeability 

distributions of geothermal fields for natural state modeling from temperature and pressure 

distributions.  

The dataset’s contents are determined in previous chapters, and the best-performing 

dataset (T1-P3) was created. In order to build the SVR model, firstly, the validation set of 

the dataset is used in the hyperparameter tuning process. In order to find the best 
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hyperparameters for the SVR, RandomizedSearchCV, a module in the sckit-learn library, is 

used. The hyperparameters with best results in SVR is as follows (kernel='poly', C=100, 

gamma='auto', degree=3, epsilon=0.1, coef0=1). 

To include the randomization of data to be used in training, increasing the performance 

of SVR, and utilizing the multiple processors of the computer the models are trained on, a 

bagging regressor of SVR is used with ten estimators. This bagging method uses a tuned 

SVR model and splitting the training data between the estimators, runs the model separately, 

and aggregates the results into the final decision. BaggingRegressor of skit-learn also uses 

bootstrapping, in which the samples from training data sent to the estimators are chosen from 

the population with replacements, thus making the process purely random. 

 

Figure 4.9 - Normalized Root Mean Squared Error of all Cell Models 

After collecting the permeability predictions of each cell for each instance, a table is 

created. In this table, there were negative permeability predictions, which are physically 

meaningless. These negative values were replaced by zero as a post-processing step before 

calculating the root mean squared error. Later this RMSE is divided by the difference of the 

maximum and minimum permeability values to get the Normalized RMSE (NRMSE)  metric 

to assess the method’s success. In order to determine the general success of the SVR model, 

the  NRMSE is calculated as 0.153.  

In Figure 4.10, different predictions vs. the expected permeability values of 2,000 

instances of one of the cell models, model 42, can be seen. This model generally 

overestimates, as is evident in the figure. 
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Figure 4.10 - Expected vs. Predicted Permeability values of cell 42 

 

In Figure 4.9, the Normalized Root Mean Squared Errors of all cell models are shown. 

Similar to the results of Random Forest, predicting the permeabilities of the cells which are 

deep inside the model is more challenging than the ones that are close to boundaries. As 

previously mentioned, the reason for the sudden, step-like changes in the figure is from the 

changes in the depth of the layers, which happens in every 100 (10x10) cells. The figure 

shows us that the predictions of the first two or three layers are better than the rest. Starting 

from layer four, the cell models’ predictions deteriorated with each new layer until reaching 

the top layer. The top layer, being under the direct influence of the outer cells of the 

geothermal model, could be predicted better from the temperature and pressure values. The 

NRMSE variations between the predictions on each layer are around 0.03, which is lower 

compared to the Random Forest model. Having lower variations in errors between cells close 

to each other would help the model to capture the general structure of the layer better and 

might help the model to produce results more compelling to the human eye, but at the same 

time would be slow to react to sudden changes such as constant permeability zones which 

would disturb the general pattern.  



38 
 

 

Figure 4.11 - Normalized Root Mean Squared Errors of all Simulation Models 

 

Figure 4.12 - Histogram of NRMSE for all SVR models 

As previously mentioned, the combination of 1,000 individual cell models creates a 

simulation model. Since there are 2,000 instances in the dataset, there are also 2,000 different 

simulation models. The NRMSE of each simulation model is calculated, and as can be seen 

in Figure 4.11, the collection has four outliers with NRMSE values higher than 0.5. From 

the graph, it can also be seen that the model’s performance did not vary significantly 

throughout the dataset. 
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The histogram of the NRMSE for all simulation models can be seen in Figure 4.12. 

Model 420 is again in the top 50 on good performers when the simulation models are ranked 

according to their success. 

Figure 4.13 gives information about the success of simulation model 420. The 

geothermal model 420 has nine distinct permeability zones, and the predictions are at 

acceptable levels, but the model underestimated two major permeability zones. When it 

comes to poor performances, with an NRMSE score of 0.30, model 142 is again on the worst 

50 performers list. In Figure 4.14, nine bands of permeability predictions, with significant 

underestimations of higher permeabilities and general overestimation of lower 

permeabilities. 

 

Figure 4.13 - Expected Permeabilities vs. Predicted Permeabilities - SVR Simulation 

Model 420 
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Figure 4.14 - Expected Permeabilities vs. Predicted Permeabilities - SVR Simulation 
Model 142 

 

Figure 4.15 and Figure 4.16 show the expected permeabilities and the predicted 

permeabilities from model 420. The SVR model’s predictions are not varying drastically 

between cells that are close to each other, which leads to better predictions on layers. 

However, as shown in the figure, the model performs poorly on constant permeability layers. 

Looking at these results, SVR can also help predict the permeability values for natural state 

modeling from temperature and pressure values. 
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Figure 4.15 - Expected permeabilities and the Predicted permeabilities from SVR model 
420 
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Figure 4.16 - 3D view of Predicted and Expected Permeability values for Simulation 
Model 420 
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4.4. Multilayer Perceptron model and Results 

MLP is used in this part of the study to predict the permeability distributions of 

geothermal fields using temperature and pressure distributions. Using our T1-P3 dataset, 

different network structures are tested on a sample from the validation set to find the best-

performing combination. We are using ReLU in hidden layers and linear activation function 

for the output of our regression problem. The best performing structure is found as 1000-

500, as can be seen in Table 4.3. 

Table 4.3- MLP structure experiments, the best score given in bold 

Nodes 
NRMSE of  
23 cells 

1000 - 500 0.125 

2000-1000 0.126 

500-200 0.126 

300-200-100 0.126 

500-500-500 0.126 

250-100 0.128 

300-200-100 0.130 

500 0.131 

50-20-10-1 0.140 

 

 

Figure 4.17 - Normalized Root Mean Squared Error of all Cell Models) 

 

To calculate the success of the MLP models, normalized root mean squared error is 

used. To calculate the normalized root mean squared errors (NRMSE), the RMSE is first 
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calculated from the expected values and the predicted values of the permeability for all runs, 

then the calculated RMSE is divided with the difference of the maximum and minimum 

values of the observed permeability. The NRMSE of the MLP model is found as 0.123. 

 

Figure 4.18 - Expected vs. Predicted Permeability values of cell 42 

 

In Figure 4.18, predictions from the 2,000 instances of cell model 42 vs. the expected 

permeability values can be seen, and model 42 performed better on the prediction of lower 

permeability values. 

In Figure 4.17, the Normalized Root Mean Squared Errors of all cell models are 

shown. As expected, similar to the previous results, predictions near the boundaries are more 

successful than those located deeper inside the model. The effects of layers can also be seen 

in every 100th cell because of the 10x10 structure of the model’s layers with sharp changes 

in the values. The MLP model shows some sudden spikes, especially between the cells 100 

to 200, but the number of spikes higher than 0.12 is only 10. Even with these outliers, the 

predictions of the first 300 layers are generally better than the rest of the model. Above cell 

900, the expected drop in errors occurs due to being close to the boundaries and free from 

other layers’ effects. Compared to RF and SVR, MLP performed better in general; the 
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difference of errors between layers is also smaller compared to these two models. The 

variations of the NMRSE between cells in the same layers are also better than RF, but even 

the errors, in general, are worse in SVR; it still shows fewer variations between errors and 

produces results more compelling to the human eye. 

 

Figure 4.19 - Normalized Root Mean Squared Errors of all Simulation Models 

 

 

Figure 4.20 - Histogram of NRMSE for all SVR simulation models 

 

Figure 4.19 illustrates the NRMSE of all the MLP simulation models. Each simulation 

model is a combination of 1,000 individual cell models. Even though there are some outliers 
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in the graph, they are not enough to distort the general performance of the model throughout 

the dataset, which is very homogeneous. 

The histogram of the NRMSE for all simulation models can be seen in Figure 4.20. 

When the simulation models are ranked according to their errors, model 420 is 58th on good 

performers.  

Figure 4.21 gives information about the success of simulation model 420. The nine 

different bands of permeability values can be seen on the graph. This does not mean there 

were nine different permeability zones on the model, but some regions have permeability 

distributions close to each other. Even though the model generally underestimates two 

permeability regions, the model’s predictions are still not far from the expected values. Being 

42th on the worst performers, model 142 is still one of the poor performers, as illustrated in 

Figure 4.22. This graph has ten bands of permeability values with very different levels, and 

most of the expected values are low.  

 

Figure 4.21 - Expected Permeabilities vs. Predicted Permeabilities - MLP Simulation 

Model 420 
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Figure 4.22 - Expected Permeabilities vs. Predicted Permeabilities - MLP Simulation 
Model 142 

 

Figure 4.23 and Figure 4.24 illustrate the predicted and expected permeability 

distributions of different layers from model 420. Even though the effects of the upper and 

lower levels can influence the values on constant permeability zones, the MLP model 

manages to capture the general structure of the field successfully.  
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Figure 4.23 - Expected permeabilities and the Predicted permeabilities from MLP model 
420 
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Figure 4.24 - 3D view of Predicted and Expected Permeability values for Simulation 
Model 420 
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4.5. CNN model and Results 

Convolutional Neural Networks have proven to be very robust and versatile while 

dealing with many tasks, primarily image classification and processing tasks. Our problem, 

the determination of permeability values of geothermal fields on natural state modeling, can 

also be formulated as an image recognition and processing problem.  

In order to prepare the data for CNN, we need to create an image of the field’s 

temperature and pressure distributions, and for each cell, train the permeability values 

corresponding to these images. Because of its previously discussed success in earlier 

sections, the One Neighborhood Temperature (T1) dataset is used first to assess the viability 

of CNN in this problem. T1 training dataset has 6,000 instances with 1,000 cells and their 

corresponding permeability distributions. Since the geothermal model comprises ten layers 

with 10x10 cells (grids) on each layer, the dataset is reshaped from 6,000x1000 to 

6,000x(10x10x10) to resemble the model better. Following this reshaping, the T1 training 

data then rearranged to stack each instance’s z, y, and x layers vertically, thus creating an 

array with dimensions of 100x30 for each instance of 6,000, as illustrated in Figure 4.27. 

The final T1 training dataset for CNN has the dimensions of 6,000x3000. This process was 

also repeated for the validation and test datasets of T1. 

After preparing the datasets for CNN, different architectures were tried to be used for 

the problem in TensorFlow, a python library for deep learning [29]. The architecture shown 

in Figure 4.26 is determined by modifying the fundamental LeNet-5 structure by testing 

different combinations of convolution layers with different activation functions, pooling 

layers, and fully connected layers with different activation functions, as illustrated in  

Figure 4.25. The final structure of the model has three  2d convolutional layers with 

the size of 32/32/64 and the kernel size of  (3,3) and activation functions of ReLU. After 

these convolutional layers, a max-pooling layer of 2x2 is attached. The output of the max-

pooling layer is then flattened to be fed into the fully connected dense layers of 300/200/100, 

ReLU. The model then finalizes as an output layer with the linear activation function. The 

dataset is also trained with AlexNet and Vgg-16 architecture, but the model created by the 

trial and error method performed better.  

Because of its widespread usage and success, the model’s optimizer is set as Adam. 

The hyperparameters are also determined by trial and error, and only the learning rate is 

changed to 0.9 from the default value of 0.001. With the addition of the Keras function [30] 



51 
 

ReduceLROnPlateau, a relatively high learning rate can be used. It decreases the learning 

rate of the model by 0.2  if for five consecutive epochs the validation loss does not bet better, 

until the learning rate is back to the default value of 0.001. An early stopping function is also 

used to control the model by setting the minimum decrease in validation loss needed as 0.001 

after ten consecutive epochs. 

 

Figure 4.25 - Experiments for CNN structure, the best score is given in bold on top 

NRMSE

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 lr 0.9 b 60 0.1010

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  1500 D  1500 D  1500 lr 0.9 b 60 0.1011

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 64 0.1020

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 16 0.1022

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 32 0.1025

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  400 D  300 D  300 x2 lr 0.9 b 64 0.1031

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 lr 0.9 b 50 0.1032

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  400 D  200 D  200 D  100 x2 lr 0.9 b 64 0.1033

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  500 D  500 D  500 lr 0.9 b 64 0.1039

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  600 D  900 lr 0.9 b 60 0.1040

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 128 0.1042

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  900 D  600 D  900 lr 0.9 b 60 0.1045

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 lr 0.9 b 60 0.1045

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  900 lr 0.9 b 60 0.1048

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  500 lr 0.9 b 64 0.1049

C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 64 0.1050

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  800 D  600 D  400 lr 0.9 b 60 0.1050

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  400 D  300 D  200 lr 0.9 b 60 0.1051

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 900 b 64 0.1055

C  16 (3,3) C  16 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 64 0.1058

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 lr 0.9 b 64 0.1063

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 dp(0,1) lr 0.9 b 60 0.1063

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 dp(0,2) lr 0.9 b 60 0.1065

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 lr 0.9 b 64 0.1069

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 16 0.1069

C  16 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 64 0.1074

C  32 (3,3) C  32 (4,4) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 64 0.1075

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  100 D  100 D  100 lr 0.9 b 64 0.1078

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 x3 lr 0.9 b 64 0.1085

C  32 (2,2) C  32 (3,3) C  64 (4,4) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 64 0.1086

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  200 D  200 D  200 lr 0.9 b 60 0.1086

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 lr 0.9 b 100 0.1095

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  100 D  100 D  100 x2 lr 0.9 b 64 0.1098

C  16 (3,3) C  16 (3,3) C  32 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 64 0.1101

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  1500 lr 0.9 b 60 0.1108

C  32 (3,3) C  64 (3,3) mp (3,3) F D  300 D  200 D  100 x2 lr 0.9 b 64 0.1127

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 8 0.1138

C  32 (3,3) C  32 (3,3) C  64 (3,3) C  64 (3,3) C  128 (3,3) mp (2,2) F D  400 D  300 D  200 D  100 x2 lr 0.9 b 64 0.1152

C  64 (3,3) mp (1,1) F D  100 D  100 D  100 lr 0.9 b 64 0.1162

C  64 (3,3) mp (1,1) F D  300 D  200 D  100 lr 0.9 b 64 0.1170

C  16 (3,3) C  16 (3,3) C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 64 0.1176

C  32 (3,3) C  32 (3,3) C  32 (3,3) C  32 (3,3) C  32 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 64 0.1183

C  32 (3,3) C  32 (3,3) C  64 (3,3) mp (2,2) C  64 (3,3) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 64 0.1209

C  32 (6,6) C  32 (6,6) C  64 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 64 0.1218

C  32 (3,3) C  64 (3,3) mp (2,2) C  32 (3,3) C  32 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 64 0.1233

C  64 (3,3) mp (1,1) F D  100 lr 0.9 b 64 0.1242

C  32 (3,3) C  32 (3,3) C  64 (3,3) C  64 (3,3) C  128 (3,3) C  128 (3,3) mp (2,2) F D  300 D  200 D  100 x2 lr 0.9 b 64 0.1268

C  32 (3,3) mp (2,2) C  32 (3,3) mp (2,2) C  64 (3,3) mp (2,2) F D  100 D  100 D  100 lr 0.9 b 64 0.1332

C  32 (3,3) mp (2,2) C  32 (3,3) mp (2,2) C  64 (3,3) mp (2,2) F D  100 D  100 D  100 dp (0,5) lr 0.9 b 64 0.1387

C= Conv2d, mp=Max Pooling , F=Flatten, D = Dense , Lr= Learning rate, b=Batch, dp=Drop Out
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Figure 4.26 - CNN architecture  
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Figure 4.27 - CNN training data sample from T1 dataset (left). 3d visualizations of the 
sample layers (right) 
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 Figure 4.28 - Normalized Root Mean Squared Error of all Cell Models 

Normalized root mean squared error is used to assess the success of the CNN models. 

As mentioned previously, the errors are first calculated from the expected values and the 

predicted values of the permeability for all runs, then the calculated RMSE is divided with 

the difference of the maximum and minimum values of the observed permeability. The 

NRMSE of the CNN model is found as 0.098. 
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Figure 4.29 - Expected vs. Predicted Permeability values of cell 42 

 

In Figure 4.29, predictions from the 2,000 instances of cell model 42 vs. the expected 

permeability values can be seen. The graph shows a good agreement between the predicted 

and expected values. 

The difference of errors between the cells that are close to the boundaries and those 

located deeper into the model are much smaller than RF, SVR of MLP, as illustrated in 

Figure 4.28. As mentioned before, the sudden increases in the graph are due to the model’s 

layered (10x10) structure. The CNN model’s overall performance does not differ 

significantly from cell to cell, and in general, the predictions are very accurate. The 

variations of the NMRSE between cells in the same layers are also minor compared to other 

models.  



56 
 

 

Figure 4.30 - Normalized Root Mean Squared Errors of all Simulation Models 

 

 

Figure 4.31 - Histogram of NRMSE for all CNN simulation models 

 

The NRMSE of all the CNN simulation models is illustrated in Figure 4.30. Overall 

performance of the simulation models, which combine 1,000 cell models for each run, is 

homogeneous throughout the dataset. The histogram of the NRMSE for all simulation 

models can be seen in Figure 4.31. Model 420 is still in the top 50 among good performers 

when ranking the simulation models according to their performances.  

Figure 4.32 gives information about the success of simulation model 420. Ten different 

bands of permeability values can be seen on the graph, and the model predictions are close 
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to the expected Comparing the expected vs. predicted permeability values of the same cell 

for 2,000 runs, CNN shows its reliability by predicting close to the expected values, thus 

staying close to thvalues. Being 14th among the worst performers, model 142 is illustrated 

in Figure 4.33. In this graph, there are ten bands of permeability values with expected 

permeability values from different ranges; still CNN model performed acceptably, especially 

for the low permeability predictions, which can be seen on the bottom left corner of the 

figure, and model 142 could still capture the general structure of the field.  

 

Figure 4.32 - Expected Permeabilities vs. Predicted Permeabilities - CNN Simulation 

Model 420 
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Figure 4.33 - Expected Permeabilities vs. Predicted Permeabilities - MLP Simulation 
Model 142 

 

Figure 4.34 and Figure 4.35 illustrate the predicted and expected permeability 

distributions of different layers from model 420. In these figures, the CNN model captures 

the general structure of the field’s permeability distribution. Even on the constant 

permeability zones, CNN performed better and can be used as a powerful tool when 

determining the permeability distributions of geothermal fields on natural state modeling. 
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Figure 4.34 - Expected permeabilities and the Predicted permeabilities from MLP model 

420 
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Figure 4.35 - 3D view of Predicted and Expected Permeability values for Simulation 
Model 420 
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4.6. Transfer Learning and Results 

Transfer learning assumes that a model already trained on a similar problem could be 

used in another similar problem. In this part of the study, pre-trained models are used to test 

their viability in permeability determination in geothermal modeling. Typically transfer 

learning is used on image classification tasks, and since we already have our CNN models, 

it is only natural to wonder if transfer learning helps them or not.  

The deep neural network API, Keras, already has built-in applications to call pre-

trained models. Using this API, firstly, VGG-16 is selected for testing [31]. VGG-16 is a 

model which is trained on the ImageNet dataset with over 14 million images. 

 

Figure 4.36 - VGG-16 architecture [32] 

VGG-16 expects color images of dimensions 244x244 as data. An instance of our 

data’s dimensions are 100x30 and have only one color channel. Also, VGG-16’s minimum 

accepted image dimensions are 32x32x3. Since our dimensions are not enough for the 

minimum criteria of the VGG-16, we have doubled the size of the images, thus changing the 

dimensions of an instance to 200x60. After increasing the size, cell 555 is chosen as a cell 

for transfer learning to be tested. Before testing transfer learning, cell 555 is trained on both 

100x30 and 200x30 data to see if changing the size of the images affects the training. Since 

the size difference did not cause any significant change in the model’s success, newly created 

data is fed into VGG-16 for training. 

In the first experiment, the VGG-16 is loaded without the input layer, and the 

classification output layer is replaced with a fully connected dense layer with a linear 

activation function. Next, all convolution layers are frozen so that the weights would stay 

the same throughout the training period. These steps are repeated in also in other 

experiments. After that, the fully connected part (300/200/100, ReLU) of our CNN structure 

is attached to the model. This resulted in 15,716,989 total parameters, 1,002,301  trainable 
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parameters and 14,714,688 Non-trainable parameters. The NRMSE of the training of cell 

555 is 0.281, while the CNN model of the cell gave 0.086.  

In the second experiment, the VGG-16 model’s first 11 layers are frozen. With 

additional (300/200/100, ReLU) layers, this resulted in 15,716,989 total parameters, 

13,981,501  trainable parameters and 1,735,488 Non-trainable parameters. NRMSE of the 

cell 555 from this model is calculated as 0.112 compared to the CNN result of 0.086. 

In the third experiment, the VGG-16 model’s whole connection is trained with an 

additional (300/200/100, ReLU). This resulted in 15,716,989 total parameters, 15,716,989  

trainable parameters and 0 Non-trainable parameters. NRMSE of the cell 555 from this 

model is calculated as 0.114 compared to the CNN result of 0.086. 

Similar experiments were conducted with VGG-19, DenseNet, ResNet50, and 

MobileNet, but the best result is still VGG-16 with partially frozen layers, which is worse 

than our CNN model. The cause of this low performance might be the difference in training 

mediums. VGG-16 and other pre-trained models are trained on photographs of real-life 

objects and might be very different from our use case. The other reason might be that the 

pre-trained models’ expected dimensions were squares, and our input images might not be 

using the full potential of the pre-trained models.  

 

4.7. Results And Discussions 

Normalized Root Mean Squared Errors of the machine learning models used in this 

study can be seen in Table 4.4.  

Table 4.4 - NRMSE of models, the best score is given in bold 

Model NRMSE 

RF 0.134 

SVR 0.153 

MLP 0.123 

CNN 0.098 

 

In Figure 4.37, the NRMSE of all cells of all models can be seen. CNN achieves the 

best results in general, with relatively stable success throughout the model. MLP performs 

in a similar trend to CNN, but its general performance is worse than CNN. RF performs 
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similar to MLP with limited success in deeper model sections and good performance near 

boundaries. SVR performs similar to the RF at lower cells close to the heat source, but 

getting closer to upper cells, SVR becomes a poor model.  

 

Figure 4.37 - NRMSE of all cells. All models 

Comparing the expected vs. predicted permeability values of the same cell for 2,000 

runs, CNN shows its reliability by predicting close to the expected values, thus staying close 

to the 45-degree line (Figure 4.38).  
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Figure 4.38 - Expected vs. Predicted permeability values of cell 420 for all models,  

(1md =~1.0E-15 m2 ) 
 

After inspecting the study results, the best machine learning algorithm of the proposed 

method is CNN. In determining the permeability values from temperature and pressure data 

for geothermal fields, CNN performs satisfactorily and can be used as a valuable tool that 

saves money and time.  
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5. CONCLUSION 

 

In this study, we have conducted several experiments using five different machine 

learning algorithms, RF, SVR, MLP, CNN, and Transfer Learning to find a method to 

determine the permeability distributions of geothermal fields from pressure and temperature 

data in natural state modeling. We present the results using the normalized root mean squared 

errors and visual representations of the predictions versus expected values. 

Being the first comprehensive investigation of fundamental machine learning methods 

to determine the permeability values in geothermal fields makes this study an important 

addition to the literature. Using our approach, we have created a method to roughly mimic 

nature while generating the base models. Our proposed method creates more detailed models 

with cap rocks, reservoirs, and different permeability regions resembling depositions and 

folds. Furthermore, using our method, experts can still influence the model with their field 

knowledge. 

The method proposed in this study can also be used as an initial estimator for other 

inversion tools. Users of  PEST or iTOUGH2 can start the optimizations with the 

permeability distributions created by our method and increase their success.  

Our proposed method is an essential addition to the field by introducing new 

opportunities for cost savings and giving researchers new tools to model the geothermal 

fields better and use this renewable energy to its full potential. 

For future work, the ensemble of different machine learning methods will be 

investigated. Combining the results of the studied methods as well as boosting methods and 

teaching a hybrid model is also another topic we plan to study. We will also investigate the 

transfer learning more deeply by implementing different pre-trained models with different 

input dimensions, including our CNN model, and improving our results. 
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