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ABSTRACT 

 

 
Özcan İLHAN 

SOFTWARE QUALITY PREDICTION MODELS: A COMPARATIVE 

INVESTIGATION BASED ON MACHINE LEARNING TECHNIQUES FOR 

OBJECT-ORIENTED SYSTEMS 

Başkent University Institute of Science 

The Department of Computer Engineering 

2020 

 

The purpose of this thesis study is investigating correlation between Chidamber and Kemerer 

(CK) Object-Oriented (OO) software metrics and determining the accuracy rate in software 

bug prediction. For this reason, eleven most frequently used Machine Learning (ML) 

techniques and two Support Vector Machine (SVM) libraries performance was analyzed in 

order to find the best technique for 33 latest version of open source projects. In this thesis 

study, the relation between CK metrics and reliability is also determined. Each technique 

was evaluated using RapidMiner and WEKA tools. Dataset was validated with a 10-fold 

cross-validation technique. Furthermore, Bayesian belief’s networks form used for 

determining which CK metric are primary estimators. Receiver Operating characteristic 

(ROC), Precision, Accuracy, Area Under the Curve (AUC), Mean Absolute Error (MAE), 

Root Mean Squared Error (RMSE) performance metrics used for evaluation of results. 

Results of this study show that Random Forrest, Bagging, AdaBoost ML techniques are the 

most effective for prediction models in terms of AUC values. In contrast, SVMs are the least 

effective models. This thesis study also revealed that Weighted Methods per class (WMC) 

is the most effective software metric. Then, the Number of Children (NOC), Depth of 

Inheritance Tree (DIT) metrics are good contributor for determining the quality of software.  

 

 

KEYWORDS: Machine Learning, Object-Oriented Metrics, Software Reliability, Software 

Quality Metrics, Bug Prediction 

 

 

Advisor: Asst. Prof. Dr. Tülin ERÇELEBİ AYYILDIZ, Başkent University, Department of 

Computer Engineering. 
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ÖZET 

 

 

Özcan İLHAN 

YAZILIM KALİTE TAHMİN MODELLERİ: NESNE ODAKLI SİSTEMLER İÇİN 

MAKİNE ÖĞRENME TEKNİKLERİNE DAYALI KARŞILAŞTIRMALI BİR 

ARAŞTIRMA 

Başkent Üniversitesi Fen Bilimleri Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

2020 

 

Bu tez çalışmasının amacı, Chidamber ve Kemerer (CK) Nesne Yönelimli yazılım metrikleri 

arasındaki ilişkiyi araştırmak ve yazılım hata tahmininde doğruluk oranını belirlemektir. Bu 

nedenle, açık kaynaklı 33 projenin en son sürümleri için en iyi tekniği bulmak amacıyla en 

sık kullanılan 11 Makine Öğrenimi tekniği ve 2 Destek Vektör Makinesi kütüphanesinin 

performansı analiz edilmiştir. Bu tez çalışmasında, CK ölçütleri ile güvenirlik arasındaki 

ilişki de belirlenmiştir. Her teknik RapidMiner ve WEKA araçları kullanılarak 

değerlendirilmiştir. Veri kümesi, 10 kat çapraz doğrulama tekniği ile doğrulanmıştır. Ayrıca, 

Bayesian ağları, hangi CK metriğinin en iyi tahmin edici olduğunu belirlemek için kullanılan 

formlardır. Sonuçların değerlendirilmesi için Alıcı İşletim Karakteristiği, Kesinlik, 

Doğruluk, Eğri Altında Kalan Alan, Ortalama Mutlak Hata, Ortalama Hata Kare Kökü 

performans ölçütleri kullanılmıştır. Bu çalışmanın sonuçları, Rastgele Orman, Torbalama, 

Arttırma makine öğrenmesi tekniklerinin tahmin modelleri için en etkili olduğunu 

göstermektedir. Buna tersine, Destek Vektör Makineleri en az etkili modellerdir. Bu tez 

çalışması ayrıca, Sınıfın Ağırlıklı Metot Sayısının en etkili yazılım metriği olduğunu ortaya 

çıkarmıştır. Daha sonra, Alt Sınıf Sayısı, Kalıtım Ağacının Derinliği ölçümleri yazılımın 

kalitesini belirlemede iyi bir katkı sağlar. 

 

 

ANAHTAR KELİMELER: Makine Öğrenmesi, Nesne Yönelimli Metrikler, Yazılım 

Güvenilirliği, Yazılım Kalite Metrikleri, Hata Tahmini 

 

 

Danışman: Dr. Öğr. Üyesi Tülin ERÇELEBİ AYYILDIZ, Başkent Üniversitesi, Bilgisayar 

Mühendisliği Bölümü. 
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1 

 

1 INTRODUCTION 

 

Software quality and reliability are the most crucial aspects related to software 

complexity. In software engineering, software defects prediction with reliability is a 

problematic area. Reliability measures the number of bugs in the developed software 

systems. The software complexity level is also associated with maintainability. Software 

defect prediction research area is crucial for the reliability and it provides predicting 

defective or fault-prone modules in software. As a result, software projects should be reliable 

and cost-effective. The OO method is different from the conventional programming strategy. 

It distributes data and controls the objects. The OO method has become significant in 

software engineering than structural design. It demonstrates the new potential and more 

reliable way to analyze the problems. The OO method provides better reusability, reliability 

and maintainability than the traditional approach. The software metrics can be used to 

evaluate the quality of OO software. OO software and these metrics support to confirm the 

quality properties of software such as fault proneness. 

 

1.1 Problem Definition 

Software requirements, needs, complexities and modules are growing day by day 

because of the large software systems. The most critical issues for the customer are the 

usability and reliability of software for product satisfaction. A bug in a software project can 

also be called a defect. Finding and eliminating software defects are one of the most 

significant problems. This seems to be a common problem in the software development life 

cycle. It is a challenging task because the failure rate potential may become increase when 

software complexity level increases and it affects product satisfaction. Nevertheless, the 

defect-free software product is almost impossible. Thus, the prediction of faulty classes is 

difficult to handle because of the increasing software line of code. One way to overcome 

these problems is a traditional process such as code review, software testing like unit, 

integration and system testing. Nevertheless, the effort, time, cost and resource increase 

because of the growth of software complexity. Complex software projects require a 

significant and costly testing process. In previous studies, software metrics and techniques 

are reported to be good indicators of software reliability. 
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1.2 Problem Solution 

Most of the research in this field aimed at solving the minimization of defects, 

determining fault-prone software classes with predictive models, code changes and software 

metrics. The most useful way is to predict or detect faulty classes or modules in the early 

stage of the software development life cycle. Consequently, the quality of software products 

may improve, help reliable software, reduce testing and maintenance costs, allocate testing 

resources efficiently, support software testing activities and optimize engineer efforts before 

the software is released. Useful software metrics, especially OO can determine software 

quality and performance. OO paradigm provides a better design solution and reliability issue 

than the traditional approach. There are many ML algorithms in the literature that might 

predict the reliability of software. The main objective is to investigate comparative 

performance analysis with a 10-fold cross-validation technique performed to find the 

accuracy of the training model between different 11 most widely used ML techniques and 

two libraries for SVM. These techniques are Decision Tree, Rule-based Classification, SVM, 

Nearest Neighbors, Bayesian Network, Random Forest (RF), Logistic Regression (LR), 

Boosting, Bagging, Naïve Bayes, Neural Networks. SVM library's names are Library for 

Support Vector Machines (LibSVM) and Library for Large Linear Classification 

(LibLinear). Moreover, combinations of various kernel types, classifiers, estimators, 

measure types, iterations and search algorithms were analyzed for improving prediction 

accuracy. Data set includes 33 open sources OO software and 8093 instances without noisy 

data obtained from the PROMISE repository and  20 software metrics for determining the 

best technique and effect of OO metrics, specifically CK metrics suite on defect prune 

classes in order to the generalized conclusion.  

These ML techniques evaluated six evaluation metrics such as Accuracy, Precision, 

Recall, AUC, MAE and RMSE. Besides, the ROC used for solving the dataset imbalanced 

nature problem.  These performance metrics were calculated with RapidMiner and WEKA 

ML tools. In this way, the performance of both tools compared. Moreover, there is no 

previous research analyzes the same dataset with both tools. This approach can solve another 

performance comparison problem between WEKA and RapidMiner tools because both tools 

calculated performance slightly differently.  

Various metrics have been proposed in the literature by researchers to evaluate the 

quality of software. Nevertheless, CK metrics good indicator of reliability and 

maintainability issues [48]. 
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1.3 Study Motivation 

Previous research and literature reviews show that various ML techniques such as 

SVM, Bayesian learning, Decision Trees, Neural Networks, ensemble and Rule-based 

learning models were used. In previous studies several software metrics were proposed to 

find or develop efficient defect prediction techniques. However, limited data sets and 

software metrics were analyzed. There are no comprehensive analyses evaluating ML 

algorithms with a large dataset and using two different ML tools for software reliability. 

Accordingly, the critical problem with these analyses is that different ML performance 

results available in the literature. Another constraint and common problem can be reported 

as the limited software metrics are available in the dataset. 

 

1.4 Aims & Objectives 

Research aims at finding a solution to this challenging problem of software reliability 

issues and how some constraints such as time and cost-efficiently should be used. These 

constraints make the problem difficult. Various ML techniques have been used to overcome 

this problem and detect reliability issues. These techniques are effective technologies. Useful 

information can be retrieved from these techniques for developers and managers. 

Consequently, resource allocation can be more stable, coding and design quality improve, 

testing cost and maintenance effort decrease. Another important goal is to improve the 

classification accuracy of the ML algorithms. Thus, these techniques can be used in bug 

prediction, effort estimation and risk judgment in the early phases of the software 

development life cycle. Also, it can be useful for minimization of business risk. 

In the first part of the thesis, primary problem definition and solution, study 

motivation, objectives proposal summarized. In Section 2, an overview of previous studies 

presented about software reliability and related topics. Moreover, the limitations of previous 

research and research questions are given. In Section 3, 20 software metrics, their usage and 

33 datasets are explained. In Section 4, the applied ML techniques, used ML tools such as 

WEKA and RapidMiner have described. In Section 5, summarizes the main findings, 

strengths and weaknesses of methods and performance evaluation results such as Accuracy, 

AUC, Precision, Recall, MAE, RMSE and ROC. Furthermore, a comparison of each 

technique discussed. Proposed ML techniques for defect prediction also discussed in this 

section. As a result, conclusions and future works given in Section 6. 
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2 LITERATURE REVIEW 

 

2.1 Previous Literature 

Previous literature shows that different regression models, ML techniques and 

software metrics have been proposed to determine and predict defect-prone classes or 

modules for software quality prediction. There have been different efforts in this area. In this 

section, previous related works using different ML techniques with various software metrics 

presented. 

Several studies suggest that CK software design level metrics are used to determine 

software quality. This metrics suite has indicated that the prediction of defects efficiently 

and it can be a good indicator of software quality. CK metrics suite included six essential 

metrics. These are WMC, CBO, RFC, NOC, LCOM, DIT. These OO software metrics can 

measure the reusability, reliability, maintainability of software and point of the class 

hierarchy [47]. 

Basili et al. research has emphasized OO software metrics impact of fault prediction 

in the early stages of the development life cycle. In this Basili study, Multivariate logistic 

regression is selected in prediction techniques for proving the effect of OO software metrics 

[53]. 

Several OO software metrics have been proposed, such as Number of Methods 

(NOM), Message Passing Coupling (MPC), Size of Procedures or Functions (SIZE1), 

Number of Methods (NOM), Data Abstracting Coupling (DAC), Properties Size defined in 

a class (SIZE2) assessed the maintenance effort and relation between of each metric in Li & 

Henry research. Li & Henry recommended these software metrics to measure the number of 

changes, complexity and coupling levels in the software using these OO metrics [55]. 

Numerous studies to investigate the primary attribute of software metrics for software 

quality. Tang et al. reported that the WMC metric is a significant predictor for faulty modules 

and classes [39]. Another research is Briand et al., which extracted 49 software metrics 

proposed using Multivariate Logistic Regression models. The result of the research shows 

that all metrics can be a good predictor, except NOC [32].  

Quah & Thwin research analyzed different Neural Networks for estimating 

maintainability and reliability of software quality such as General Regression Neural 

Network (GRNN) and Ward Neural Network using OO software metrics. After both Neural 
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Networks compared with each other, the GRNN model has the best performance for 

maintainability and reliability [40]. 

Gyimothy et al. research suggests that the CBO metric is the primary indicator and 

LOC performance is also useful for fault prediction. Nevertheless, the NOC attribute have 

low results in the CK metrics suite. In this research, the Mozilla dataset used in Decision 

Trees, LR and Neural Network [50]. 

Furthermore, different software metrics were analyzed except the CK metrics suite. 

For example, Zimmermann et al. used 14 size metrics in Eclipse Java source code and tried 

to predict fault and non-faulty classes. Efficiently predict faults, a combination of complexity 

metrics suggested [52]. 

Nasa KC1 is the most analyzed dataset for fault-prone prediction. This dataset was 

analyzed with the Decision Tree and Neural Network with ROC analysis to predict fault 

proneness and validated with high, medium and low defects severity levels. Based on the 

Decision Tree and Neural Network performance results, both techniques are better than the 

LR [57]. Another research considered the effectiveness of the prediction of fault-prone 

classes and OO software metrics [42]. Studies of Pai and Dugan evaluated the Nasa KC1 

dataset also with using Bayesian Network. Bayesian Network form result shows that WMC, 

RFC, CBO and Source Lines of Code (SLOC) metrics are the major contributor for fault 

proneness of software prediction [43]. Elish et al. 's findings suggest that the SVM has the 

same NASA dataset and purpose. SVM has better performance than the other eight 

compared to ML techniques [27]. Other experiments and alternatives ML techniques 

analyzed for reliability [24, 25]. 

Some studies such as Arisholm et al. suggested the AdaBoost algorithm. LR, SVM 

and Neural Networks techniques were compared to different options of Decision Tree with 

Java telecom system. If the AdaBoost technique used with C4.5, performance gave a useful 

result [6].  

Malhotra, Sawhney and Shukla analyzed the performances of several 17 ML methods 

on Xerces OO software to find defect prone classes. Bagging method is the most reliable 

performance for defect prediction models [41]. 

Unlike traditional software metrics, Okutan & Yildiz research evaluated two different 

software metrics associated with the number of developers (NOD) and the quality of source 

code (LOCQ). Bayesian Networks used to observe the relation between defect proneness 

and new software metrics. This work shows that RFC, LOC and LOCQ are more remarkable 
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attributes, whereas LCOM, WMC and CBO software metrics are less useful on software 

quality prediction. Another conclusion is that NOC and DIT software metrics are not a good 

indicator [2]. 

Over time, an extensive literature has investigated software reliability using PROMISE 

data repository and maintainability using QUES systems. ML techniques are not particularly 

new and have been used for many years in software reliability. For instance, Reddivari and 

Raman compared eight ML techniques. RF's performance results in terms of AUC value is 

a good predictor for maintainability and reliability. When we consider software CK metrics 

suite, Coupling Between Methods (CBM), WMC and DIT attributes are important for 

software quality [48]. 

2.2 Limitations of Previous Research 

Previous studies have shown that different ML techniques and software metrics were 

analyzed and proposed. However, several gaps and limitations are still available. In previous 

studies, the datasets to investigate software reliability were limited. As far as we know, less 

previous research has investigated large datasets and the effect of CK software metrics on 

software reliability. However, the existing research has some problems with the 

generalization of results, since performance results may change according to dataset size and 

characteristics. In the past several researches, the various dataset included different software 

metrics suite and characteristics of datasets are not same. For example, in this thesis, all 

datasets are OO software and include CK metrics attributes. To fill this literature gap, this 

thesis has large dataset that included 20 software metrics.  

2.3 Research Questions 

The literature review shows that OO software metrics, especially CK metrics suite a 

crucial predictor of quality rather than the other traditional software metrics. In this study, 

following research questions are set as below. To the best of our knowledge, these questions 

have previously never been addressed. 

RQ1. What is the most and least effective software metric to determine software reliability?  

RQ2. What are the most effective ML techniques to estimate software defect prediction?  

RQ3. Is it possible to generalize the best performance result of the ML techniques to estimate 

software defect prediction? 

RQ4. Is the performance results differ according to Machine Learning tool used? 
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3 MATERIALS & METHODS 

 

3.1 Data Collection 

In this thesis study, 33 open-source of datasets received from software projects. The 

latest versions of projects were selected because duplicate classes and values should prevent. 

This dataset includes 8093 instances and 2958 defects. The software defect prediction public 

dataset obtained from one of the most popular and largest data repositories called PROMISE 

[17]. Names of project dataset are Ant, Tomcat, Velocity, Ivy, JEdit, Poi, Forrest, Workflow, 

Log4j, Lucane, Synapse, Xalan, Arc, Berek, Camel, CKJM, E-Learning, Intercafe, 

Kalkulator, Nieruchomosci, Pbeans, Pdftranslator, Prop, Redaktor, Serapion, Skarbonka, 

Sklebagd, System data, Szybkafucha, Termoproject, Wspomaganiepi, Xerces, Zuzel. All 

these datasets contain the same OO software metrics. Moreover, all dataset gives information 

about the bug at the class level. In Table 3.1, the dataset is given in detail. Xalan and Log4j 

software have the highest defective modules. JEdit and Forrest software has the least 

defective modules. However, Xalan and Tomcat software have the most instances. CKJM 

and Wspomaganiepi dataset have the least instances. All dataset includes CK metrics. For 

analyses of these datasets in WEKA and RapidMiner, all dataset combined in one CSV file 

without software name and version attributes. Because the name and version of the software 

should not affect the target class determination and performance results. For this purpose, 

the version and name of the software was not selected as an attribute in the RapidMiner ML 

tool. The analyzed data does not include missing data. However, bug label in all dataset 

contains a count of bug. For ML techniques, these bug counts change to binary classification 

as 1 is defective, 0 is a non-defective software module. 
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Table 3.1  Details of dataset 

 
Dataset Release # of  

Instance 

# Defective  

Module 

% Defective  

Module 

Metrics Suite 

Ant 1.7 745 166 22  CK 

ArcPlatform 1.0 234 27 12 CK 

Berek 1.0 43 16 37 CK 

Camel 1.6 965 188 19 CK 

CKJM 1.8 10 5 50 CK 

E-Learning 1.0 64 5 8 CK 

Forrest 0.8 32 2 6 CK 

Intercafe 1.0 27 4 15 CK 

Ivy 2.0 352 40 11 CK 

JEdit 4.3 492 11 2 CK 

Kalkulator 1.0 27 6 22 CK 

Log4j 1.2 205 189 92 CK 

Lucene 2.4 340 203 60 CK 

Nieruchomosci 1.0 27 10 37 CK 

Pbeans 2.0 51 10 20 CK 

Pdftranslator 1.0 33 15 45 CK 

Poi 3.0 442 281 64 CK 

Prop 452 660 66 10 CK 

Redaktor 1.0 176 27 15 CK 

Serapion 1.0 45 9 20 CK 

Skarbonka 1.0 45 9 20 CK 

Sklebagd 1.0 20 12 60 CK 

Synapse 1.2 256 86 34 CK 

Systemdata 1.0 65 9 14 CK 

Szybkafucha 1.0 25 14 56 CK 

Termoproject 1.0 42 13 31 CK 

Tomcat 6.0 858 77 9 CK 

Velocity 1.6 229 78 34 CK 

Workflow 1.0 39 20 51 CK 

Wspomaganiepi 1.0 18 12 67 CK 

Xalan 2.7 909 898 98 CK 

Xerces 1.4 588 437 74 CK 

Zuzel 1.0 29 13 45 CK 

 



 

 
9 

 

3.2 Software Metrics 

Software metrics revealed a significant role for measuring software characteristics and 

complexity level. The metrics suite aims to figure out various problems, such as software 

maintainability and reliability. Previous research shows that a lot of traditional and OO 

software metrics suite has been suggested. Mostly used software metrics suites are Bansiya 

and Davis [7], Briand et al. [32], CK metrics suite [47], Etzkorn et al. [34], Genero et al. 

[19], Halstead [36], Harrison et al. [22], Kim and Ching [30], Li and Henry [55], Lorenz and 

Kidd [38], McCabe’s cyclomatic complexity [51], Melo and Abreu [56], MOOD Metrics 

[16], Robert Martin [44], Sharble and Cohen [49], Tang, Kao and Chen [39], Tegarden et al. 

[12]. In thesis study used the CK software metrics suite because one of the most important 

and widely used OO metrics suite. Evaluating of external software quality attributes such as 

maintainability, reliability and reusability, CK metrics suite widely used in the past research. 

Besides, internal characteristics of software systems like class complexity, cohesion, 

coupling, encapsulation, inheritance and polymorphism can be measured by software 

metrics. Details of 20 software metrics is given in Table 3.2. This research intends to 

understand the relationship between reliability and CK metrics suite. The literature review 

and previous research show that the CK metrics suite has been provided significantly 

effective for predicting faults in a software system. 
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Table 3.2 Details of software metrics 

 
Metric Name Description 

Afferent Couplings (CA) It is Martin’s Metric. It is the count of classes which is calling given or a particular 

class. 

Average Method Complexity (AMC) AMC is the count of binary codes, which means the average McCabe’s Cyclomatic 

Complexity method size. 

Average McCabe’s   

Cyclomatic Complexity (AVG_CC) 

Average count of the independent values of methods. 

Cohesion Among  

Methods of a Class (CAM) 

It is a similarity method related to signatures and prototypes. 

Coupling between Methods (CBM) Measure the total count of new or redefined methods to which are inherited methods 

that are coupled [40]. 

Coupling Between Objects (CBO) Total count of classes to couple with or given class. Maintainability can be difficult 

when the number of coupling number is high. The level should be low to 

maintainability. 

Data Access Metric (DAM) The ratios of all private and non-public (protected) attributes are divided by all class 

attributes. It is related to encapsulation. 

Depth of Inheritance Tree (DIT) It is shown that the maximum level. In other word, longest path from the class to the 

root of the tree [47]. If a high count of steps from the root to the leaf node or inherited 

methods increase software complexities. So, the level should be low. 

Efferent Couplings (CE) It is Martin’s Metric. It is a count of classes, which is called a given or specific class. 

Inheritance Coupling (IC) It is a count of parent classes to couples with a given or specific class. 

Lack of Cohesion of Methods (LCOM) The number of methods pairs not having any common attributes that pass references to 

variables. High LCOM shows that weak encapsulation is available in the software. It 

should be low. 

Lack of Cohesion Among Methods of a 

Class 3 (LCOM3) 

It is minor improvements and variation of cohesion level calculation of the LCOM by 

Henderson-Sellars. 

 

Line of Code (LOC) In the method, the number of code lines with non-commented. Comment and blank 

lines do not include. 

Maximum McCabe’s Cyclomatic 

Complexity (MAX_CC) 

It is the maximum count of the independent values of the method. 

Measure of Aggression (MOA) It is the percentage of user-defined data declarations in the given class. It is associated 

with the composition. 

Measure of Functional  

Abstraction (MFA) 

It is the ratio in the count of methods. These methods inherited by a class divided by 

the total defined methods number available [53]. It is associated with inheritance. 

Number of Children (NOC) NOC is associated with inheritance. Because it measures the count of subclasses or 

direct children of a given class. It should be low to maintainability of the software. 

Number of Public Methods (NPM) It is the count of convenient public methods in a given class. 

Response for a Class (RFC) It responds to a message obtained by some method or class object after a set of all 

methods in a class executed [47]. Internal and external methods in a class. It should be 

low. 

Weighted Methods Per Class (WMC) It is a CK metric. Sum of methods complexities in a class. High WMC values indicate 

a more complex software class. If software complexity increases, software class 

maintainability can be more difficult. [47, 40]. The complexity level should be low. 

Defect Count It is binary classification shown as absence or presences of the defects. 
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3.3 Machine Learning Software Tools 

ML software is a data mining tool that includes various ML algorithms. Tools contain 

regression, data process, classification, clustering, data mining and visualization features. 

For using ML algorithms, most popular tools RapidMiner and WEKA are selected. Both 

tools are easy to use, fast, stable and provide various ML algorithms. Moreover, both tools 

provide visualization and different performance analyses features. ML tools provide various 

features. For instance, train models, enable them to find new methods and support deep 

learning. 

 

3.3.1 WEKA machine learning software 

Weka is an open-source software tool. It can use it through a graphical user interface. 

Weka images interface available in appendix 1.  

• Preprocess section provide edit and add features of dataset columns and display 

statistic of selected attribute. Also, the preprocess section allows various 

modifications of columns. For example, in dataset Table 3.1, all attributes are 

numeric. Defect attributes should be binary value mean “True” or “False”. For this 

reason, defect attributes changed to the “NumericToNominal” below “unsupervised” 

filter. Interfaces available in appendix 2.  

• Classify sections provide various ML algorithms. It provides an analysis of the 

dataset. Furthermore, different test options like cross-validation, training and test set 

can be prepared. 

• Select attributes section enables to find and analysis of major and minor attributes in 

the dataset. 

Weka Knowledge Flow environment also used to compare ROC curves. Weka 

Knowledge Flow interface available in appendix 3.  

• Arrf loader import to arrf file format. 

• Numeric to nominal section change to numeric attributes into nominal. 

• Class assigner set or unset to the configuration of the class index. 

• Cross-validation fold maker provides number of folds and random seed 

configurations. 

• The classifier of the performance evaluator section manages to evaluate metrics. 

• The performance chart of the model visualizes the performance metrics such as ROC 

curve.  
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3.3.2 RapidMiner machine learning software 

RapidMiner can work on cross-platform operating systems and has a friendly user 

interface. It enables to create own models with drag and drop feature. It provides data 

preparation, text mining and deep learning. In the RapidMiner IDE, a visual representation 

of the data mining process flow is available [46]. 

• The data access section enables us to read and write a file with different formats such 

as CSV, Excel and ARFF. Also, it provides read and writes from database and cloud 

storage. 

• The blending section provides a modification of columns, transformation attributes 

to different types and join features. 

• The modeling section provides various ML algorithms, correlations matrix, feature 

weights and optimizations. 

• The validation section provides various predictive performance features and 

visualizations. 

RapidMiner interface available in appendix 17. 
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4 TECHNIQUES & EXPERIMENTS 

 

ML algorithms are well proven to be significantly effective in software maintainability 

and reliability. ML prediction and classification techniques provide useful information from 

the dataset for software quality. In this chapter, mostly used ML techniques were analyzed 

with different parameters and options in WEKA and RapidMiner tools. Thus, the 

effectiveness of techniques can be evaluated for dataset. Default and different configuration 

of each ML techniques compared to each other for improving performance results in WEKA 

and RapidMiner tools. In used dataset, the bug label should be changed numeric to a nominal 

attribute.  

Furthermore, Decision Stump, Random Tree, Logistic Model Tree (LMT) classifiers 

analyzed in Bagging and Boosting algorithms. Decision Stump is a one-level simple tree 

structure of the Decision Tree model. Also, it is called 1-rules, which uses a single instance 

for splitting. Random Tree can deal with both regression and classification problems. 

Multiple Random Trees consist of the RF method. LMT is logistic model tree for 

classification problems. It consists of classification trees with a logistic regression model 

and decision tree at the leaves.  

Moreover, various criteria analyzed, such as information gain, gain ratio and gini 

index. All the features or attribute entropies calculated to find the best feature and maximum 

information about a class for information gain. Try to decrease the level of entropy, which 

is starting from the root to the leave nodes. It is used by ID3 and C4.5 algorithms. The gain 

ratio is an alternative of information gain that modifies the information gain. Gini index 

calculates the amount of specific feature probability. These specific features mislabeled. It 

is also called gini impurity and used by CART algorithms. 

Others affect the pruning rule is the confidence factor parameter and reduced error 

pruning. For little pruning, confidence factor value should be large. For heavy pruning, 

confidence factor should be small. The confidence factor threshold range should be between 

0 and 1 and shows that internal error while pruning the decision tree in data. If a large amount 

of data is analyzed, reduced error pruning can be useful. Because decision tree branches may 

have noise data. These branches can be removed and identified. As a result, the classification 

result improves. Nevertheless, scalability can be a problem if a large amount of dataset is 
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available [45]. It is starting and checking each internal node for changing it with the most 

popular or repeated class that does not decrease the prediction accuracy of the trees. [3]. 

 

4.1 Decision Tree 

The decision tree is a classification and predictive model. It is flow-chart and tree-

classifying the instance by sorting them down the tree where each node shows all reachable 

decisions with edges. Decision tree algorithms such as C4.5 and ID3 are successful 

algorithms and try to find an attribute that returns the highest information gain. The decision 

tree is available as J48 in Weka [37]. Screenshot of WEKA tool usage is available in 

appendix 4 for Decision Tree.  

The confidence factor default value is 0.25 in Weka.  For comparison between 

RapidMiner and WEKA, RapidMiner confidence factor specified 0.25 and there were no 

additional filters in both tools in Table 5.2 and Table 5.3. Value of the improved attributes 

to achieve higher AUC performance is given in Table 4.1 for WEKA and is given in Table 

4.6 for RapidMiner. 

 

4.1.1 Decision Tree analyses in WEKA 

Table 4.1 Default and improved configurations of Decision Tree in WEKA 

 

Settings Default Value Improvement 

Confidence Factor 0.25 0.1 

Reduced Error 

Pruning 

False True 

 

The default value of the “confidence factor” parameter is 0.25, the “reduced error 

pruning” parameter is false. After a series of experiments, the “confidence factor” should be 

0.25 and “reduced error pruning” should be true to get a better performance result. The 

differences between the performance results of default and improved values are given in 

Table 4.2. 

 

 



 

 
15 

 

Table 4.2 Performance results of default and improved configurations of Decision Tree in WEKA 

 

Only reduced error pruning should be true to get the highest AUC value for Decision 

Tree. The default value of “subtreeRaising” is true and “unpruned” is false. Subtree raising 

is post-pruning operations. It replaces or reclassify a tree with one of its subtrees and has a 

minor effect on the decision tree. The unpruned decision trees are larger than pruned trees. 

If the tree is pruned, the size of branches or nodes can be removed. If “subTreeRaising” 

options set to false or “unpruned” set to true, the value of AUC and accuracy results decrease. 

Performance results of “subTreeRaising” and “unpruned” configuration is given in Table 

4.3. 

Table 4.3 Performance results of Subtree Raising and Unpruned configurations of Decision Tree in WEKA 

 

Confusion matrix of 0.25 confidence factor without reduced error pruning is given in 

Table 4.4. Confusion matrix of 0.25 confidence factor with reduced error pruning is given 

in Table 4.5. Comparison of default and improved ROC curves are given in Figure 4.1.  

Table 4.4 Confusion matrix of default configurations of Decision Tree in WEKA 

 
Classified As a b 

a = 0  4273 862 

b = 1 1384 1574 

 

Confidence 

Factor 

Reduced 

Error  

Pruning 

Accuracy 

 

AUC 

 

Precision Recall 

 

MAE 

 

RMSE 

0.25 

(Default) 

False 

(Default) 

72.25% 0.694 0.715 0.722 0.325 0.480 

0.1 False 73.15% 0.703 0.725 0.731 0.336 0.460 

0.25 

(Improved) 

True 

(Improved) 

73.13% 0.724 0.725 0.731 0.340 0.453 

Subtree 

Raising 

Unpruned Accuracy 

 

AUC 

 

Precision Recall 

 

MAE 

 

RMSE 

False True 71.46% 0.698 0.709 0.715 0.315 0.494 
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Data are classified 72% correctly. According to the confusion matrix, 862 instances 

should be non-defect but classified as defective and 1384 instances should be defective but 

classified as non-defective. 

Table 4.5 Confusion matrix of improved configurations of Decision Tree in WEKA 

 
Classified As a b 

a = 0  4456 679 

b = 1 1496 1462 

 

Data are classified 73% correctly. According to the confusion matrix, 679 instances 

should be non-defect but classified as defective and 1496 instances should be defective but 

classified as non-defective. 

 

 
 

Figure 4.1 ROC curves of default and improved configurations of Decision Tree in WEKA 

 

4.1.2 Decision Tree analyses in RapidMiner 

For default and improved RapidMiner configuration, the confidence factor should be 

0.25 to comparing with the WEKA tool. 

Table 4.6 Default and improved leaf size count of Decision Tree in RapidMiner 

 

Settings Default Value Improvement 

Minimal Leaf Size 2 5 

 

The default value of the minimal leaf size is 2. After a series of experiments, the 

minimal leaf size should be 5 to get a better performance result. Leaf size is the number of 

observations or cases in that leaf.  
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The end of the node is a leaf in a decision. Minimal leaf size use for a more prone 

model to find noise in train data. The differences between the performance results of default 

and improved leaf size are given in Table 4.7. 

Table 4.7 Performance results of leaf size count of Decision Tree in RapidMiner 

In this thesis study, the experiment results show that minimal leaf size should be 5 to 

get the highest AUC value for Decision Tree. Nevertheless, there are not any significant 

differences between 4 and 6 minimal leaf size according to AUC value. The selection gain 

ratio, information gain, and gini index criterion do not affect the performance results for used 

dataset. The default value of the “apply pre-running” option is true. If “apply pre-running” 

option set to false or more than 5 minimal leaf size, the value of AUC and accuracy results 

decrease.  

For Decision Tree, confusion matrix result for 2 minimal leaf size is given in Table 

4.8. Confusion matrix result for 5 minimum leaf size is given in Table 4.9. ROC curve of 5 

minimum leaf size is given in Figure 4.2.  

Table 4.8 Confusion matrix of 2 leaf size of Decision Tree in RapidMiner 

 
Accuracy: 72.94% True 1 True 0  Class Precision 

Prediction 1 1349 581 89.90% 

Prediction 0  1609 4554 73.89% 

Class Recall 45.81% 88.69%  

 

 

Minimal 

Leaf Size 

Pre-

Pruning 

Accuracy 

 

AUC 

 

Precision Recall 

 

MAE 

 

RMSE 

2  

(Default) 

TRUE 

(Default) 

72.94% 0.730 0.738 0.886 0.346 0.440 

3 TRUE 73.04% 0.733 0.739 0.888 0.347 0.439 

4 TRUE 72.74% 0.732 0.737 0.885 0.349 0.439 

5 

(Improved) 

TRUE 72.82% 0.735 0.737 0.887 0.351 0.437 

6 TRUE 72.77% 0.734 0.737 0.887 0.351 0.437 
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Table 4.9 Confusion matrix of 5 leaf size of Decision Tree in RapidMiner 

 
Accuracy: 72.82% True 1 True 0  Class Precision 

Prediction 1 1336 581 89.90% 

Prediction 0 1822 4557 73.75% 

Class Recall 45.17% 88.74%  

 

 

 

 

Figure 4.2 ROC curve of 5 leaf size of Decision Tree in RapidMiner  

 

4.2 Random Forest 

RF technique is ensemble learning for supervised classification. It uses by constructing 

multiple decision trees. RF consists of bagging of different decision trees. The feature 

selection of each split is randomized. Individual predictor strength affects the predictions 

[31]. RF can handle missing values in the dataset and prevent the overfitting problem. A 

voting mechanism selects the predictions of whole trees. For example, the majority voting. 

Screenshot of WEKA tool usage is available in appendix 5 for RF.  

The maximum depth of the default value is 0 in Weka.  For comparison between 

RapidMiner and WEKA, RapidMiner maximum depth specified 0 and there were not any 
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additional filters in both tools in Table 5.2 and Table 5.3. Values of the improved attribute 

to achieve higher AUC performance is given in Table 4.10 for WEKA. 

 

4.2.1 Random Forest analyses in WEKA 

Table 4.10 Default and improved iterations count of RF in WEKA 

 
Settings Default Value Improvement 

Number of Iterations 100 500 

 

The default value of the number of iterations is 100. The iteration parameter affects 

the results as positive. Iterations count provide number of trees. According to experiments, 

the iterations should be 500 to achieve a better AUC result. The differences between the 

performance results of iterations count are given in Table 4.11. 

Table 4.11 Performance results of iterations count of RF in WEKA 

 

 

 

 

 

 

 

 

 

The experiment results show that number of iterations parameter should be 500 to get 

the highest AUC value for RF in WEKA. Out of the bag calculate the bag errors and 

verifying the RF model. It is not involved and used in training data. The out of bag score is 

determined as the correctly predicted rows count from the out of bag example. Therefore, if 

the dataset is not large enough and uses it totally as the training dataset, the out of bag rate 

affords can be useful. The default value of “calcOutOfBag” is false. If “calcOutOfBag” 

options change to true, accuracy and AUC performance results do not change. 

Another option is the maximum depth value. Parameter of maximum dept defined the 

maximum depth of all trees. It described as the longest route between the leaf and the root 

node. The default value is false, which indicates that each tree will increase until every leaf 

is pure. It means all the data on the leaf gets from the same class. If this value increases, the 

Number of 

Iterations 

Accuracy 

 

AUC 

 

Precision Recall 

 

MAE 

 

RMSE 

100  

(Default) 

76.94% 0.812 0.766 0.769 0.321 0.402 

300 76.94% 0.815 0.767 0.769 0.321 0.401 

500 77.07% 0.816 0.768 0.771 0.320 0.400 

600 76.93% 0.810 0.767 0.769 0.320 0.400 
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overall performance result decreases for the used dataset. Performance results of maximum 

depth of tree are given in Table 4.12. 

Table 4.12 Performance results of maximum depth of tree count of RF in WEKA 

 

 

The default value of maximum depth is 0 to provide the best performance results. 

Nevertheless, there are not any significant differences between 300 and 500 iteration 

according to AUC value. From these results, it is clear that performance results decrease if 

more than 500 iterations are available. Comparison of 100 and 500 iterations ROC curves 

are given in Figure 4.3. Confusion matrix of 100 iteration is given in Table 4.13 and 500 

iteration is given in Table 4.14. 

Table 4.13 Confusion matrix of 100 iteration of RF in WEKA 

 
Classified As a b 

a = 0  4517 564 

b = 1 1302 1656 

 

Data are classified 77% correctly. According to the confusion matrix, 564 instances 

should be non-defect but classified as defective and 1302 instances should be defective but 

classified as non-defective. 

Table 4.14 Confusion matrix of 500 iteration of RF in WEKA 

 
Classified As a b 

a = 0  4590 545 

b = 1 1310 1648 

 

Data are classified 77% correctly. According to the confusion matrix, 545 instances 

should be non-defect but classified as defective and 1310 instances should be defective but 

classified as non-defective. 

Number of 

Iterations 

Maximum 

Depth of Tree 

Accuracy 

 

AUC 

 

Precision Recall 

 

MAE 

 

RMSE 

100  0 76.94% 0.812 0.766 0.769 0.321 0.402 

100  5 72.71% 0.748 0.733 0.727 0.391 0.432 
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Figure 4.3 ROC curves of 100 and 500 iteration of RF in WEKA 

 

4.2.2 Random Forest analyses in RapidMiner 

The criterion of gain ratio, information gain and gini index affect the results. The 

default criterion in RapidMiner is a gain ratio. Performance results of criterion are given in 

Table 4.15. Criterion selection means is that a determined split of which attributes will be 

selected.  For default and improvement of RapidMiner configuration, “maximalDept” is set 

to 0 to compare with the WEKA tool. 

 

Table 4.15 Criterion performance results of RF in RapidMiner 

 

Criterion should be information gain to get the highest AUC value for RF. 

Nevertheless, there are no significant differences between gini index and information gain 

according to AUC performance result. Another improvement of the RF performance result 

is the random splits option in RapidMiner. The default option of “random splits” option is 

disabled. Random splits parameter splits of numerical attributes to be chosen randomly 

instead of being optimized. If the “random splits” option enabled, the performance result of 

the AUC value is 0.810. However, still the selection of information gain has the highest 

performance value for AUC.  

Criterion Accuracy AUC 

 

Precision Recall 

 

MAE 

 

RMSE 

Gain Ratio 

(Default) 

74.46% 0.792 0.753 0.889 0.335 

 

0.412 

 

Information 

Gain 

76.62% 0.815 0.772 0.894 0.324 

 

0.401 

 

Gini Index 76.67% 0.813 0.774 0.891 0.325 0.401 
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For RF, confusion matrix result for gain ratio is given in Table 4.16. Confusion matrix 

result for information gain is given in Table 4.17. ROC curve of information gain is given 

in Figure 4.4. 

 

Table 4.16 Confusion matrix of Gain Ratio of RF in RapidMiner 

 

Accuracy: 74.46% True 1 True 0  Class Precision 

Prediction 1 1460 569 71.96% 

Prediction 0  1498 4566 75.30% 

Class Recall 49.36% 88.92%  

 

Table 4.17 Confusion matrix of Information Gain of RF in RapidMiner 

 

Accuracy: 76.62% True 1 True 0  Class Precision 

Prediction 1 1608 542 74.79% 

Prediction 0 1350 4593 77.28% 

Class Recall 54.36% 89.44%  

 

 

 

Figure 4.4 ROC curve of Information Gain of RF in RapidMiner 
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4.3 Bayesian Network 

The Bayesian classifier based on Bayes theorem and it is a simple probabilistic 

classifier. It is independence assumptions between features and predictors. The network form 

of Bayesian shows graphical attributes description and attributes conditional dependencies. 

The K2 search algorithm is used in Bayesian Network [26, 28]. Bayesian Network is 

available in WEKA, but RapidMiner has not Bayesian Network. For this reason, it was 

analyzed only the WEKA tool. Screenshot of WEKA tool usage is available in appendix 6 

for Bayesian Network.  

Search algorithms affect to the performance results. The various search algorithms are 

available in WEKA.  

• K2 is a score-based and greedy search algorithm that explores the Bayesian Network 

structure space to decrease search space. It tries to receive the network structure. K2 

makes better learning capability [58]. 

• Hill climbing iterative algorithm is a heuristic search and mostly applied in Artificial 

Intelligence for mathematical optimization problems. Hill climbing attempts to find a 

more suitable solution for optimization difficulties. The most famous example of a hill-

climbing problem is the traveling salesman. Traveled measure by salesman needs to 

decrease. 

• LAGDHillClimber is a different Bayes Network learning algorithm. It is the Look 

Ahead Hill Climbing algorithm. The algorithm does not calculate a best greedy 

operation such as deleting or adding but estimates a sequence of best greedy operations. 

Because it is ineffective and slow to consider all the potential arcs. 

• RepeatedHillClimber Bayes Network algorithm begins with a randomly created 

network and then uses hill climber.  

• Tabu Search algorithm used for mathematical optimization difficulties and local 

heuristic search approaches. 

 

K2 greedy search and simple estimator algorithm used with 2 maximum number of 

parent parameter for default values. Performance results of search algorithms and maximum 

number of parents are given in Table 4.18. 
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Table 4.18 Performance results of search algorithms and maximum number of parents 

 

Search Algorithm Estimator Result 

K2 (Default) Simple Estimator  

maxNrOfParents: 2 

(Default) 

Accuracy: 71.518% AUC: 0.733  

Precision: 0.707 Recall: 0.715  

MAE: 0.350 RMSE: 0.443 

K2  Simple Estimator  

maxNrOfParents: 3 

(Improved) 

Accuracy: 72.544% AUC: 0.738 

Precision: 0.719 Recall: 0.725  

MAE: 0.348 RMSE: 0.437 

K2 Simple Estimator  

maxNrOfParents: 4 

Accuracy: 72.309% AUC: 0.735 

Precision: 0.716 Recall: 0.723  

MAE: 0.345 RMSE: 0.439 

Hill Climber SimpleEstimator 

maxNrOfParents: 2 

Accuracy: 71.802% AUC: 0.732 

Precision: 0.710 Recall: 0.718 

MAE: 0.353 RMSE: 0.442 

LAGDHillClimber  SimpleEstimator 

maxNrOfParents: 2 

Accuracy: 70.666% AUC: 0.707  

Precision: 0.698 Recall: 0.707  

MAE: 0.385 RMSE: 0.446 

RepeatedHillClimber SimpleEstimator 

maxNrOfParents: 2 

Accuracy: 69.665% AUC: 0.725 

Precision: 0.693 Recall: 0.697 

MAE: 0.336 RMSE: 0.473 

Tabu Search SimpleEstimator 

maxNrOfParents: 2 

Accuracy: 69.492% AUC: 0.724 

Precision: 0.688 Recall: 0.695 

MAE: 0.343 RMSE: 0.466 

 

The experiment results display that the K2 search algorithm should be selected with 3 

number of parents to get the highest AUC value. Hill Climber, LAGDHillClimber, 

RepeatedHillClimber and Tabu Search algorithms AUC results lower than K2. Confusion 

matrix of K2 search algorithm with 2 parent number is given in Table 4.19. Confusion matrix 

of K2 search algorithm with 3 parent number is given in Table 4.20. Comparison of 2 and 3 

parent ROC curves are given in Figure 4.5. 
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Table 4.19 Confusion matrix of K2 search algorithm with 2 parent number of Bayesian Network 

 
Classified As a b 

a = 0  4380 755 

b = 1 1550 1408 

 

Data are classified 72% correctly. According to the confusion matrix, 755 instances 

should be non-defect but classified as defective and 1550 instances should be defective but 

classified as non-defective. 

Table 4.20 Confusion matrix of K2 search algorithm with 3 parent number of Bayesian Network 

 
Classified As a b 

a = 0  4476 659 

b = 1 1563 1395 

 

Data are classified 73% correctly. According to confusion matrix, 659 instances should 

be non-defect but classified as defective and 1563 instance should be defect but classified as 

non-defective. 

 

 
 

Figure 4.5 ROC curves of K2 search algorithm with 2 and 3 parent number of Bayesian Network 

 

Two different Bayesian network forms are prepared to determine the most effective 

defect prediction metrics and relationships among all software metrics. The most effective 9 

software defect prediction metrics selected after a review of the literature [48]. 
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Figure 4.6 Bayesian Network formed for 9 software prediction metrics. 

 

 
 

Figure 4.7 Bayesian Network formed for 20 software prediction metrics. 

 

Figure 4.6 and Figure 4.7 display that WMC is the primary useful software metric of 

defect prediction. Secondary, NOC, CBO, LCOM, NPM, CAM, DIT and RFC software 

metrics are useful for defect prediction. However, CBM and AVG_CC software metrics are 

not effective for predicting the defect prone class. Also, DAM, MOA, IC, AMC and 

MAX_CC software metrics have not significant effectiveness. 
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4.4 Naïve Bayes 

Naïve Bayes is the fastest classification algorithm suitable for a large dataset. Naïve 

Bayes technique is mostly used in many applications such as text classification, spam 

filtering and sentiment analysis. It is supervising prediction model that uses Bayes theorem 

and make classifications of dataset or classify objects based on independent series feature 

“naive” assumptions. It is widely used and popular for ML techniques. Because the 

implementation is simple, robustness and effective. The used dataset, software metrics have 

non-normal distribution. This problem solved with the kernel density estimation of Naïve 

Bayes [21]. It is effective when the attributes number is high. Screenshot of WEKA tool 

usage is available in appendix 7 for Naïve Bayes. 

Kernel Estimator used in Weka and RapidMiner tools to improve prediction accuracy 

but default options in WEKA and RapidMiner, Kernel Estimator parameter is false. The 

kernel is estimation techniques that are used in non-parametric estimation and used in kernel 

density estimation. It is estimated the random variable probability density function. Values 

of the improved attribute to achieve higher AUC performance is given in Table 4.21 for 

WEKA. 

 

4.4.1 Naïve Bayes analyses in WEKA 

Using the kernel estimator parameter affects the performance results as positively. The 

performance results of Kernel Estimator value are given in Table 4.21.  

Table 4.21 Kernel Estimator configuration for improving Naïve Bayes performance in WEKA 

 
Settings Default Value Improvement 

useKernelEstimator False True 

 

For Naïve Bayes, performance results of without Kernel Estimator and with Kernel 

Estimator are given in Table 4.22. Comparison of Kernel Estimator ROC curves are given 

in Figure 4.8.  

 

 

 

 

 

https://en.wikipedia.org/wiki/Density_estimation
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Probability_density_function
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Table 4.22 Performance results of Kernel Estimators of Naïve Bayes in WEKA 

 

Confusion matrix of without kernel estimator is given in Table 4.23. Confusion 

matrix of kernel estimator is given in Table 4.24. 

Table 4.23 Confusion matrix of without kernel estimator of Naïve Bayes in WEKA 

 
Classified As a b 

a = 0  4637 498 

b = 1 2154 804 

 

Data are classified 67% correctly. According to the confusion matrix, 498 instances 

should be non-defect but classified as defective and 2154 instances should be defective but 

classified as non-defective. 

Table 4.24 Confusion matrix of kernel estimator of Naïve Bayes in WEKA 

 
Classified As a b 

a = 0  4421 714 

b = 1 1846 1112 

 

Data are classified 68% correctly. According to the confusion matrix, 714 instances 

should be non-defect but classified as defective and 1846 instances should be defective but 

classified as non-defective.  

 

useKernelEstimator Accuracy AUC Precision Recall MAE RMSE 

False 

(Default) 

67.23% 0.676 0.659 0.672 0.329 0.554 

True 

(Improved) 

68.36% 0.686 0.670 0.684 0.326 0.517 
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Figure 4.8 ROC curves of kernel estimators of Naïve Bayes in WEKA 

 

4.4.2 Naïve Bayes analyses in RapidMiner 

Performance results of Naïve Bayes are given in Table 4.25. Confusion matrix results 

of Naïve Bayes without kernel are given in Table 4.26. Confusion matrix results of Naïve 

Bayes Kernel are given in Table 4.27. ROC curve of Naïve Bayes Kernel is given in Figure 

4.9. The experiment results show that Naïve Bayes Kernel provides better AUC value. 

Table 4.25 Performance results of Naïve Bayes in RapidMiner 

 
 

Table 4.26 Confusion matrix of Naïve Bayes in RapidMiner 

 

Accuracy: 67.07% True 1 True 0  Class Precision 

Prediction 1 810 517 61.04% 

Prediction 0 2148 4618 68.25% 

Class Recall 27.38% 89.93%  

 

 

 

 

 

 

Type Accuracy AUC 

 

Precision Recall 

 

MAE 

 

RMSE 

Naïve Bayes 

(Default) 

67.07% 0.678 0.682 0.899 0.329 0.555 

Naïve Bayes 

Kernel 

67.81% 0.688 0.691 0.890 0.327 0.527 
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Table 4.27 Confusion matrix of Naïve Bayes Kernel in RapidMiner 

 

Accuracy: 67.81% True 1 True 0  Class Precision 

Prediction 1 916 563 61.93% 

Prediction 0 2042 4572 69.13% 

Class Recall 30.97% 89.04%  

 

 

 
 

Figure 4.9 ROC curve of Naïve Bayes Kernel in RapidMiner 

 

4.5 Rule based classification 

Rule-based classification classifies the records use of IF-THEN rules for class 

prediction. IF part is condition THEN part is conclusion. Rules are easier to learn than deep 

trees. One rule is built for each route from the root to a leaf. These classification rules extract 

from decision trees. Rule-based classification is available as PART in only WEKA [37]. 

Screenshot of WEKA tool usage is available in appendix 8 for Rule Based classification. 

Various combinations of the confidence factor, the minimum number of instances per rule 

and the reduced error-pruning performance result is given in Table 4.28. If the confidence 

factor set to 0.01 or enable a reduced error pruning option, the prediction accuracy rate 

decreases.  
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Table 4.28 Performance results of default and improved configurations of Rule Based Classification 

 

 

According to Table 4.28, the default value of WEKA configuration gives the best AUC 

results. However, there are no crucial differences between 2 and 4 numbers of instances per 

rule with 0.25 confidence factor. Confusion matrix of 2 minimum number of instances with 

0.25 confidence factor is given in Table 4.29. Confusion matrix of 4 minimum number of 

instances with 0.25 confidence factor is given in Table 4.30. Comparison of 2 and 4 number 

of instances per rule with 0.25 confidence factor ROC curves are given in Figure 4.10. 

 

Table 4.29 Confusion matrix of 2 minimum number of instances with 0.25 confidence factor of Rule Based 

classification 

 

Classified As a b 

a = 0  4397 738 

b = 1 1483 1475 

 

Data are classified 73% correctly. According to the confusion matrix, 738 instances 

should be non-defect but classified as defective and 1483 instances should be defective but 

classified as non-defective. 

 

 

 

 

 

 

 

Confidence 

Factor 

Minimum 

Number of 

Instance Per 

Rule 

Reduced 

Error 

Pruning 

Accuracy 

 

AUC 

 

Precision Recall 

 

MAE 

 

RMSE 

0.25 

(Default) 

2 

(Default) 

False 

(Default) 

72.55% 0.748 0.718 0.726 0.341 0.434 

0.25 3 False 71.61% 0.733 0.720 0.716 0.351 0.441 

0.25 4 False 71.29% 0.746 0.704 0.713 0.347 0.438 

0.25 2 True 71.11% 0.725 0.702 0.711 0.354 0.446 

0.01 2 False 71.95% 0.740 0.717 0.720 0.346 0.439 

0.01 2 True 71.11% 0.725 0.702 0.711 0.354 0.446 
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Table 4.30 Confusion matrix of 4 minimum number of instances with 0.25 confidence factor of Rule Based 

classification 

 

Classified As a b 

a = 0  4445 690 

b = 1 1633 1325 

 

Data are classified 71% correctly. According to the confusion matrix, 690 instances 

should be non-defect but classified as defective and 1633 instances should be defective but 

classified as non-defective. 

 

 
 
Figure 4.10 ROC curves of 2 and 4 minimum number of instances with 0.25 confidence factor of Rule Based 

classification 

 

4.6 Support Vector Machine 

SVM is used for both classification and regression problems. It is supervised learning 

model. For finding an optimal decision boundary and non-linear data mapping, the 

polynomial kernel function is used. SVM tries to find an optimal decision boundary or 

maximum margin of the plane in the mapped dimension. In short, attempt to find an optimal 

boundary between the possible outputs. LibLINEAR and a LibSVM are widely used libraries 

external of WEKA. LibSVM and SMO is non-linear SVMs. Both of them are using a one-

vs-one strategy for resolving the multi-class problem. This approach creates a classifier for 

each couple of classes. 

A significant problem is kernel selection in SVM. Thus, analysis focused on various 

kernel types. The impact of different kernel types analysis provides different performance 

results. For this reason, kernel types of SMO are essential for improving the performance 

results.  
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Kernel function map to data to a higher-dimensional space of feature. Thus, data 

separation can be more easily and could become a better structure. Feature space of kernel 

function large and allow flexible conditions. The formulas of kernel functions are given in 

Table 4.31. 

Table 4.31 Kernel functions formulas and parameters 

 

Kernel Functions Formulas Parameters 

Linear K(x, y) = xTy+c c: constant 

Polynomial K(x, y) = ((x.y) + 1)p p: Polynomial Degree 

Normalized 

Polynomial 

K(x, y) = 
((𝑥.𝑦)+1)𝑝

√((𝑥.𝑦)+1)
𝑝

((𝑦.𝑦)+1)
𝑝
 p: Polynomial Degree 

Radial Basis Function K(x, y) = 𝑒−𝑦∥(𝑥−𝑥𝑖)∥2
 y: Kernel Size 

Pearson VII universal 

kernel function (PUK) 

K(x, y) = 
1

[1+ (
2.√∥𝑥−𝑦∥2√2(1/ω)−1

σ
)

2

]

 ω ,σ : Pearson width 

Sigmoid  K(x, y) = tanh(axTy+c) c: constant 

Dot  K(x,y)=x*y i.e  - 

 

• Linear is the purest kernel function type. If data is linearly separable, the linear function 

can be used. It separates data using a single line [11, 54]. 

• Polynomial is a not fixed kernel. If all training data is normalized, a polynomial kernel 

is a good choice. It is useful for non-linear model learning. It is often used in Speech 

Recognition. For a more flexible decision boundary, higher degree kernels of 

polynomial should be used [20]. 

• Radial Basis Function, also known as Gaussian Kernel and most used in computer vision 

[11, 54]. 

• PUK can be an alternative to linear, polynomial and radial basis kernel functions and 

solve regression problems [20]. Karl Pearson developed it. 

• The sigmoid kernel is also known as Hyperbolic Tangent and Multilayer Perceptron 

kernel and mostly used in image classification. 

• Dot is an inner product. It is non-stationary and can be obtained from linear regression. 

It is a simple model of the similarity measure. 
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SVM answers a quadratic programming difficulty. SMO divides the problem into 

various smaller quadratic problems. It is linear SVM. The binary classifier of the SMO 

algorithm is available in WEKA [37]. In WEKA, the default kernel type of SMO is 

polynomial. For comparing with WEKA and RapidMiner results, default kernel type set to 

polynomial in RapidMiner tool. There were not any additional changes for both tools.  

Screenshot of WEKA tool usage available in appendix 9 for SMO. 

 

4.6.1 Sequential Minimal Optimization analyses in WEKA 

Using the kernel type affects the performance results. For improvement of the SMO 

performance result, the PUK kernel type should be selected to achieve a better performance 

result in WEKA. Other performance results of the kernel types are given in Table 4.32. The 

calibrator of SMO does not affect results.  

Table 4.32 Performance results of kernel types of SMO in WEKA 

 

Calibrator Kernel Type Results 

Gaussian,  

LibSVM,  

LinearRegression,  

Logistic,  

MultilayerPerceptron,  

SGD,  

SimpleLinearRegression, 

SimpleLogistic,  

SMO,  

SMOreg,  

VotedPerceptron 

Polynomial 

(Default) 

Accuracy: 68.04% AUC: 0.575 

Precision: 0.705 Recall: 0.680 

MAE: 0.319 RMSE: 0.565 

Normalized 

Polynomial 

 

Accuracy: 70.04% AUC: 0.606 

Precision: 0.721 Recall: 0.700 

MAE: 0.299 RMSE: 0.547 

PUK 

(Improved) 

Accuracy: 73.18% AUC: 0.661 

Precision: 0.736 Recall: 0.732 

MAE: 0.268 RMSE: 0.517 

Radial Basis 

Function 

Accuracy: 63.51% AUC: 0.501 

Precision: 0.647 Recall: 0.635 

MAE: 0.364 RMSE: 0.604 

 

Radial Basis Function kernel type decreases the performance results when compare 

with Polynomial kernel type. Nevertheless, other kernel types such as Normalized 

Polynomial, PUK increasing the performance results.  
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Confusion matrix of Polynomial kernel is given in Table 4.33 and PUK kernel is given 

in Table 4.34. Comparison of PUK and Polynomial kernel type ROC curves are given in 

Figure 4.11.   

 

Table 4.33 Confusion matrix of Polynomial kernel of SMO in WEKA 

 

Classified As a b 

a = 0  4966 169 

b = 1 2417 541 

 

Data are classified 68% correctly. According to the confusion matrix, 169 instances 

should be non-defect but classified as defective and 2417 instances should be defective but 

classified as non-defective. 

 

Table 4.34 Confusion matrix of PUK kernel of SMO in WEKA 

 

Classified As a b 

a = 0  4740 395 

b = 1 1775 1183 

 

Data are classified 73% correctly. According to confusion matrix, 395 instances should 

be non-defect but classified as defective and 1775 instance should be defect but classified as 

non-defective.  

 

 
 

Figure 4.11 ROC curves of Polynomial and PUK kernels of SMO in WEKA 
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4.6.2 Sequential Minimal Optimization analyses in RapidMiner 

For the improvement of the SMO result, the dot kernel type selected in RapidMiner. 

Other performance results of the kernel types are given in Table 4.35. Dot kernel type 

increases the performance results when compare with Polynomial kernel type. 

Table 4.35 Performance results of kernel types of SMO in RapidMiner 

 

Kernel Type  Results 

Polynomial 

(Default) 

Accuracy: 64.88% AUC: 0.666 Precision: 0.669 Recall: 0.900 

MAE: 0.423 RMSE: 0.477 

Dot 

(Improved) 

 

Accuracy: 68.82% AUC: 0.691 Precision:0.681 Recall: 0.953 

MAE: 0.405 RMSE: 0.456 

 

Confusion matrix of Polynomial kernel is given in Table 4.36 and Dot kernel is given 

in Table 4.37. ROC curve is given in Figure 4.12 for Dot kernel.  

Table 4.36 Confusion matrix of Polynomial kernel of SMO in RapidMiner 

 
Accuracy: 64.88% True 1 True 0  Class Precision 

Prediction 1 627 511 55.10% 

Prediction 0 2331 4624 66.48% 

Class Recall 21.20% 90.05%  

 

Table 4.37 Confusion matrix of Dot kernel of SMO in RapidMiner 

 
Accuracy: 68.82% True 1 True 0  Class Precision 

Prediction 1 674 239 73.82% 

Prediction 0 2284 4896 68.19% 

Class Recall 22.79% 95.35%  
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Figure 4.12 ROC curve of Dot kernel of SMO in RapidMiner 

 

4.7 Library for Support Vector Machines 

LibSVM is a one-class classification and it is non-linear SVMs. It provides regression 

and classification.  LibSVM implements the SMO method. For both tools, the default kernel 

type is Radial Basis. Thus, there were not any additional changes in RapidMiner for 

comparing each other. Screenshot of WEKA tool usage is available in appendix 10 for 

LibSVM.  

 

4.7.1 Library for Support Vector Machines analyses in WEKA 

For the improvement of the LibSVM performance result, the Linear kernel type was 

selected in WEKA. Performance results of other kernel types analyses are given in Table 

4.38. 
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Table 4.38 Performance results of kernel types of LibSVM in WEKA 

 

Kernel Type  Results 

Radial Basis 

(Default) 

Accuracy: 67.66% AUC: 0.563 Precision: 0.728 Recall: 0.677 

MAE: 0.323 RMSE: 0.568 

Linear Accuracy: 68.57% AUC: 0.607 Precision: 0.676 Recall: 0.686 

MAE: 0.314 RMSE: 0.560 

Polynomial Accuracy: 50.78% AUC: 0.502 Precision: 0.538 Recall: 0.508  

MAE: 0.492 RMSE: 0.701 

Sigmoid Accuracy: 53.49% AUC: 0.494 Precision: 0.531 Recall: 0.535 

MAE: 0.465 RMSE: 0.682 

 

Radial Basis Function kernel type decreases the performance results when compared 

with Linear kernel type. Moreover, other kernel types such as Polynomial and Sigmoid 

decrease the performance results.  

Confusion matrix of Radial Basis kernel type is given in Table 4.39 and Linear kernel 

type is given in Table 4.40. ROC curves of Radial Basis and Linear kernel type are given in 

Figure 4.13.  

 

Table 4.39 Performance results of Radial Basis kernel of LibSVM in WEKA 

 

Classified As a b 

a = 0  5052 83 

b = 1 2534 424 

 

Data are classified 68% correctly. According to the confusion matrix, 83 instances 

should be non-defect but classified as defective and 2534 instances should be defective but 

classified as non-defective.  

 

Table 4.40 Performance results of Linear kernel of LibSVM in WEKA 

 

Classified As a b 

a = 0  4617 518 

b = 1 2025 933 
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Data are classified 69% correctly. According to the confusion matrix, 518 instances 

should be non-defect but classified as defective and 2025 instances should be defective but 

classified as non-defective.  

 

 
 

Figure 4.13 ROC curves of Radial Basis and Linear kernels of LibSVM in WEKA 

 

4.7.2 Library for Support Vector Machines analyses in RapidMiner 

Radial Basis Kernel is the default value of the RapidMiner tool that provides the best 

AUC value. However, in WEKA, the Linear kernel type gives the best performance result. 

Other performance results of kernel types are given in Table 4.41. Confusion matrix of 

Radial Basis is given in Table 4.42 and ROC curve is given in Figure 4.14.  

Table 4.41 Performance results of kernel types of LibSVM in RapidMiner 

 

Kernel Type  Results 

Radial Basis 

(Default) 

Accuracy: 66.91% AUC: 0.674 Precision: 0.678 Recall: 0.910 

MAE: 0.422 RMSE: 0.463 

Linear Accuracy: 65.34% AUC: 0.659 Precision: 0.650 Recall: 0.982 

MAE: 0.426 RMSE: 0.472 

Polynomial Accuracy: 63.50% AUC: 0.645 Precision: 0.634 Recall: 0.999 

MAE: 0.437 RMSE: 0.490 

Sigmoid Accuracy: 58.88% AUC: 0.403 Precision: 0.676 Recall: 0.676  

MAE: 0.411 RMSE: 0.638 

 

Sigmoid kernel type gives the worst performance results when comparing the other 

kernel types. There are no significant differences between Radial Basis and Linear kernel 

type according to AUC value.  
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Table 4.42 Confusion matrix of Radial Basis kernel of LibSVM in RapidMiner 

 

Accuracy: 66.91% True 1 True 0  Class Precision 

Prediction 1 740 460 61.67% 

Prediction 0 2218 4675 67.82% 

Class Recall 25.02% 91.04%  

 

 

 
 

Figure 4.14 ROC curve of Radial Basis kernel of LibSVM in RapidMiner 

 

4.8 Library for large linear classification 

LibLINEAR is logistic regression methods and uses L1 norm. It implements linear 

SVM that answers the classification problem linearly without kernels. This can decrease the 

training time. Previous researches show that LibLINEAR performance faster than LibSVM 

and SMO [23]. Prediction accuracy and AUC results effected by SVM type. Due to this, all 

SVM types analyzed and results are given in Table 4.43. Screenshots of WEKA tool usage 

available in appendix 11 and for LibLINEAR.  

L2-norm is famous for classification problems and most used 2 class classification. 

L1-norm has higher dimensional feature spaces than L2-norm.  It ignores unnecessary 
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features and puts more weight on the most significant features. L1 regularized logistic 

regression can solve convex optimization problems. 

 

4.8.1 Library for large linear classification analyses in WEKA 

The default SVM type of WEKA for the LibLINEAR algorithm is L2-regularized L2-

loss support vector classification (dual) and performance results of analyses are given in 

Table 4.43. All other SVM types increase the performance results except L2-regularized L2-

loss support vector classification (dual) and Support vector classification by Crammer and 

Singer Multi-class classification when comparing the L2-regularized L2-loss support vector 

classification (dual) default SVM type. Nevertheless, there are no critical differences 

between L2-regularized L2-loss support vector classification (dual) and L2-regularized L1-

loss support vector classification (dual) according to AUC values. Support vector 

classification by Crammer and Singer Multi-class classification SVM type has the worst 

performance results. 
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Table 4.43 Performance results of SVM types of LibLINEAR in WEKA 

 

SVM Type Results 

L2-regularized logistic regression (primal) 

Multi-class classification 

Accuracy: 69.86 % AUC: 0.619 

Precision: 0.695 Recall: 0.699 

MAE: 0.301 RMSE: 0.549 

L2-regularized L2-loss support vector 

classification (dual) (Default) 

Multi-class classification 

Accuracy: 64.09% AUC: 0.563 

Precision: 0.614 Recall: 0.614 

MAE: 0.359 RMSE: 0.599 

L2-regularized L2-loss support vector 

classification (primal) 

Multi-class classification 

Accuracy: 69.59% AUC: 0.611 

Precision: 0.696 Recall: 0.696 

MAE: 0.304 RMSE: 0.551 

L2-regularized L1-loss support vector 

classification (dual) 

Accuracy: 63.30% AUC: 0.562 

Precision: 0.608 Recall: 0.633 

MAE: 0.367 RMSE: 0.605 

Support vector classification by Crammer and 

Singer 

Multi-class classification 

Accuracy: 63.79% AUC: 0.543 

Precision: 0.605 Recall: 0.638 

MAE: 0.362 RMSE: 0.601 

L1-regularized L2-loss support vector 

classification  

Multi-class classification 

Accuracy: 69.56% AUC: 0.612 

Precision: 0.694 Recall: 0.696 

MAE: 0.304 RMSE: 0.551 

L1-regularized logistic regression Accuracy: 69.87% AUC: 0.620 

Precision: 0.695 Recall: 0.699 

MAE: 0.301 RMSE: 0.548 

L2-regularized logistic regression (dual) Accuracy: 64.89% AUC: 0.614 

Precision: 0.644 Recall: 0.649 

MAE: 0.351 RMSE: 0.592 

 

 

The L1-regularized logistic regression model improves prediction accuracy results. 

Confusion matrix of L2-regularized L2-loss support vector classification (dual) is given in 

Table 4.44 and L1-regularized logistic regression is given in Table 4.45. Comparison of L2-

regularized L2-loss support vector classification (dual) and L1-regularized logistic 

regression ROC curves are given in Figure 4.15. 
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Table 4.44 Confusion matrix of L2-Regularized L2-Loss Support Vector Classification (Dual) of 

LibLINEAR in WEKA 

 

Classified As a b 

a = 0  4377 758 

b = 1 2148 810 

 

Data are classified 64% correctly. According to the confusion matrix, 758 instances 

should be non-defect but classified as defective and 2148 instances should be defective but 

classified as non-defective. 

 

Table 4.45 Confusion matrix of L1-Regularized Logistic Regression of LibLINEAR in WEKA 

 

Classified As a b 

a = 0  4684 451 

b = 1 1987 971 

 

Data are classified 77% correctly. According to the confusion matrix, 451 instances 

should be non-defect but classified as defective and 1987 instances should be defective but 

classified as non-defective.  

 

 
 

Figure 4.15 ROC curves of L2-Regularized L2-Loss Support Vector Classification (Dual) and L1-

Regularized Logistic Regression of LibLINEAR in WEKA 
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4.8.2 Library for large linear classification analyses in RapidMiner 

The default setting of RapidMiner provides the best prediction results. Confusion 

matrix result is given in Table 4.46. ROC curve is given in Figure 4.16.  

 

Table 4.46 Confusion matrix of LibLINEAR default configurations in RapidMiner 

 

Accuracy: 68.97% True 1 True 0  Class Precision 

Prediction 1 582 235 74.37% 

Prediction 0 2276 4900 68.28% 

Class Recall 23.06% 95.42%  

 

 

 
 

Figure 4.16 ROC curve of LibLINEAR default configurations in RapidMiner 

 

4.9 Logistic Regression 

LR algorithm is a predictive regression analysis based on a statistical model and it is 

supervised learning classification. It is beneficial for binary classification problems and 

categorical target value. It is a binary regression form. Screenshots of WEKA tool usage 

available in appendix 12 for LR.  
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The default value of both tools provides the best results. For comparison between 

RapidMiner and WEKA, RapidMiner maximum iteration specified -1 because the default 

value of maximum iteration is -1 in WEKA. There were not any additional filters in both 

tools in Table 5.2 and Table 5.3. Changing of maximum iterations decreases performance 

results. 

4.9.1 Logistic Regression analyses in WEKA 

The default value of the number of decimal places is 4 in WEKA. Changing of decimal 

places count do not affect to performance results. Confusion matrix of default configurations 

is given in Table 4.47 and ROC curve is given in Figure 4.17 for WEKA.   

 

Table 4.47 Confusion matrix of default configurations of LR in WEKA 

 

Classified As a b 

a = 0  4685 450 

b = 1 1982 976 

 

Data are classified 70% correctly. According to the confusion matrix, 450 instances 

should be non-defect but classified as defective and 1982 instances should be defective but 

classified as non-defective.  

 

 
 

Figure 4.17 ROC curve of default configurations of LR in WEKA 

 

4.9.2 Logistic Regression analyses in RapidMiner 

The default values of the LR model provide the best AUC value. For LR, confusion 

matrix result of RapidMiner is given in Table 4.48 and ROC curve is given in Figure 4.18. 
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Table 4.48 Confusion matrix of default configuration of LR in RapidMiner 

 

Accuracy: 69.86% True 1 True 0  Class Precision 

Prediction 1 980 461 68.01% 

Prediction 0 1978 4674 70.26% 

Class Recall 33.13% 91.02%  

 

 

 
 

Figure 4.18 ROC curve of default configuration of LR in RapidMiner 

 

4.10 Bagging 

Bagging is a bootstrap aggregation. It is an ensemble model that creates a strong 

learner with a combined group of weak learners. An ensemble approach combines the 

multiple ML techniques together. Thus, prediction accuracy performance better than the 

individual ML techniques.  As a result, weak learner variance and bias reduce for better 

performance. For that reason, this model improves stability and increases robustness. Also, 

it helps to avoid overfitting [33]. Differences from Boosting; Bagging algorithm tries to 

overcome over-fitting difficulty. If the classifier is unstable or high variance, bagging should 

be selected. The bagging weight is equal for each model. It is trying to decrease the model’s 

variance.  
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As a result, the accuracy of the bagging result is high. The default classifier of the 

Bagging algorithm is Regression Tree, also called REPTree in WEKA. For comparison 

between RapidMiner and WEKA tools, the Decision Tree classifier was selected in the 

Boosting algorithm in RapidMiner. Nevertheless, if the RF classifier is selected instead of 

Regression Tree, the best AUC result is obtained for both tools. There were no additional 

filters in both tools in Table 5.2 and Table 5.3. Screenshots of WEKA tool usage in appendix 

13 for Bagging.  

 

4.10.1  Bagging analyses in WEKA 

Random Forest classifier in bagging affects the results as positive. However, 

performance results of other classifiers are given in Table 4.49 for WEKA. The default 

settings of WEKA for the bagging algorithm is REPTree and confusion matrix is given in 

Table 4.50. The best classifier is the RF. Confusion matrix of RF is given in Table 4.51.   

Table 4.49 Performance results of Bagging classifiers in WEKA 

 

Classifier Results 

REPTree (Default) Accuracy: 75.22% AUC: 0.786 Precision: 0.749  

Recall: 0.752 MAE: 0.335 RMSE: 0.413 

Random Tree Accuracy: 74.96 % AUC: 0.786 Precision: 0.746  

Recall: 0.750 MAE: 0.320 RMSE: 0.417 

Random Forest 

(Improved) 

Accuracy: 76.59% AUC: 0.811 Precision: 0.764  

Recall: 0.766 MAE: 0.329 RMSE: 0.402 

LMT Accuracy: 74.64 % AUC: 0.791 Precision: 0.741 

Recall: 0.746 MAE: 0.316 RMSE: 0.415 

J48 Accuracy: 74.83% AUC: 0.789 Precision: 0.743  

Recall: 0.748 MAE: 0.319 RMSE: 0.414 

Decision Stump Accuracy: 66.52% AUC: 0.653 Precision: 0.669  

Recall: 0.665 MAE: 0.438 RMSE: 0.464 

 

In the experiments, REPTree and Random Tree classifiers have the same AUC value. 

Although REPTree accuracy value better than Random Tree.  
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Decision stump is a less effective classifier compared to others. ROC curves of 

REPTree and RF are given in Figure 4.19.  

 

Table 4.50 Confusion matrix of REPTree in Bagging for WEKA 

 

Classified As a b 

a = 0  4569 566 

b = 1 1439 1519 

 

Data are classified 75% correctly. According to the confusion matrix, 566 instances 

should be non-defect but classified as defective and 1439 instances should be defective but 

classified as non-defective. 

 

Table 4.51 Confusion matrix of RF in Bagging for WEKA 

 

Classified As a b 

a = 0  4611 524 

b = 1 1370 1588 

 

Data are classified 77% correctly. According to the confusion matrix, 524 instances 

should be non-defect but classified as defective and 1370 instances should be defective but 

classified as non-defective.  

 

 

 

Figure 4.19 ROC curves of REPTree and Random Forest in Bagging for WEKA 
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4.10.2  Bagging analyses in RapidMiner 

RF classifier in bagging affects the results as positive too. The criterion of information 

gain and gini index provides the same AUC results for RF.  Information gain and gini index 

criterion does not affect Random Tree performance results. However, other classifiers and 

criterion analysis results are given in Table 4.52 for RapidMiner.  

Table 4.52 Performance results of Bagging classifiers in RapidMiner 

 

Classifier Criterion Results 

Decision Tree Gain Ratio Accuracy: 65.95% AUC: 0.590 Precision: 0.655 

Recall: 0.981 MAE: 0.444 RMSE: 0.469 

Decision Tree 

(Default) 

Information Gain 

(Default) 

Accuracy: 73.14% AUC: 0.746 Precision: 0.726  

Recall: 0.926 MAE: 0.363 RMSE: 0.429 

Decision Tree Gini Index Accuracy: 73.58% AUC: 0.764 Precision: 0.737 

Recall: 0.907 MAE: 0.353 RMSE: 0.424 

Random Tree Gain Ratio, 

Information Gain 

Accuracy: 63.45% AUC: 0.500 Precision: 0.634  

MAE: 0.464 RMSE: 0.482 

Random Tree Gini Index Accuracy: 70.04% AUC: 0.717 Precision: 0.698  

Recall: 0.930 MAE: 0.419 RMSE: 0.449 

Random Forest Gain Ratio Accuracy: 65.28% AUC: 0.698 Precision: 0.647 

Recall: 0. 992 MAE: 0.445 RMSE: 0.467 

Random Forest 

(Improved) 

Information Gain 

(Improved) 

Accuracy: 74.66% AUC: 0.790 Precision: 0.738 

Recall: 0.930 MAE: 0.361 RMSE: 0.415 

Random Forest Gini Index Accuracy: 74.68% AUC: 0.790 Precision: 0.739 

Recall: 0.929 MAE: 0.361 RMSE: 0.414 

Decision Stump Gain Ratio Accuracy: 64.34% AUC: 0.515 Precision: 0.640 

Recall: 0. 998 MAE: 0.458 RMSE: 0.478 

Decision Stump Information Gain Accuracy: 67.66% AUC: 0.613 Precision: 0.675 

Recall: 0.943 MAE: 0.438 RMSE: 0.467 

Decision Stump Gini Index Accuracy: 67.66% AUC: 0.606 Precision: 0.675 

Recall: 0. 943 MAE: 0.438 RMSE: 0.467 
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Confusion matrix of Decision Tree classifier is given in Table 53. Confusion matrix 

of RF classifier is given in Table 4.54 and ROC curve is given in Figure 4.20. 

 
Table 4.53 Confusion matrix of Decision Tree classifier in Bagging for RapidMiner 

 

Accuracy: 73.14% True 1 True 0  Class Precision 

Prediction 1 1162 378 75.45% 

Prediction 0 1796 4757 72.59% 

Class Recall 39.28% 92.64%  

 

Table 4.54 Confusion matrix of RF classifier in Bagging for RapidMiner 

 

Accuracy: 74.66% True 1 True 0  Class Precision 

Prediction 1 1264 357 77.98% 

Prediction 0 1694 4778 73.83% 

Class Recall 42.73% 93.05%  

 

 

 
 

Figure 4.20 ROC curve of RF in Bagging for RapidMiner 
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4.11 Boosting 

Boosting is another ensemble algorithm. It changes weak learners to strong learners. 

They have similar definitions with Bagging. Differences from Bagging; Boosting algorithm 

tries to overcome bias. If the classifier is simple or high bias, boosting should be selected. 

The weight of boosting calculates according to their performance results. It is trying to 

decrease the model’s bias. It is implemented as AdaBoost in Weka. Adaboost joins various 

weak learners into a single strong learner. In WEKA, the default classifier of Boosting 

algorithms is Decision Stump.  For comparison between RapidMiner and WEKA tools, the 

Decision Stump classifier was selected in the Boosting algorithm in RapidMiner. In the 

experiments, the RF classifier should be selected instead of Decision Stump for best AUC 

results in both tools and there were no additional filters in Tables 5.2 and 5.3. As is seen in 

Table 4.55 and Table 4.56, RF algorithms provide the best results for prediction accuracy 

for Weka and RapidMiner. Screenshots of WEKA tool usage in appendix 14 for Boosting.  

 

4.11.1  Boosting analyses in WEKA 

RF classifier affects the results as positive in boosting algorithm. However, 

performance results of other classifiers results are given in Table 4.55 for WEKA. The 

default settings of WEKA for the boosting algorithm is Decision Stump and the confusion 

matrix is given in Table 4.56. Confusion matrix of RF are given in Table 4.57. The best 

classifier is the RF same as the bagging algorithm.  

Table 4.55 Performance results of Boosting classifiers in WEKA 

 
Classifier Results 

Decision Stump (Default) Accuracy: 70.29% AUC: 0.712 Precision: 0.698 Recall: 0.703 

MAE: 0.395 RMSE: 0.445 

Random Tree Accuracy: 73.12% AUC: 0.766 Precision: 0.725 Recall: 0.731 

MAE: 0.276 RMSE: 0.492 

Random Forest Accuracy: 76.62% AUC: 0.781 Precision: 0.763 Recall: 0.766 

MAE: 0.238 RMSE: 0.471 

LMT Accuracy: 72.38% AUC: 0.765 Precision: 0.719 Recall: 0.724 

MAE: 0.281RMSE: 0.489 

J48 Accuracy: 72.82% AUC: 0.768 Precision: 0.724 Recall: 0.728 

MAE: 0.279 RMSE: 0.483 

REPTree Accuracy: 73.34% AUC: 0.760 Precision: 0.728 Recall: 0.733 

MAE: 0.297 RMSE: 0.462 
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In the experiments, REPTree and Random Tree classifiers have the close AUC value 

the same as the bagging algorithm. ROC curves of Decision Stump and RF are given in 

Figure 4.21. The decision stump algorithm is the less effective classifier compared to others.  

 

Table 4.56 Confusion matrix of Decision Stump in Boosting for WEKA  

 

Classified As a b 

a = 0  4644 491 

b = 1 1913 1045 

 

Data are classified 70% correctly. According to the confusion matrix, 491 instances 

should be non-defect but classified as defective and 1913 instances should be defective but 

classified as non-defective. 

 

Table 4.57 Confusion matrix of RF in Boosting for WEKA 

 

Classified As a b 

a = 0  4579 556 

b = 1 1336 1622 

 

Data are classified 77% correctly. According to the confusion matrix, 566 instances 

should be non-defect but classified as defective and 1336 instances should be defective but 

classified as non-defective. 

 

 

Figure 4.21 ROC curves of Decision Stump and RF in Boosting for WEKA 
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4.11.2  Boosting analyses in RapidMiner 

RF classifier and information gain criterion affect the results as positive too. The 

criterion of information gain and gini index provides the same AUC results for Random 

Tree.  Information gain and gini index criterion does not affect Random Tree performance 

results. However, performance results of other classifiers and criterion are given in Table 

4.58 for RapidMiner.  

Table 4.58 Performance results of Boosting classifiers in RapidMiner 

Classifier Criterion Results 

Decision Tree Gain Ratio Accuracy: 65.57% AUC: 0.552 Precision: 0. 651 

Recall: 0. 988 MAE: 0.443 RMSE: 0.473 

Decision Tree Information Gain Accuracy: 71.83% AUC: 0.656 Precision: 0.718 

Recall: 0.915 MAE: 0.380 RMSE: 0.452 

Decision Tree Gini Index Accuracy: 73.03% AUC: 0.676 Precision: 0. 743  

Recall: 0. 879 MAE: 0.366 RMSE: 0.448 

Random Tree Gain Ratio, 

Information Gain 

Accuracy: 63.45% AUC: 0.500 Precision: 0. 634 

MAE: 0.464 RMSE: 0.482 

Random Tree Gini Index Accuracy: 68.73% AUC: 0.667 Precision: 0.698 

Recall: 0. 892 MAE: 0.370 RMSE: 0.475 

Random Forest Gain Ratio Accuracy: 66.12% AUC: 0.547 Precision: 0.654 

Recall: 0.990 MAE: 0.443 RMSE: 0.473 

Random Forest 

(Improved) 

Information Gain Accuracy: 74.46% AUC: 0.693 Precision: 0.738 

Recall: 0.925 MAE: 0.339 RMSE: 0.443 

Random Forest Gini Index Accuracy: 74.58% AUC: 0.692 Precision: 0.739 

Recall: 0. 926 MAE: 0.334 RMSE: 0.444 

Decision Stump Gain Ratio Accuracy: 64.34% AUC: 0.513 Precision: 0.640  

Recall: 0.999 MAE: 0.459 RMSE: 0.479 

Decision Stump Information Gain Accuracy: 67.19% AUC: 0.653 Precision: 0. 674 

Recall: 0. 933 MAE: 0.414 RMSE: 0.462 

Decision Stump 

(Default) 

Gini Index 

(Default) 

Accuracy: 67.66% AUC: 0.655 Precision: 0. 675 

Recall: 0. 943 MAE: 0.413 RMSE: 0.461 
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Confusion matrix of the Decision Stump classifier result is given in Table 4.59 and the 

RF classifier is given in Table 4.60. ROC curve is given in Figure 4.22.  

 

Table 4.59 Confusion matrix of Decision Stump classifier in Boosting for RapidMiner 

 

Accuracy: 67.76% True 1 True 0  Class Precision 

Prediction 1 630 289 68.55% 

Prediction 0 2328 4846 67.55% 

Class Recall 21.30% 94.37%  

 

Table 4.60 Confusion matrix of RF classifier in Boosting for RapidMiner 

 

Accuracy: 74.46% True 1 True 0  Class Precision 

Prediction 1 1273 382 76.92% 

Prediction 0 1685 4753 73.83% 

Class Recall 43.04% 92.56%  

 

 

 

 

Figure 4.22 ROC curve of RF in Boosting for RapidMiner 
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4.12 Artificial Neural Networks 

An Artificial Neural Network (ANN) is a data processing model that stimulated the 

human brain works. The ANN model is known as a Multilayer Perceptron (MLP) in Weka 

[18, 37]. The prediction accuracy is most robust and can work if training instances include 

errors. ANN can be separated into two main sections: Feed-backward and feed-forward 

neural network connections. It is a feed-forward learning algorithm and inspired by human 

brain neural networks. ANN models are composed of links that are the connection between 

nodes and multiple nodes, which are processing units and has input, hidden and output layers 

[1]. At the input layer nodes, layers take the input, which includes CK metrics value. Weights 

used for output computation and assigned on the links connected to the nodes. The fault 

prediction accuracy rate is output. 

Some experiments and rules are available in past researches to determine the neurons 

number in the hidden nodes. One of the rules is that hidden layer neuron count should be 

70% to 90% of the input layer size. Another rule is that in the input layer, neurons of the 

hidden layer number should be less than twice the neurons number [8, 10, 9]. Another critical 

issue for determining of hidden layers count is an activation function complexity level. 

Neural network complexity is increasing if hidden layers up to three [29]. If hidden layers 

number less than it should be, prediction accuracy decreases. If hidden layers number more 

than it should be, prediction results may overfit. Eventually, the optimal count of hidden 

layers should be determined. To achieve the best performance result, learning rate, training 

cycle and momentum values are critical. 

• The learning rate is also called the size of the step and range between 0.0 and 1.0. The 

common default value of the learning rate is 0.1. It means that weights in the network 

are updated the 10% estimated weight error of the model with each time using the 

backpropagation. It controls the speed or rates the model learns. A ratio of large learning 

rate allows learning faster, but the small ratio of learning rate allows learning more 

optimal the model. 

• The training cycle is the number of times repeated cycle and the default value is 500 in 

WEKA. 

• Momentum and learning rate similar and it can improve both accuracy and training 

speed. Momentum range is between 0 and 1. After updating the learning rate weight, 

prior updates weighted average includes the weight exponentially.  
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20 software metrics analyzed with Neural Network graphical user interface in Figure 

4.23. The most effective nine software defect prediction metrics have been selected after 

reviewing past researches [48]. 9 software metrics analyzed with Neural Network form in 

Figure 4.24. 

 

 
 

Figure 4.23 Neural Network graphical user interface form for 20 software metrics 

The neural network has 20 input nodes, which are software metrics. The number of 

hidden layers specified as 13, 14, 13. 

 

 

Figure 4.24 Neural Network graphical user interface form for 9 software metrics 
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The neural network has 9 input nodes, which are software metrics. The number of 

hidden layers specified as 6, 7, 6. The output layer number is 2. One of the defects the other 

is a non-defect binary classification. Default values in WEKA, Multilayer Perceptron using 

0.2 momentum with 500 epochs and 0.3 learning rate. Default values in RapidMiner, 

momentum is 0.9 with 200 training cycles and 0.01 learning rate.  

For comparison between RapidMiner and WEKA tools, momentum is specified as 0.2 

with 500 training cycles and 0.3 learning rate in RapidMiner and there were no additional 

filters in both tools in Table 5.2 and Table 5.3. Screenshots of WEKA tool usage available 

in appendix 15 for Neural Network.  

 

4.12.1  Artificial Neural Networks analyses in WEKA 

Table 4.61 showing that 0.01 learning rate, 500 training cycle, 0.2 momentum values 

provide the best performance results with 13, 14, 13 hidden layers. For example, decreasing 

training cycles affects performance results negatively.    

Table 4.61 Performance results of Training Cycle, Learning Rate, Momentum combinations of ANN in 

WEKA 

 

Learning 

Rate 

Training 

Cycles 

Momentum Results 

0.3  

(Default) 

500 

(Default) 

0.2 

(Default) 

Accuracy: 70.91% AUC: 0.704 Precision: 0.700  

Recall: 0.709 MAE: 0.379 RMSE: 0.447 

0.3 500 0.9 Accuracy: 65.17% AUC: 0.597 Precision: 0.630  

Recall: 0.652 MAE: 0.424 RMSE: 0.480 

0.01 

 

500  0.2 Accuracy: 71.12% AUC: 0.715 Precision: 0.705 

Recall: 0.711 MAE: 0.388 RMSE: 0.442 

0.01 500  0.9 Accuracy: 71.23% AUC: 0.709 Precision: 0.706 

Recall: 0.712 MAE: 0.386 RMSE: 0.444 

0.01 200  0.9 Accuracy: 70.62% AUC: 0.705 Precision: 0.698 

Recall: 0.706 MAE: 0.393 RMSE: 0.446 
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Default settings are 0.3 learning rate, 500 training cycles and 0.2 momentum in WEKA 

and confusion matrix is given in Table 4.62. Improved settings, 0.01 learning rate, 500 

training cycles and 0.2 momentum combination provide the best accuracy result and 

confusion matrix is given in Table 4.63. Default and improved settings ROC curves are given 

in Figure 4.25. 0.9 momentum with 500 epochs and 0.3 learning rate combinations has a less 

effective performance. 

 

Table 4.62 Confusion matrix of 0.3 learning rate, 500 training cycles and 0.2 momentum combination of 

ANN in WEKA  

 

Classified As a b 

a = 0  4473 662 

b = 1 1692 1266 

 

Data are classified 71% correctly. According to the confusion matrix, 662 instances 

should be non-defect but classified as defective and 1692 instances should be defective but 

classified as non-defective. 

 

Table 4.63 Confusion matrix of 0.01 learning rate, 500 training cycles and 0.2 momentum combination of 

ANN in WEKA  

 

Classified As a b 

a = 0  4568 567 

b = 1 1770 1188 

 

Data are classified 71% correctly. According to the confusion matrix, 567 instances 

should be non-defect but classified as defective and 1770 instances should be defective but 

classified as non-defective. 
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Figure 4.25 ROC curves of 0.3 learning rate, 500 training cycles, 0.2 momentum and 0.01 learning rate, 500 

training cycles, 0.2 momentum combinations of ANN in WEKA 

 

4.12.2  Artificial Neural Networks analyses in RapidMiner 

Performance results of RapidMiner can be improved with different training cycles, 

momentum and learning rate with 13, 14, 13 hidden layers. The experiments are given in 

Table 4.64. 

Table 4.64 Performance results of Training Cycle, Learning Rate, Momentum combinations of ANN in 

RapidMiner 

 
Learning 

Rate 

Training 

Cycles 

Momentum Results 

0.3  

(Default) 

500 

(Default) 

0.2 

(Default) 

Accuracy: 71.42% AUC: 0.716 Precision: 0.726  

Recall: 0.883 MAE: 0.373 RMSE: 0.444 

0.3 500 0.9 Accuracy: 66.08 % AUC: 0.637 Precision: 0.668  

Recall: 0.939 MAE: 0.402 RMSE: 0.488 

0.3 200 0.2 Accuracy: 70.54% AUC: 0.717 Precision:  

Recall: 0.871 MAE: 0.382 RMSE:0.445 

0.3 200 0.9 Accuracy: 66.18% AUC: 0.649 Precision: 0.681 

Recall: 0.900 MAE: 0.404 RMSE: 0.481 

0.01 500 0.2 Accuracy: 70.95% AUC: 0.720 Precision: 0.718  

Recall: 0.892 MAE: 0.388 RMSE: 0.443 

0.01 500 0.9 Accuracy: 71.25% AUC: 0.723 Precision: 0.726 

Recall: 0.878 MAE: 0.384 RMSE: 0.442 

0.01 200 0.2 Accuracy: 63.45% AUC: 0.624 Precision: 0.634  

MAE: 0.464 RMSE: 0.481 

0.01 200 0.9 Accuracy: 70.57% AUC: 0.715 Precision: 0.722  

Recall: 0.873 MAE: 0.396 RMSE: 0.446 
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The default settings of RapidMiner is 0.3 learning rate, 500 training cycles and 0.2 

momentum and confusion matrix is given in Table 4.65. Improved settings, 0.01 learning 

rate, 500 training cycles and 0.9 momentum combination provide the best accuracy result 

and confusion matrix is given in Table 4.66. ROC curve is given in Figure 4.26 for improved 

settings. The least effective combination is 0.2 momentum with 200 epochs and 0.01 

learning rate for performance accuracy.  

 

Table 4.65 Confusion matrix of 0.3 learning rate, 500 training cycles and 0.2 momentum combination of 

ANN in RapidMiner 

 

Accuracy: 71.42% True 1 True 0  Class Precision 

Prediction 1 1246 601 67.46% 

Prediction 0 1712 4534 72.59% 

Class Recall 42.12% 88.30%  

 

Table 4.66 Confusion matrix of 0.01 learning rate, 500 training cycles and 0.9 momentum combination of 

ANN in RapidMiner 

 

Accuracy: 71.25% True 1 True 0  Class Precision 

Prediction 1 1253 622 66.83% 

Prediction 0 1705 4513 72.58% 

Class Recall 42.36% 87.89%  
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Figure 4.26 ROC curve of 0.01 learning rate, 500 training cycles, 0.9 momentum combination of ANN in 

RapidMiner 

 

4.13 Nearest Neighbors 

For solving problems of regression and classification, K-Nearest Neighbors (KNN) 

algorithm is a widely used pattern classification and supervised ML algorithm. In WEKA, 

Nearest neighbors are available as Ibk [37]. KNN is a sample of lazy learner algorithm which 

is non-parametric. The algorithm tries to find closest neighbors and data points in the training 

dataset aim to the classification of the new examples. It tries to solve how neighbors should 

be a classified problem. Usually, the Euclidean distance measure function is used to calculate 

distance. Other distance functions are Canberra, Chebychev, Manhattan methods [15]. The 

formulas of distance functions are given in Table 4.67. 

• Euclidean is also called straight-line, the ordinary distance between the two data 

points divided by their standard deviation in Euclidean space. Euclid discusses the 

shortest distance and similarity between data points [4, 14]. 

• Canberra distance measures the sum of series differences between the feature 

coordinates of an object pair [35, 13]. 

• Chebychev also called Tchebyshev distance. It calculates the total differences 

distance between the pair of vectors or data points features [15].  
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• Manhattan distance is also known as a city block, rectilinear and taxicab. Measure 

the distance between the pair of data points is the sum of the absolute differences 

between coordinate axes [14]. 

Table 4.67 Distance functions formulas and parameters 

 

Distance Functions Formulas Parameters 

Euclidean √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 x, y points 

Canberra 

∑
|𝑥𝑖 − 𝑦𝑖|

|𝑥𝑖| + |𝑦𝑖| 

𝑑

𝑖=1

 

x, y vectors 

Chebychev 𝑚𝑎𝑥|𝑥𝑖𝑘 − 𝑦𝑗𝑘| x, y points and ik, jk 

standart coordinates 

Manhattan 
∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 
x, y points 

 

Two different search algorithms are available in analysis. These are Linear Search and 

Cover Tree. 

• Cover tree data structure aims to accelerate of nearest neighbor or range search. It 

was proved to be effective in view of space complexity.  The data structure of Cover 

Tree can be created in O(c6 n log n) time [5]. 

• There is no space complexity in the linear search. It is proved to find the right nearest 

neighbors but has a high estimated value. The linear search method tries to find an 

item sequentially. For example, it starts at the initial element. Later moves to all parts 

on the list until the data is found. It is called a linear search and an example of a brute-

force search method. Every element visited to each other in the data structure. 

 

‘k’ in KNN is a parameter show that the number of nearest neighbors should include. 

One problem is determining the best value of “k”. Because if k value is too small, it is 

responsive to noise in data. For enormous “k” value, consider more neighbors made it less 

sensitive to noise and computationally expensive. Mostly choosing the “k” value calculated 

as the square root of N. N mean is sample number in the training dataset. The default “k” 

value is 1 and the distance function is Euclidean in WEKA, but the default “k” value is 5 in 

RapidMiner.  
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For comparison between RapidMiner and WEKA tools, the “k” value is specified to 1 

and Euclidean distance function is selected in RapidMiner. After a series of experiments, it 

was found that the “k” value should be 14 and Manhattan distance should be selected for the 

highest prediction accuracy for both tools. Screenshots of WEKA tool usage available in 

appendix 16 for Nearest Neighbors. 

 

4.13.1 Nearest Neighbors analyses in WEKA 

According to experiments, the neighbor number should be 14 with Manhattan distance 

function in the Linear Search algorithm in order to more staple defect prediction accuracy. 

Moreover, different search algorithms and distance functions were analyzed. Performance 

results are given in Table 4.68 using WEKA. The default settings of WEKA for the Nearest 

Neighbors algorithm is Euclidean. ROC curves of Euclidean and Manhattan distance 

function are given in Figure 4.27.  

Table 4.68 Performance results of search algorithms and distance functions of KNN in WEKA 

 
Search Algorithm Distance Function 

(k=14) 

Results 

LinearNNSearch 

(Default) 

Euclidean 

(Default) 

Accuracy: 72.72% AUC: 0.745 Recall: 0.727 

Precision: 0.724 MAE: 0.350 RMSE: 0.433 

LinearNNSearch Chebyshev Accuracy: 71.61% AUC: 0.729 Recall: 0.716  

Precision: 0.710 MAE: 0.364 RMSE: 0.440 

LinearNNSearch Manhattan Accuracy: 72.72% AUC: 0.747 Recall: 0.727 

Precision: 0.726 MAE: 0.346 RMSE: 0.432  

Cover Tree Euclidean Accuracy: 72.87% AUC: 0.746 Recall: 0.729 

Precision: 0.726 MAE: 0.349 RMSE: 0.433  

 

 

The accuracy rate of Euclidean distance is the same as the Manhattan distance. 

However, Manhattan distance AUC value better than Euclidean distance. Confusion matrix 

of Linear search with Euclidean distance is given in Table 4.69. Confusion matrix of Linear 

search with Manhattan distance is given in Table 4.70. 
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Table 4.69 Confusion matrix of Linear search with Euclidean distance of KNN in WEKA 

 

Classified As a b 

a = 0  4604 531 

b = 1 1676 1282 

 

Data are classified 73% correctly. According to confusion matrix, 531 instances should 

be non-defect but classified as defective and 1676 instance should be defect but classified as 

non-defective. 

 

Table 4.70 Confusion matrix of Linear search with Manhattan distance of KNN in WEKA 

 

Classified As a b 

a = 0  4661 474 

b = 1 1733 1225 

 

Data are classified 73% correctly. According to confusion matrix, 474 instances should 

be non-defect but classified as defective and 1733 instance should be defect but classified as 

non-defective. 

 

 
 

Figure 4.27 ROC curves of Euclidean with Manhattan distance of KNN in WEKA  

 

4.13.2   Nearest Neighbors analyses in RapidMiner 

The “k” value is 14 and Manhattan Distance provides the best accuracy results like 

WEKA. Furthermore, different search algorithms and distance functions were analyzed. 

Performance results are given in Table 4.71. 
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Table 4.71 Performance results of search algorithms and distance functions of KNN in RapidMiner 

 

Measure Results (k=14) 

euclideanDistance 

(Default) 

Accuracy: 68.18% AUC: 0.690 Precision: 0.705 

Recall: 0.854 MAE: 0.395 RMSE: 0.459 

canberraDistance Accuracy: 50.22% AUC: 0.500 Precision: 0.684 

Recall: 0.398 MAE: 0.496 RMSE: 0.525 

chebychevDistance Accuracy: 66.34% AUC: 0.675 Precision: 0.702 

Recall: 0.816 MAE: 0.409 RMSE: 0.464 

Manhattan Distance Accuracy: 69.64% AUC: 0.709 Precision: 0.715 

Recall: 0.867 MAE: 0.384 RMSE: 0.452 

 

Confusion matrix of Euclidean distance is given in Table 4.72. Confusion matrix of 

Manhattan distance is given in Table 4.73 and ROC curve is given in Figure 4.28. Canberra 

distance of performance has the worst AUC value. 

 

Table 4.72 Confusion matrix of Euclidean distance of KNN in RapidMiner 

 

Accuracy: 68.18% True 1 True 0  Class Precision 

Prediction 1 1129 746 60.21% 

Prediction 0 1829 4389 70.59% 

Class Recall 38.17% 85.47%  

 

Table 4.73 Confusion matrix of Manhattan distance of KNN in RapidMiner 

 

Accuracy: 69.64% True 1 True 0  Class Precision 

Prediction 1 1183 682 63.43% 

Prediction 0 1775 4453 71.50% 

Class Recall 39.99% 86.72%  
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Figure 4.28 ROC curve of Manhattan distance of KNN in RapidMiner 
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5 RESULTS 

 

5.1 Performance Evaluation Results 

Performance evaluation parameters results are given in Table 5.1 for software defect 

prediction. The confusion matrix is another evaluation metrics. It shows the count of 

correctly classified and misclassified examples. False negative (FN) represents the negative 

classes that were incorrectly classified. For positive instance classified as negative. False 

positive (FP) represents the positive classes that were incorrectly classified. For negative 

instance classified as positive. True negative (TN) represents the negative classes that were 

correctly classified. True positive (TP) represents the positive classes that were correctly 

classified. 

Table 5.1 Faulty and not faulty class confusion matrix 

 

 Actual Values 

True False 

Predicted 

Values 

Positives True Positives 

(TP) 

False Positives 

(FP) 

 Negatives False Negatives 

(FN) 

True Negatives 

(TN) 

 

Accuracy is mostly used for evaluation analyses and binary class problem. It is the 

ratio of total count correct classify of values amongst the total count of predictions. It 

displayed in Equation 5.1. 

 

                                             Accuracy = 
TP +TN

(TP + FP +TN +FN)
                                                 (5.1) 

 

Precision is the ratio of predicted positive instances correctly to all the instances, which 

is positive. The precision calculation is in Equation 5.2. 

 

                                                           Precision = 
TP

(TP + FP)
                                                        (5.2) 
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Sensitivity (Recall) is the ratio of fault-prone classes which are correctly classified to 

all fault-prone classes. Recall calculation is in Equation 5.3. 

 

                                                                   Recall = 
TP

(TP + FN)
                                                    (5.3) 

 

The Area Under the Curve (AUC) means a characteristic ROC. AUC represented a 

two-dimensional graph with FP instances on the x-axis and TP instances on the y-axis [26]. 

For unbalanced and noisy data, AUC is an effective method. AUC is the most effective and 

reliable technique for the evaluation of performance and classification algorithms. MAE 

measure all absolute errors average and differences between predicted and original instance. 

The lower of the MAE value means better performance for prediction. 

Another performance indicator is the RMSE. It compares observed and the predicted 

value by a model. The small value of RMSE indicates that predicted values are close. 

Performance results of 11 ML techniques and 2 SVM libraries are given in Table 5.2. and 

5.4 for Weka. For the RapidMiner tool, 9 ML techniques and 2 SVM libraries are given in 

Table 5.3 and Table 5.5. Because Bayesian Network and Part techniques are not available, 

both default and improved results are represented. Thus, the effectiveness of improvements 

can be evaluated. 
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Table 5.2 Performance results of reliability prediction by default values of WEKA 

 

Technique Accuracy AUC Precision Recall MAE RMSE 

J48 72.25% 0.694 0.715 0.722 0.325 0.480 

RF 76.94% 0.812 0.766 0.769 0.321 0.402 

Naïve 

Bayes 

67.23% 0.676 0.659 0.672 0.329 0.554 

Bayesian 

Network 

71.51% 0.733 0.707 0.715 0.350 0.443 

Part 72.55% 0.748 0.718 0.726 0.341 0.434 

KNN 72.72% 0.745 0.724 0.727 0.350 0.433 

SMO 68.04% 0.575 0.705 0.680 0.319 0.565 

LibSVM 67.66% 0.563 0.728 0.677 0.323 0.568 

LibLinear 64.09% 0.563 0.614 0.614 0.359 0.599 

ANN 70.91% 0.704 0.700 0.709 0.379 0.447 

Bagging 75.22% 0.786 0.749 0.752 0.335 0.413 

AdaBoost 66.52% 0.653 0.669 0.665 0.438 0.464 

LR 69.94% 0.712 0.696 0.699 0.402 0.448 

 

Performance results were analyzed with the default values of WEKA in Table 5.2. The 

default value of iteration is 100 in RF and the classifier is REPTree in Bagging. The default 

value of kernel type is Radial Basis in LibSVM and L2-regularized L2-loss support vector 

classification in LibLinear. Performance results show that RF and Bagging techniques have 

the highest AUC value and accuracy rate. However, LibSVM and LibLinear have the worst 

AUC value. These techniques are the least effective models for predicting software 

reliability for the default values of LibSVM and LibLinear in WEKA. The AUC value of 

LibSVM and LibLinear same, but the accuracy rate of LibLinear worse than LibSVM.  
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Table 5.3 Performance results of reliability prediction by default values of RapidMiner 

 

Technique Accuracy AUC Precision Recall MAE RMSE 

J48 72.94% 0.730 0.738 0.886 0.346 0.440 

RF 74.46% 0.792 0.753 0.889 0.335 

 

0.412 

Naïve 

Bayes 

67.07% 0.678 0.682 0.899 0.329 0.555 

KNN 68.18% 0.690 0.705 0.854 0.395 0.459 

SMO 64.88% 0.666 0.669 0.900 0.423 0.477 

LibSVM 66.91% 0.674 0.678 0.910 0.422 0.463 

LibLinear 68.97% 0.692 0.683 0. 954 0.405 0.456 

ANN 71.42% 0.716 0.726 0.883 0.373 0.444 

Bagging 73.14% 0.746 0.726 0.926  0.363 0.429 

AdaBoost 67.66% 0.655 0.675 0.943 0.413 0.461 

LR 69.86% 0.711 0.702 0.910 0.403 0.448 

 

Performance results were analyzed with the default values of RapidMiner in Table 5.3. 

The default value of iteration is 100 with gain ratio criterion in RF and the classifier is 

Decision Tree with information gain in Bagging. The default value of kernel type is 

Polynomial in SMO. The default value of the classifier is Decision Stump in AdaBoost. 

Performance results show that RF and Bagging techniques have the highest AUC value and 

accuracy rate. However, AdaBoost and SMO have the worst AUC value. These techniques 

are the least effective models for predicting the reliability of software for the default values 

of RapidMiner.  
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Table 5.4 Performance results of reliability prediction by improved values of WEKA 

 

Technique Accuracy AUC Precision Recall MAE RMSE 

J48 73.13% 0.724 0.725 0.731 0.340 0.453 

RF 77.07% 0.816 0.768 0.771 0.320 0.400 

Naïve 

Bayes 

68.36% 0.686 0.670 0.684 0.326 0.517 

Bayesian 

Network 

72.54% 0.738 0.719 0.725 0.348 0.437 

Part 72.55% 0.748 0.718 0.726 0.341 0.434 

KNN 72.72% 0.747 0.726 0.727 0.346 0.432 

SMO 73.18% 0.661 0.736 0.732 0.268 0.517 

LibSVM 68.57% 0.607 0.676 0.686 0.314 0.560 

LibLinear 69.87% 0.620 0.695 0.699 0.301 0.548 

ANN 71.12% 0.715 0.705 0.711 0.388 0.442 

Bagging 76.59% 0.811 0.764 0.766 0.329 0.402 

AdaBoost 76.62% 0.781 0.763 0.766 0.238 0.471 

LR 69.94% 0.712 0.696 0.699 0.402 0.448 

 

Performance results were analyzed with improved values of WEKA in Table 5.4. The 

improved value of iteration is 500 in RF and the classifier is RF in Bagging. The improved 

value of kernel type is Linear in LibSVM and L1-regularized logistic regression in 

LibLinear. Performance results show that RF and Bagging techniques have the highest AUC 

value. However, LibSVM and LibLinear have the worst AUC value. These techniques are 

the least effective models for predicting the reliability of software for improved values of 

WEKA.  
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Table 5.5 Performance results of reliability prediction by improved values of RapidMiner 

 

Technique Accuracy AUC Precision Recall MAE RMSE 

J48 72.82% 0.735 0.737 0.887 0.351 0.437 

RF 76.62% 0.815 0.772 0.894 0.324 

 

0.401 

 

Naïve 

Bayes 

67.81% 0.688 0.691 0.890 0.327 0.527 

KNN 69.64% 0.709 0.715 0.867 0.384 0.452 

SMO 68.82% 0.691 0.681 0.953 0.405 0.456 

LibSVM 66.91% 0.674 0.678 0.910 0.422 0.463 

LibLinear 68.97% 0.692 0.683 0.954 0.405 0.456 

ANN 71.25% 0.723 0.726 0.878 0.384  0.442 

Bagging 74.66% 0.790 0.738 0.930 0.361 0.415 

AdaBoost 74.46% 0.693 0.738 0.925 0.339 0.443 

LR 69.86% 0.711 0.702 0.910 0.403 0.448 

 

Performance results were analyzed with improved values of RapidMiner in Table 5.5. 

The improved value of iteration is 500 with information gain in RF and the classifier is RF 

with information gain in Bagging. The improved value of kernel type is Radial Basis in 

LibSVM. Performance results show that RF and Bagging techniques have the highest AUC 

value. However, LibSVM and LibLinear have the worst AUC value. These techniques are 

the least effective models for predicting the reliability of software for improved values of 

RapidMiner.  
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Table 5.6 AUC results of WEKA and RapidMiner by improved values 

 

Technique WEKA AUC RapidMiner AUC 

J48 0.724 0.735 

RF 0.816 0.815 

Naïve Bayes 0.686 0.688 

Bayesian Network 0.738 - 

Part 0.748 - 

KNN 0.747 0.709 

SMO 0.661 0.691 

LibSVM 0.607 0.674 

LibLinear 0.620 0.692 

ANN 0.715 0.723 

Bagging 0.811 0.790 

AdaBoost 0.781 0.693 

LR 0.712 0.711 

 

Bayesian network and Part is not available in RapidMiner. RF has the highest AUC 

result for WEKA and RapidMiner tool. According to Table 5.6, AUC results of RF are nearly 

same for WEKA and RapidMiner tool. The AUC value of WEKA is 0.816 and RapidMiner 

is 0.815 for RF. There are no significant differences between Naïve Bayes AUC results of 

WEKA and RapidMiner. Moreover, AUC results of LR are nearly same for WEKA and 

RapidMiner.  



 

 
74 

 

 

Figure 5.1 Default configuration of SVMs ROC curves 

 

ROC curves comparisons of SVMs such as SMO, LibLINEAR and LibSVM are given 

in Figure 5.1 for default configuration in WEKA. The y-axis presents the true positive rate. 

The x-axis presents false positive rate. SMO uses polynomial, LibSVM uses Radial Basis 

kernel type and LibLINEAR uses L2-regularized L2-loss support vector classification (dual) 

SVM type. AUC performance results are 0.575 for SMO, 0.563 for LibLINEAR and 

LibSVM. LibLINEAR and LibSVM have the same AUC result, but the accuracy rate of 

LibSVM higher than LibLINEAR. It is 67%. 
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Figure 5.2 Improved configuration of SVMs ROC curves 

 

ROC curves comparison of SMO, LibLINEAR and LibSVM are given in Figure 5.2 

for improved configuration in WEKA. The y-axis presents the true positive rate. The x-axis 

presents false positive rate. SMO uses PUK, LibSVM uses linear kernel type and 

LibLINEAR uses L1-regularized logistic regression SVM type. AUC performance results 

are 0.661 for SMO, 0.620 for LibLINEAR, 0.607 for LibSVM. 
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Figure 5.3 Default configuration of Bagging and Boosting ROC curves 

 

ROC curves comparison of Bagging and Boosting are given in Figure 5.3 for default 

configuration in WEKA. The y-axis presents the true positive rate. The x-axis presents false 

positive rate. Bagging uses REPTree, AdaBoost uses the Decision Stump classifier. AUC 

performance results are 0.786 for Bagging, 0.653 for AdaBoost. 
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Figure 5.4 Improved configuration of Bagging and Boosting ROC curves 

 

ROC curves comparison of Bagging and Boosting are given in Figure 5.4 for improved 

configuration in WEKA. The y-axis presents the true positive rate. The x-axis presents false 

positive rate. Bagging and AdaBoost use the Random Forest classifier. AUC performance 

results are 0.811 for Bagging, 0.781 for Boosting. 

 

 

Figure 5.5 Improved configuration of RF and Naïve Bayes ROC curves 
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ROC curves comparison of RF and Naïve Bayes are given in Figure 5.5 for improved 

configuration in WEKA. The y-axis presents the true positive rate. The x-axis presents false 

positive rate. RF iteration count is 500. Naïve Bayes use kernel. AUC performance results 

are 0.816 for RF, 0.686 for Naïve Bayes. 

 

 

Figure 5.6 Improved configuration of RF and Nearest Neighbors ROC curves 

 

ROC curves comparison of RF and KNN are given in Figure 5.6 for improved 

configuration in WEKA. The y-axis presents the true positive rate. The x-axis presents false 

positive rate. RF iteration count is 500. “k” value is 14 for KNN. AUC performance results 

are 0.816 for RF, 0.747 for KNN. 
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Figure 5.7 Improved configuration of RF and Decision Tree ROC curves 

 

ROC curves comparison of RF and Decision Tree are given in Figure 5.7 for Ant 

software. The version of Ant is 1.7 and include 745 instance, 166 defective modules. The y-

axis presents the true positive rate. The x-axis presents false positive rate. AUC performance 

results are 0.816 for RF, 0.724 for Decision Tree. 

 

5.2 Findings 

According to Bayesian Network, from the results, it is clear that the WMC software 

metric was found significant predictor for both 9 and 20 software prediction metrics. Other 

significant predictors are NOC, CBO, LCOM, NPM, CAM, DIT and RFC software metrics 

for defect prediction. Tertiary software metrics are CA, CE, LCOM3, MFA and LOC. 

Fourthly software metrics are DAM, MOA, IC, AMC and MAX_CC. The least effective 

software metrics are CBM and AVG_CC. However, results changed for most used 9 

software metrics. For 9 CK metrics, WMC is still a major attribute followed by NOC, CBO, 

RFC, LCOM and DIT. Tertiary software metrics are LOC and IC. The least useful software 

metric is CBM. These findings of this study could be included significant effective results 

for the reliability issue.  From these results, it is clear that more reliable software and less 

defect classes in software systems may provide. 
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Values of AUC and accuracy rate were obtained by the ML techniques performance 

results and evaluated with each other to comparing performance measurement. Performance 

results show that RF and Bagging techniques have the highest and effective accuracy rate 

and AUC values for both default and improved results, according to RapidMiner and WEKA 

ML tools. RF provides the highest AUC value in RapidMiner and WEKA performance 

results. AUC is 0.815 for RapidMiner and 0.816 for WEKA. After the improvement of ML 

techniques, still, RF and Bagging have the highest accuracy and AUC value. Followed by 

these ML techniques are Boosting and Rule-based classifications. Both of them have 

excellent accuracy and AUC value according to improved performance results of WEKA. 

However, the AUC value of Rule-based and Nearest Neighbors nearly the same. According 

to improved performance results of RapidMiner, Decision Tree and Neural Network 

techniques have good accuracy and AUC value after RF and Bagging techniques. After the 

improvement of the default configuration of WEKA, Neural Network techniques become 

better than Decision Tree. Also, Boosting algorithm performance results is increasing. After 

the improvement of the default configuration of RapidMiner, Nearest Neighbor and 

Boosting techniques become better than Naïve Bayes's performance results. Nevertheless, 

the AUC value of Nearest Neighbor and LR nearly the same. 

Regarding accuracy rate and AUC performance results, there are no essential 

differences between Rule-based classification and Nearest Neighbors for improved results 

of WEKA. LibSVM has the worst accuracy rate and AUC value for both tools. SMO and 

LibLinear performance are better than LibSVM for both tools. However, this analysis found 

evidence for SMO, LibSVM and LibLinear techniques are the least effective models for 

predicting defect-prone modules. Another finding is that the AUC value of SMO and 

LibLINEAR nearly the same for the improved result of RapidMiner.  

The results demonstrated that from the best ML techniques to the worst for software 

defect predictions are RF, Bagging, AdaBoosting, Rule-based classification, Naïve Bayes, 

Bayesian Network, Decision Tree, Neural Network, LR, SMO, LibLinear and LibSVM for 

improved performance results of WEKA. For improved performance results of RapidMiner 

tool, RF, Bagging, Decision Tree, Neural Network, LR, Neural Network, Boosting, 

LibLinear, SMO, Naïve Bayes, LibSVM from the best ML techniques to the worst. 
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6 CONCLUSION 

This thesis argues predicting and improving software reliability by comparing the 

performance of various 11 ML techniques and 2 SVM libraries with tenfold cross-validation 

and OO software metrics. Overall, the results demonstrate a significant effect of ML 

techniques and OO software metrics. Besides, these results provide additional information 

about the significant attributes of software metrics. For 20 software metrics, WMC is a major 

attribute followed by NOC, CBO, LCOM, NPM, CAM, DIT and RFC. The results provide 

evidence for which software metric is more important for software reliability.  

Moreover, these findings provide additional information about ML tools, which are 

WEKA and RapidMiner, but results may change according to the analyzed tool. The main 

conclusion shows and confirms that RF and Bagging are important contributors to software 

reliability and useful for fault prediction. SMO, LibSVM, LibLINEAR SVMs are the least 

effective model for defect classification. The main contribution of these analyses to evaluate 

the performance of ML algorithms with a large OO software dataset. Another contribution 

of this study is to display software metrics effectiveness for the prediction of a software 

reliability and quality. 

The answers to research questions are WMC is the most and CBM and AVG_CC’s 

least effective software metrics to determine software reliability. Random Forest is the most 

effective ML techniques to estimate software defect prediction. 

In future studies, the number of OO software projects should be increased. It is also 

planned to apply new ML algorithms with various kernel types, confidence factors, 

iterations, search algorithms, classifiers, estimators, and different software metrics. The 

quality of defect prediction standards depends on the choice of dataset and ML techniques. 

Future investigations are necessary to validate performance conclusions. The performance 

results provide a good starting point for discussion and further research. 
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