

BAŞKENT UNIVERSITY

INSTITUTE OF SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING

MASTER OF SCIENCE IN COMPUTER ENGINEERING

SOFTWARE QUALITY PREDICTION MODELS: A COMPARATIVE

INVESTIGATION BASED ON MACHINE LEARNING TECHNIQUES

FOR OBJECT-ORIENTED SYSTEMS

BY

ÖZCAN İLHAN

MASTER OF SCIENCE THESIS

ANKARA - 2020

BAŞKENT UNIVERSITY

INSTITUTE OF SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING

MASTER OF SCIENCE IN COMPUTER ENGINEERING

SOFTWARE QUALITY PREDICTION MODELS: A COMPARATIVE

INVESTIGATION BASED ON MACHINE LEARNING TECHNIQUES

FOR OBJECT-ORIENTED SYSTEMS

BY

ÖZCAN İLHAN

MASTER OF SCIENCE THESIS

ADVISOR

Asst. Prof. Dr. Tülin ERÇELEBİ AYYILDIZ

ANKARA - 2020

BAŞKENT UNIVERSITY

 INSTITUTE OF SCIENCE AND ENGINEERING

This study, which was prepared by Özcan İLHAN, for the program of Master of Science in

Computer Engineering, has been approved in partial fulfillment of the requirements for the

degree of MASTER OF SCIENCE in Computer Engineering Department by following

committee.

Date of Thesis Defense: 27 / 08 / 2020

Thesis Title: Software Quality Prediction Models: A Comparative Investigation Based on

Machine Learning Techniques for Object-Oriented Systems

Examining Committee Members Signature

Asst. Prof. Dr. Tülin ERÇELEBİ AYYILDIZ, Başkent University ..………………...

Asst. Prof. Dr. Duygu DEDE ŞENER, Başkent University .………………...

Asst. Prof. Dr. Damla TOPALLI, Atılım University .………………...

APPROVAL

Prof. Dr. Faruk ELALDI

Director, Institute of Science and Engineering

Date: … / … / 2020

BAŞKENT ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS TEZ ÇALIŞMASI ORİJİNALLİK RAPORU

Tarih: 04 / 09 / 2020

Öğrencinin Adı, Soyadı : Özcan İLHAN

Öğrencinin Numarası : 21810032

Anabilim Dalı : Bilgisayar Mühendisliği

Programı : Tezli Yüksek Lisans

Danışmanın Unvanı/Adı, Soyadı : Dr. Öğr. Üyesi Tülin ERÇELEBİ AYYILDIZ

Tez Başlığı : Software Quality Prediction Models: A Comparative Investigation Based on

Machine Learning Techniques for Object-Oriented Systems

Yukarıda başlığı belirtilen Yüksek Lisans tez çalışmamın; Giriş, Ana Bölümler ve Sonuç

Bölümünden oluşan, toplam 81 sayfalık kısmına ilişkin, 04/09/2020 tarihinde tez

danışmanım tarafından Turnitin adlı intihal tespit programından aşağıda belirtilen

filtrelemeler uygulanarak alınmış olan orijinallik raporuna göre, tezimin benzerlik oranı

%6’dır. Uygulanan filtrelemeler:

1. Kaynakça hariç

2. Alıntılar hariç

3. Beş (5) kelimeden daha az örtüşme içeren metin kısımları hariç

“Başkent Üniversitesi Enstitüleri Tez Çalışması Orijinallik Raporu Alınması ve

Kullanılması Usul ve Esaslarını” inceledim ve bu uygulama esaslarında belirtilen azami

benzerlik oranlarına tez çalışmamın herhangi bir intihal içermediğini; aksinin tespit edileceği

muhtemel durumda doğabilecek her türlü hukuki sorumluluğu kabul ettiğimi ve yukarıda

vermiş olduğum bilgilerin doğru olduğunu beyan ederim.

Öğrenci İmzası:

 ONAY

 Tarih: 04 / 09 / 2020

 Öğrenci Danışmanı Unvan, Ad, Soyad, İmza:

 Dr. Öğr. Üyesi Tülin ERÇELEBİ AYYILDIZ

i

ACKNOWLEDGEMENTS

I would like to thank to my advisor Asst. Prof. Dr. Tülin ERÇELEBİ AYYILDIZ for her

advices and guidance. Her valuable advices helped me during the whole period of my

research.

I would also like to thank my family for supporting me throughout writing this thesis and

my studies.

ii

ABSTRACT

Özcan İLHAN

SOFTWARE QUALITY PREDICTION MODELS: A COMPARATIVE

INVESTIGATION BASED ON MACHINE LEARNING TECHNIQUES FOR

OBJECT-ORIENTED SYSTEMS

Başkent University Institute of Science

The Department of Computer Engineering

2020

The purpose of this thesis study is investigating correlation between Chidamber and Kemerer

(CK) Object-Oriented (OO) software metrics and determining the accuracy rate in software

bug prediction. For this reason, eleven most frequently used Machine Learning (ML)

techniques and two Support Vector Machine (SVM) libraries performance was analyzed in

order to find the best technique for 33 latest version of open source projects. In this thesis

study, the relation between CK metrics and reliability is also determined. Each technique

was evaluated using RapidMiner and WEKA tools. Dataset was validated with a 10-fold

cross-validation technique. Furthermore, Bayesian belief’s networks form used for

determining which CK metric are primary estimators. Receiver Operating characteristic

(ROC), Precision, Accuracy, Area Under the Curve (AUC), Mean Absolute Error (MAE),

Root Mean Squared Error (RMSE) performance metrics used for evaluation of results.

Results of this study show that Random Forrest, Bagging, AdaBoost ML techniques are the

most effective for prediction models in terms of AUC values. In contrast, SVMs are the least

effective models. This thesis study also revealed that Weighted Methods per class (WMC)

is the most effective software metric. Then, the Number of Children (NOC), Depth of

Inheritance Tree (DIT) metrics are good contributor for determining the quality of software.

KEYWORDS: Machine Learning, Object-Oriented Metrics, Software Reliability, Software

Quality Metrics, Bug Prediction

Advisor: Asst. Prof. Dr. Tülin ERÇELEBİ AYYILDIZ, Başkent University, Department of

Computer Engineering.

iii

ÖZET

Özcan İLHAN

YAZILIM KALİTE TAHMİN MODELLERİ: NESNE ODAKLI SİSTEMLER İÇİN

MAKİNE ÖĞRENME TEKNİKLERİNE DAYALI KARŞILAŞTIRMALI BİR

ARAŞTIRMA

Başkent Üniversitesi Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

2020

Bu tez çalışmasının amacı, Chidamber ve Kemerer (CK) Nesne Yönelimli yazılım metrikleri

arasındaki ilişkiyi araştırmak ve yazılım hata tahmininde doğruluk oranını belirlemektir. Bu

nedenle, açık kaynaklı 33 projenin en son sürümleri için en iyi tekniği bulmak amacıyla en

sık kullanılan 11 Makine Öğrenimi tekniği ve 2 Destek Vektör Makinesi kütüphanesinin

performansı analiz edilmiştir. Bu tez çalışmasında, CK ölçütleri ile güvenirlik arasındaki

ilişki de belirlenmiştir. Her teknik RapidMiner ve WEKA araçları kullanılarak

değerlendirilmiştir. Veri kümesi, 10 kat çapraz doğrulama tekniği ile doğrulanmıştır. Ayrıca,

Bayesian ağları, hangi CK metriğinin en iyi tahmin edici olduğunu belirlemek için kullanılan

formlardır. Sonuçların değerlendirilmesi için Alıcı İşletim Karakteristiği, Kesinlik,

Doğruluk, Eğri Altında Kalan Alan, Ortalama Mutlak Hata, Ortalama Hata Kare Kökü

performans ölçütleri kullanılmıştır. Bu çalışmanın sonuçları, Rastgele Orman, Torbalama,

Arttırma makine öğrenmesi tekniklerinin tahmin modelleri için en etkili olduğunu

göstermektedir. Buna tersine, Destek Vektör Makineleri en az etkili modellerdir. Bu tez

çalışması ayrıca, Sınıfın Ağırlıklı Metot Sayısının en etkili yazılım metriği olduğunu ortaya

çıkarmıştır. Daha sonra, Alt Sınıf Sayısı, Kalıtım Ağacının Derinliği ölçümleri yazılımın

kalitesini belirlemede iyi bir katkı sağlar.

ANAHTAR KELİMELER: Makine Öğrenmesi, Nesne Yönelimli Metrikler, Yazılım

Güvenilirliği, Yazılım Kalite Metrikleri, Hata Tahmini

Danışman: Dr. Öğr. Üyesi Tülin ERÇELEBİ AYYILDIZ, Başkent Üniversitesi, Bilgisayar

Mühendisliği Bölümü.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS…………………………………………………… i

ABSTRACT…………………………………………………………………….

ii

ÖZET…………………………………………………………………………… iii

TABLE OF CONTENTS………………………………………………………. iv

LIST OF TABLES………………………………………………………………. vii

LIST OF FIGURES……………………………………………………………… xi

LIST OF SYMBOLS AND ABBREVIATIONS……………………………… viii

1. INTRODUCTION…………………………………………………………… 1

1.1. Problem Definition……………………………………………………... 1

1.2. Problem Solution………………………………………………………... 2

1.3. Study Motivation……………………………………………………… 3

1.4. Aims & Objectives……………………………………………………… 3

2. LITERATURE REVIEW…………………………………………………… 4

2.1. Previous Literature……………………………………………………...

2.2. Limitations of Previous Research………………………………………

2.3. Research Questions……………………………………………………...

3. MATERIALS & METHODS…………………………………………………

3.1. Data Collection…………………………………………………………..

3.2. Software Metrics…………………………………………………………

3.3. Machine Learning Software Tools……………………………………..

4

6

6

7

7

9

11

 3.3.1. WEKA machine learning software…………………………….

 3.3.2. RapidMiner machine learning software……………………….

4. TECHNIQUES & EXPERIMENTS…………………………………………

4.1. Decision Tree……………………………………………………………

 4.1.1. Decision Tree analyses in WEKA……………………………….

 4.1.2. Decision Tree analyses in RapidMiner………………………….

4.2. Random Forest…………………………………………………………

 4.2.1. Random Forest analyses in WEKA……………………………

 4.2.2. Random Forest analyses in RapidMiner………………………

4.3. Bayesian Network………………………………………………………

4.4. Naïve Bayes………………………………………………………………

 4.4.1. Naïve Bayes analyses in WEKA…………………………………

11

12

13

14

14

16

18

19

21

23

27

27

v

 4.4.1. Naïve Bayes analyses in RapidMiner……………………………

4.5. Rule based classification………………………………………………..

4.6. Support Vector Machine………………………………………………..

 4.6.1. Sequential Minimal Optimization analyses in WEKA…………

 4.6.2. Sequential Minimal Optimization analyses in RapidMiner……

4.7. Library for Support Vector Machines…………………………………

 4.7.1. Library for Support Vector Machines analyses in WEKA……

 4.7.2. Library for Support Vector Machines analyses in RapidMiner.

4.8. Library for large linear classification…………………………………

 4.8.1. Library for large linear classification analyses in WEKA……

 4.8.2. Library for large linear classification analyses in RapidMiner..

4.9. Logistic Regression………………………………………………………

 4.9.1. Logistic Regression analyses in WEKA…………………………

 4.9.2. Logistic Regression analyses in RapidMiner……………………

4.10. Bagging…………………………………………………………………

 4.10.1. Bagging analyses in WEKA……………………………………

 4.10.2. Bagging analyses in RapidMiner………………………………

4.11. Boosting…………………………………………………………………

 4.11.1. Boosting analyses in WEKA……………………………………

 4.11.2. Boosting analyses in RapidMiner………………………………

4.12. Artifical Neural Networks……………………………………………..

 4.12.1. Artifical Neural Networks analyses in WEKA………………

 4.12.2. Artifical Neural Networks analyses in RapidMiner…………

4.13. Nearest Neighbors……………………………………………………..

 4.13.1. Nearest Neighbors analyses in WEKA…………………………

 4.13.2. Nearest Neighbors analyses in RapidMiner……………………

5. RESULTS………………………………………………………………………

5.1. Performance Evaluation Results………………………………………..

5.2. Findings…………………………………………………………………..

6. CONCLUSION………………………………………………………………..

29

30

32

34

36

37

37

39

40

41

44

44

45

46

46

47

49

51

51

53

55

57

59

61

63

64

67

67

79

81

REFERENCES.. 82

vi

APPENDIX

 APPENDIX 1: Weka Preprocess Screen

 APPENDIX 2: Weka Filter Options

 APPENDIX 3: Weka Knowledge Flow

 APPENDIX 4: Decision Tree

 APPENDIX 5: Random Forest

 APPENDIX 6: Bayesian Network

 APPENDIX 7: Naïve Bayes

 APPENDIX 8: Rule Based Classification

 APPENDIX 9: SMO Classification

 APPENDIX 10: LibSVM

 APPENDIX 11: LibLINEAR

 APPENDIX 12: Logistic Regression

 APPENDIX 13: Bagging

 APPENDIX 14: Boosting

 APPENDIX 15: Artifical Neural Networks

 APPENDIX 16: Nearest Neighbors

 APPENDIX 17: RapidMiner

vii

LIST OF TABLES

 Page

Table 3.1. Details of dataset…………………………………………………………......8

Table 3.2. Details of software metrics……………...10

Table 4.1. Default and improved configurations of Decision Tree in WEKA…………..14

Table 4.2. Performance results of default and improved configurations of Decision

 Tree in WEKA………………………………………………………………..15

Table 4.3. Performance results of Subtree Raising and Unpruned configurations of

Decision Tree in WEKA……………………………………………………...15

Table 4.4. Confusion matrix of default configurations of Decision Tree in WEKA…….15

Table 4.5. Confusion matrix of improved configurations of Decision Tree in

RapidMiner…………………………………………………………………...16

Table 4.6. Default and improved leaf size count of Decision Tree in RapidMiner……..16

Table 4.7. Performance results of leaf size count of Decision Tree in RapidMiner…….17

Table 4.8. Confusion matrix of 2 leaf size of Decision Tree in RapidMiner……………17

Table 4.9. Confusion matrix of 5 leaf size of Decision Tree in RapidMiner……………18

Table 4.10. Default and improved iterations count of RF in WEKA……………………19

Table 4.11. Performance results of iterations count of RF in WEKA…………………...19

Table 4.12. Performance results of maximum depth of tree count of RF in WEKA……19

Table 4.13. Confusion matrix of 100 iteration of RF in WEKA………………………...20

Table 4.14. Confusion matrix of 500 iteration of RF in WEKA………………………...20

Table 4.15. Criterion performance results of RF in RapidMiner………………………..21

Table 4.16. Confusion matrix of Gain Ratio of RF in RapidMiner……………………..22

Table 4.17. Confusion matrix of Information Gain of RF in RapidMiner……………....22

Table 4.18. Performance results of search algorithms…………………………………..24

Table 4.19. Confusion matrix of K2 search algorithm with 2 parent number of Bayesian

Network……………………………………………………………………..25

viii

Table 4.20. Confusion matrix of K2 search algorithm with 3 parent number of Bayesian

Network……………………………………………………………………..25

Table 4.21. Kernel Estimator congifuration for improving Naïve Bayes performance in

WEKA……………………………………………………………………....27

Table 4.22. Performance results of kernel estimators of Naïve Bayes in WEKA……….28

Table 4.23. Confusion matrix of without kernel estimator of Naïve Bayes in WEKA….28

Table 4.24. Confusion matrix of kernel estimator of Naïve Baye in WEKA…………....28

Table 4.25. Performance results of Naïve Bayes in RapidMiner………………………..29

Table 4.26. Confusion matrix of Naïve Bayes in RapidMiner………………………….29

Table 4.27. Confusion matrix of Naïve Bayes Kernel in RapidMiner………………….30

Table 4.28. Performance results of default and improved configurations of Rule Based

classification………………………………………………………………....31

Table 4.29. Confusion matrix of 2 minimum number of instance with 0.25 confidence

factor of Rule Based classification………………………………………......31

Table 4.30. Confusion matrix of 4 minimum number of instance with 0.25 confidence

factor of Rule Based classification………………………………………….32

Table 4.31. Kernel functions formulas and parameters………………………………….33

Table 4.32. Performance results of kernel types of SMO in WEKA…………………….34

Table 4.33. Confusion matrix of Polynomial kernel of SMO in WEKA……………….35

Table 4.34. Confusion matrix of PUK kernel of SMO in WEKA………………………35

Table 4.35. Performance results of kernel types of SMO in RapidMiner……………….36

Table 4.36. Confusion matrix of Polynomial kernel of SMO in RapidMiner…………..36

Table 4.37. Confusion matrix of Dot kernel of SMO in RapidMiner…………………..36

Table 4.38. Performance results of kernel types of LibSVM in WEKA………………...38

Table 4.39. Performance results of Radial Basis of LibSVM in WEKA………………..38

Table 4.40. Performance results of Linear kernel of LibSVM in WEKA……………….38

Table 4.41. Performance results of kernel types of LibSVM in RapidMiner…………....39

Table 4.42. Confusion matrix of Radial Basis kernel of LibSVM in RapidMiner……...40

ix

Table 4.43. Performance results of SVM types of LibLINEAR in WEKA……………..42

Table 4.44. Confusion matrix of L2-Regularized L2-Loss Support Vector Classification

(Dual) of LibLINEAR in WEKA…………………………………………...43

Table 4.45. Confusion matrix of L1-Regularized Logistic Regression of LibLINEAR in

WEKA……………………………………………………………………....43

Table 4.46. Confusion matrix of LibLINEAR default configurations in RapidMiner…44

Table 4.47. Confusion matrix of default configurations of LR in WEKA……………...45

Table 4.48. Confusion matrix of default configurations of LR in RapidMiner………...46

Table 4.49. Performance results of Bagging classifiers in WEKA……………………...47

Table 4.50. Confusion matrix of REPTree in Bagging for WEKA……………………..48

Table 4.51. Confusion matrix of RF in Bagging for WEKA……………………………48

Table 4.52. Performance results of Bagging classifiers in RapidMiner………………...49

Table 4.53. Confusion matrix of Decision Tree classifier in Bagging for RapidMiner...50

Table 4.54. Confusion matrix of RF classifier in Bagging for RapidMiner……………50

Table 4.55. Performance results of Boosting classifiers in WEKA……………………..51

Table 4.56. Confusion matrix of Decision Stump in Boosting for WEKA……………..52

Table 4.57. Confusion matrix of RF in Boosting for WEKA…………………………...52

Table 4.58. Performance results of Boosting classifiers in RapidMiner………………...53

Table 4.59. Confusion matrix of Decision Stump classifier in Boosting for RapidMiner

 ……………………………………………………………………………....54

Table 4.60. Confusion matrix of RF classifier in Boosting for RapidMiner…………....54

Table 4.61. Performance results of Training Cycle, Learning Rate, Momentum

combinations of ANN in WEKA…………………………………………....57

Table 4.62. Confusion matrix of 0.3 learning rate, 500 training cycles and 0.2 momentum

combination of ANN in WEKA…………………………………………….58

Table 4.63. Confusion matrix of 0.01 learning rate, 500 training cycles and 0.2 momentum

combination of ANN in WEKA…………………………………………….58

Table 4.64. Performance results of Training Cycle, Learning Rate, Momentum

combinations of ANN in RapidMiner………………………………………59

x

Table 4.65. Confusion matrix of 0.3 learning rate, 500 training cycles and 0.2 momentum

combination of ANN in RapidMiner………………………………………...60

Table 4.66. Confusion matrix of 0.01 learning rate, 500 training cycles and 0.9 momentum

combination of ANN in RapidMiner………………………………………...60

Table 4.67. Distance functions formulas and parameters………………………………...62

Table 4.68. Performance results of search algorithms and distance functions of KNN in

WEKA………………………………………………………………………..63

Table 4.69. Confusion matrix of Linear search with Euclidean distance of KNN in

WEKA………………………………………………………………………..64

Table 4.70. Confusion matrix of Linear search with Manhattan distance of KNN in

WEKA………………………………………………………………………..64

Table 4.71. Performance results of search algorithms and distance functions of KNN in

RapidMiner…………………………………………………………………...65

Table 4.72. Confusion matrix of Euclidean distance of KNN in RapidMiner…………...65

Table 4.73. Confusion matrix of Manhattan distance of KNN in RapidMiner…………..65

Table 5.1. Faulty and not faulty class confusion matrix ……………………………….....67

Table 5.2. Performance results of reliability prediction by default values of WEKA….....69

Table 5.3. Performance results of reliability prediction by default values of RapidMiner..70

Table 5.4. Performance results of reliability prediction by improved values of WEKA.....71

Table 5.5. Performance results of reliability prediction by improved values of RapidMiner

………………………………………………………………………………….72

Table 5.6. AUC results of WEKA and RapidMiner by improved values………………....73

xi

LIST OF FIGURES

 Page

Figıre 4.1. ROC curves of default and improved configurations of Decision Tree

 in WEKA………………………………………………………………....16

Figure 4.2. ROC curve of 5 leaf size of Decision Tree in RapidMiner………………18

Figure 4.3. ROC curves of 100 and 500 iteration of RF in WEKA…………………..21

Figure 4.4. ROC curve of Information Gain of RF in RapidMiner ………………….22

Figure 4.5. ROC curves of K2 search algorithm with 2 and 3 parent number of

 Bayesian Network………………………………………………………...24

Figure 4.6. Bayesian Network formed for 9 software prediction metrics…………….26

Figure 4.7. Bayesian Network formed for 20 software prediction metrics…………...26

Figure 4.8. ROC curves of kernel estimators of Naïve Bayes in WEKA…………….29

Figure 4.9. ROC curve of Naïve Bayes Kernel in RapidMiner……………………....30

Figure 4.10. ROC curves of 2 and 4 minimum number of instance with 0.25

 confidence factor of Rule Based classification…………………………32

Figure 4.11. ROC curves of Polynomial and PUK kernels of SMO in WEKA………35

Figure 4.12. ROC curve of Dot kernel of SMO in RapidMiner………………………37

Figure 4.13. ROC curves of Radial Basis and Linear kernels of LibSVM in WEKA...39

Figure 4.14. ROC curve of Radial Basis kernel of SMO in RapidMiner……………..40

Figure 4.15. ROC curves of L2-Regularized L2-Loss Support Vector Classification

 (Dual) and L1-Regularized Logistic Regression of LibLINEAR in

WEKA…………………………………………………………………….43

Figure 4.16. ROC curve of LibLINEAR default configurations in RapidMiner……...44

Figure 4.17. ROC curve of default configurations of LR in WEKA………………….45

Figure 4.18. ROC curve of default configurations of LR in RapidMiner……………..46

Figure 4.19. ROC curves of REPTree and RF in Bagging for WEKA………………..48

Figure 4.20. ROC curve of RF in Bagging for RapidMiner…………………………...50

Figure 4.21. ROC curves of Decision Stump and RF in Boosting for WEKA………..52

xii

Figure 4.22. ROC curve of RF in Boosting for RapidMiner…………………………..54

Figure 4.23. Neural Network graphical user interface form for 20 software metrics….56

Figure 4.24. Neural Network graphical user interface form for 9 software metrics…...56

Figure 4.25. ROC curves of 0.3 learning rate, 500 training cycles, 0.2 momentum and

0.01learning rate, 500 traning cycles, 0.2 momentum combinations of

ANN in WEKA…………………………………… …………………….59

Figure 4.26. ROC curves of 0.01 learning rate, 500 training cycles, 0.9 momentum of

ANN in RapidMiner……………………………………………………..61

Figure 4.27. ROC curves of Euclidean with Manhattan distance of KNN in WEKA…64

Figure 4.28. ROC curve of Manhattan distance of KNN in RapidMiner……………...66

Figure 5.1. Default configuration of SVMs ROC curves……………………………....74

Figure 5.2. Improved configuration of SVMs ROC curves……………………………75

Figure 5.3. Default configuration of Bagging and Boosting ROC curves……………..76

Figure 5.4. Improved configuration of Bagging and Boosting ROC curves…………..77

Figure 5.5. Improved configuration of RF and Naïve Bayes ROC curves…………….77

Figure 5.6. Improved configuration of RF and Nearest Neighbors ROC curves………78

Figure 5.7. Improved configuration of RF and Decision Tree ROC curves…………...79

xiii

LIST OF SYMBOLS AND ABBREVIATIONS

AMC Average Method Complexity

ANN Artificial Neural Network

AUC Area Under the Curve

AVG_CC Mean Values of Methods

CA Afferent Couplings

CAM Cohesion Among Methods of a Class

CBM Coupling Between Methods

CBO Coupling Between Objects

CE Efferent Couplings

CK Chidamber and Kemerer

DAM Data Access Metric

DIT Depth of Inheritance Tree

FN False Negative

FP False Positive

GRNN General Regression Neural Network

IC Inheritance Coupling

KNN K-Nearest Neighbors

LCOM Lack of cohesion of methods

LCOM3 Lack of Cohesion Among Methods of a Class 3

LMT Logistic model tree

LOC Line of Code

LOCQ Quality of Source Code

LR Logistic Regression

MAE Mean Absolute Error

MAX_CC Maximum Values of Methods

MFA Measure of Functional Abstarction

ML Machine Learning

MLP Multilayer Perceptron

MOA Measure of Aggression

MPC Message Passing Coupling

NB Naïve Bayes

NOC Number of Children

NOM Number of Methods

NPM Number of Public Methods

OO Object-Oriented

PUK Pearson VII kernel function

RF Random Forest

RFC Response for a Class

RMSE Root Mean Square Error

ROC Receiver Operating Characteristics

SLOC Source Lines of Code

SMO Sequential Minimal Optimization

SVM Support Vector Machines

TN True Negative

TP True Positive

WEKA Waikato Environment for Knowledge Analysis

WMC Weighted Methods per Class

1

1 INTRODUCTION

Software quality and reliability are the most crucial aspects related to software

complexity. In software engineering, software defects prediction with reliability is a

problematic area. Reliability measures the number of bugs in the developed software

systems. The software complexity level is also associated with maintainability. Software

defect prediction research area is crucial for the reliability and it provides predicting

defective or fault-prone modules in software. As a result, software projects should be reliable

and cost-effective. The OO method is different from the conventional programming strategy.

It distributes data and controls the objects. The OO method has become significant in

software engineering than structural design. It demonstrates the new potential and more

reliable way to analyze the problems. The OO method provides better reusability, reliability

and maintainability than the traditional approach. The software metrics can be used to

evaluate the quality of OO software. OO software and these metrics support to confirm the

quality properties of software such as fault proneness.

1.1 Problem Definition

Software requirements, needs, complexities and modules are growing day by day

because of the large software systems. The most critical issues for the customer are the

usability and reliability of software for product satisfaction. A bug in a software project can

also be called a defect. Finding and eliminating software defects are one of the most

significant problems. This seems to be a common problem in the software development life

cycle. It is a challenging task because the failure rate potential may become increase when

software complexity level increases and it affects product satisfaction. Nevertheless, the

defect-free software product is almost impossible. Thus, the prediction of faulty classes is

difficult to handle because of the increasing software line of code. One way to overcome

these problems is a traditional process such as code review, software testing like unit,

integration and system testing. Nevertheless, the effort, time, cost and resource increase

because of the growth of software complexity. Complex software projects require a

significant and costly testing process. In previous studies, software metrics and techniques

are reported to be good indicators of software reliability.

2

1.2 Problem Solution

Most of the research in this field aimed at solving the minimization of defects,

determining fault-prone software classes with predictive models, code changes and software

metrics. The most useful way is to predict or detect faulty classes or modules in the early

stage of the software development life cycle. Consequently, the quality of software products

may improve, help reliable software, reduce testing and maintenance costs, allocate testing

resources efficiently, support software testing activities and optimize engineer efforts before

the software is released. Useful software metrics, especially OO can determine software

quality and performance. OO paradigm provides a better design solution and reliability issue

than the traditional approach. There are many ML algorithms in the literature that might

predict the reliability of software. The main objective is to investigate comparative

performance analysis with a 10-fold cross-validation technique performed to find the

accuracy of the training model between different 11 most widely used ML techniques and

two libraries for SVM. These techniques are Decision Tree, Rule-based Classification, SVM,

Nearest Neighbors, Bayesian Network, Random Forest (RF), Logistic Regression (LR),

Boosting, Bagging, Naïve Bayes, Neural Networks. SVM library's names are Library for

Support Vector Machines (LibSVM) and Library for Large Linear Classification

(LibLinear). Moreover, combinations of various kernel types, classifiers, estimators,

measure types, iterations and search algorithms were analyzed for improving prediction

accuracy. Data set includes 33 open sources OO software and 8093 instances without noisy

data obtained from the PROMISE repository and 20 software metrics for determining the

best technique and effect of OO metrics, specifically CK metrics suite on defect prune

classes in order to the generalized conclusion.

These ML techniques evaluated six evaluation metrics such as Accuracy, Precision,

Recall, AUC, MAE and RMSE. Besides, the ROC used for solving the dataset imbalanced

nature problem. These performance metrics were calculated with RapidMiner and WEKA

ML tools. In this way, the performance of both tools compared. Moreover, there is no

previous research analyzes the same dataset with both tools. This approach can solve another

performance comparison problem between WEKA and RapidMiner tools because both tools

calculated performance slightly differently.

Various metrics have been proposed in the literature by researchers to evaluate the

quality of software. Nevertheless, CK metrics good indicator of reliability and

maintainability issues [48].

3

1.3 Study Motivation

Previous research and literature reviews show that various ML techniques such as

SVM, Bayesian learning, Decision Trees, Neural Networks, ensemble and Rule-based

learning models were used. In previous studies several software metrics were proposed to

find or develop efficient defect prediction techniques. However, limited data sets and

software metrics were analyzed. There are no comprehensive analyses evaluating ML

algorithms with a large dataset and using two different ML tools for software reliability.

Accordingly, the critical problem with these analyses is that different ML performance

results available in the literature. Another constraint and common problem can be reported

as the limited software metrics are available in the dataset.

1.4 Aims & Objectives

Research aims at finding a solution to this challenging problem of software reliability

issues and how some constraints such as time and cost-efficiently should be used. These

constraints make the problem difficult. Various ML techniques have been used to overcome

this problem and detect reliability issues. These techniques are effective technologies. Useful

information can be retrieved from these techniques for developers and managers.

Consequently, resource allocation can be more stable, coding and design quality improve,

testing cost and maintenance effort decrease. Another important goal is to improve the

classification accuracy of the ML algorithms. Thus, these techniques can be used in bug

prediction, effort estimation and risk judgment in the early phases of the software

development life cycle. Also, it can be useful for minimization of business risk.

In the first part of the thesis, primary problem definition and solution, study

motivation, objectives proposal summarized. In Section 2, an overview of previous studies

presented about software reliability and related topics. Moreover, the limitations of previous

research and research questions are given. In Section 3, 20 software metrics, their usage and

33 datasets are explained. In Section 4, the applied ML techniques, used ML tools such as

WEKA and RapidMiner have described. In Section 5, summarizes the main findings,

strengths and weaknesses of methods and performance evaluation results such as Accuracy,

AUC, Precision, Recall, MAE, RMSE and ROC. Furthermore, a comparison of each

technique discussed. Proposed ML techniques for defect prediction also discussed in this

section. As a result, conclusions and future works given in Section 6.

4

2 LITERATURE REVIEW

2.1 Previous Literature

Previous literature shows that different regression models, ML techniques and

software metrics have been proposed to determine and predict defect-prone classes or

modules for software quality prediction. There have been different efforts in this area. In this

section, previous related works using different ML techniques with various software metrics

presented.

Several studies suggest that CK software design level metrics are used to determine

software quality. This metrics suite has indicated that the prediction of defects efficiently

and it can be a good indicator of software quality. CK metrics suite included six essential

metrics. These are WMC, CBO, RFC, NOC, LCOM, DIT. These OO software metrics can

measure the reusability, reliability, maintainability of software and point of the class

hierarchy [47].

Basili et al. research has emphasized OO software metrics impact of fault prediction

in the early stages of the development life cycle. In this Basili study, Multivariate logistic

regression is selected in prediction techniques for proving the effect of OO software metrics

[53].

Several OO software metrics have been proposed, such as Number of Methods

(NOM), Message Passing Coupling (MPC), Size of Procedures or Functions (SIZE1),

Number of Methods (NOM), Data Abstracting Coupling (DAC), Properties Size defined in

a class (SIZE2) assessed the maintenance effort and relation between of each metric in Li &

Henry research. Li & Henry recommended these software metrics to measure the number of

changes, complexity and coupling levels in the software using these OO metrics [55].

Numerous studies to investigate the primary attribute of software metrics for software

quality. Tang et al. reported that the WMC metric is a significant predictor for faulty modules

and classes [39]. Another research is Briand et al., which extracted 49 software metrics

proposed using Multivariate Logistic Regression models. The result of the research shows

that all metrics can be a good predictor, except NOC [32].

Quah & Thwin research analyzed different Neural Networks for estimating

maintainability and reliability of software quality such as General Regression Neural

Network (GRNN) and Ward Neural Network using OO software metrics. After both Neural

5

Networks compared with each other, the GRNN model has the best performance for

maintainability and reliability [40].

Gyimothy et al. research suggests that the CBO metric is the primary indicator and

LOC performance is also useful for fault prediction. Nevertheless, the NOC attribute have

low results in the CK metrics suite. In this research, the Mozilla dataset used in Decision

Trees, LR and Neural Network [50].

Furthermore, different software metrics were analyzed except the CK metrics suite.

For example, Zimmermann et al. used 14 size metrics in Eclipse Java source code and tried

to predict fault and non-faulty classes. Efficiently predict faults, a combination of complexity

metrics suggested [52].

Nasa KC1 is the most analyzed dataset for fault-prone prediction. This dataset was

analyzed with the Decision Tree and Neural Network with ROC analysis to predict fault

proneness and validated with high, medium and low defects severity levels. Based on the

Decision Tree and Neural Network performance results, both techniques are better than the

LR [57]. Another research considered the effectiveness of the prediction of fault-prone

classes and OO software metrics [42]. Studies of Pai and Dugan evaluated the Nasa KC1

dataset also with using Bayesian Network. Bayesian Network form result shows that WMC,

RFC, CBO and Source Lines of Code (SLOC) metrics are the major contributor for fault

proneness of software prediction [43]. Elish et al. 's findings suggest that the SVM has the

same NASA dataset and purpose. SVM has better performance than the other eight

compared to ML techniques [27]. Other experiments and alternatives ML techniques

analyzed for reliability [24, 25].

Some studies such as Arisholm et al. suggested the AdaBoost algorithm. LR, SVM

and Neural Networks techniques were compared to different options of Decision Tree with

Java telecom system. If the AdaBoost technique used with C4.5, performance gave a useful

result [6].

Malhotra, Sawhney and Shukla analyzed the performances of several 17 ML methods

on Xerces OO software to find defect prone classes. Bagging method is the most reliable

performance for defect prediction models [41].

Unlike traditional software metrics, Okutan & Yildiz research evaluated two different

software metrics associated with the number of developers (NOD) and the quality of source

code (LOCQ). Bayesian Networks used to observe the relation between defect proneness

and new software metrics. This work shows that RFC, LOC and LOCQ are more remarkable

6

attributes, whereas LCOM, WMC and CBO software metrics are less useful on software

quality prediction. Another conclusion is that NOC and DIT software metrics are not a good

indicator [2].

Over time, an extensive literature has investigated software reliability using PROMISE

data repository and maintainability using QUES systems. ML techniques are not particularly

new and have been used for many years in software reliability. For instance, Reddivari and

Raman compared eight ML techniques. RF's performance results in terms of AUC value is

a good predictor for maintainability and reliability. When we consider software CK metrics

suite, Coupling Between Methods (CBM), WMC and DIT attributes are important for

software quality [48].

2.2 Limitations of Previous Research

Previous studies have shown that different ML techniques and software metrics were

analyzed and proposed. However, several gaps and limitations are still available. In previous

studies, the datasets to investigate software reliability were limited. As far as we know, less

previous research has investigated large datasets and the effect of CK software metrics on

software reliability. However, the existing research has some problems with the

generalization of results, since performance results may change according to dataset size and

characteristics. In the past several researches, the various dataset included different software

metrics suite and characteristics of datasets are not same. For example, in this thesis, all

datasets are OO software and include CK metrics attributes. To fill this literature gap, this

thesis has large dataset that included 20 software metrics.

2.3 Research Questions

The literature review shows that OO software metrics, especially CK metrics suite a

crucial predictor of quality rather than the other traditional software metrics. In this study,

following research questions are set as below. To the best of our knowledge, these questions

have previously never been addressed.

RQ1. What is the most and least effective software metric to determine software reliability?

RQ2. What are the most effective ML techniques to estimate software defect prediction?

RQ3. Is it possible to generalize the best performance result of the ML techniques to estimate

software defect prediction?

RQ4. Is the performance results differ according to Machine Learning tool used?

7

3 MATERIALS & METHODS

3.1 Data Collection

In this thesis study, 33 open-source of datasets received from software projects. The

latest versions of projects were selected because duplicate classes and values should prevent.

This dataset includes 8093 instances and 2958 defects. The software defect prediction public

dataset obtained from one of the most popular and largest data repositories called PROMISE

[17]. Names of project dataset are Ant, Tomcat, Velocity, Ivy, JEdit, Poi, Forrest, Workflow,

Log4j, Lucane, Synapse, Xalan, Arc, Berek, Camel, CKJM, E-Learning, Intercafe,

Kalkulator, Nieruchomosci, Pbeans, Pdftranslator, Prop, Redaktor, Serapion, Skarbonka,

Sklebagd, System data, Szybkafucha, Termoproject, Wspomaganiepi, Xerces, Zuzel. All

these datasets contain the same OO software metrics. Moreover, all dataset gives information

about the bug at the class level. In Table 3.1, the dataset is given in detail. Xalan and Log4j

software have the highest defective modules. JEdit and Forrest software has the least

defective modules. However, Xalan and Tomcat software have the most instances. CKJM

and Wspomaganiepi dataset have the least instances. All dataset includes CK metrics. For

analyses of these datasets in WEKA and RapidMiner, all dataset combined in one CSV file

without software name and version attributes. Because the name and version of the software

should not affect the target class determination and performance results. For this purpose,

the version and name of the software was not selected as an attribute in the RapidMiner ML

tool. The analyzed data does not include missing data. However, bug label in all dataset

contains a count of bug. For ML techniques, these bug counts change to binary classification

as 1 is defective, 0 is a non-defective software module.

8

Table 3.1 Details of dataset

Dataset Release # of

Instance

Defective

Module

% Defective

Module

Metrics Suite

Ant 1.7 745 166 22 CK

ArcPlatform 1.0 234 27 12 CK

Berek 1.0 43 16 37 CK

Camel 1.6 965 188 19 CK

CKJM 1.8 10 5 50 CK

E-Learning 1.0 64 5 8 CK

Forrest 0.8 32 2 6 CK

Intercafe 1.0 27 4 15 CK

Ivy 2.0 352 40 11 CK

JEdit 4.3 492 11 2 CK

Kalkulator 1.0 27 6 22 CK

Log4j 1.2 205 189 92 CK

Lucene 2.4 340 203 60 CK

Nieruchomosci 1.0 27 10 37 CK

Pbeans 2.0 51 10 20 CK

Pdftranslator 1.0 33 15 45 CK

Poi 3.0 442 281 64 CK

Prop 452 660 66 10 CK

Redaktor 1.0 176 27 15 CK

Serapion 1.0 45 9 20 CK

Skarbonka 1.0 45 9 20 CK

Sklebagd 1.0 20 12 60 CK

Synapse 1.2 256 86 34 CK

Systemdata 1.0 65 9 14 CK

Szybkafucha 1.0 25 14 56 CK

Termoproject 1.0 42 13 31 CK

Tomcat 6.0 858 77 9 CK

Velocity 1.6 229 78 34 CK

Workflow 1.0 39 20 51 CK

Wspomaganiepi 1.0 18 12 67 CK

Xalan 2.7 909 898 98 CK

Xerces 1.4 588 437 74 CK

Zuzel 1.0 29 13 45 CK

9

3.2 Software Metrics

Software metrics revealed a significant role for measuring software characteristics and

complexity level. The metrics suite aims to figure out various problems, such as software

maintainability and reliability. Previous research shows that a lot of traditional and OO

software metrics suite has been suggested. Mostly used software metrics suites are Bansiya

and Davis [7], Briand et al. [32], CK metrics suite [47], Etzkorn et al. [34], Genero et al.

[19], Halstead [36], Harrison et al. [22], Kim and Ching [30], Li and Henry [55], Lorenz and

Kidd [38], McCabe’s cyclomatic complexity [51], Melo and Abreu [56], MOOD Metrics

[16], Robert Martin [44], Sharble and Cohen [49], Tang, Kao and Chen [39], Tegarden et al.

[12]. In thesis study used the CK software metrics suite because one of the most important

and widely used OO metrics suite. Evaluating of external software quality attributes such as

maintainability, reliability and reusability, CK metrics suite widely used in the past research.

Besides, internal characteristics of software systems like class complexity, cohesion,

coupling, encapsulation, inheritance and polymorphism can be measured by software

metrics. Details of 20 software metrics is given in Table 3.2. This research intends to

understand the relationship between reliability and CK metrics suite. The literature review

and previous research show that the CK metrics suite has been provided significantly

effective for predicting faults in a software system.

10

Table 3.2 Details of software metrics

Metric Name Description

Afferent Couplings (CA) It is Martin’s Metric. It is the count of classes which is calling given or a particular

class.

Average Method Complexity (AMC) AMC is the count of binary codes, which means the average McCabe’s Cyclomatic

Complexity method size.

Average McCabe’s

Cyclomatic Complexity (AVG_CC)

Average count of the independent values of methods.

Cohesion Among

Methods of a Class (CAM)

It is a similarity method related to signatures and prototypes.

Coupling between Methods (CBM) Measure the total count of new or redefined methods to which are inherited methods

that are coupled [40].

Coupling Between Objects (CBO) Total count of classes to couple with or given class. Maintainability can be difficult

when the number of coupling number is high. The level should be low to

maintainability.

Data Access Metric (DAM) The ratios of all private and non-public (protected) attributes are divided by all class

attributes. It is related to encapsulation.

Depth of Inheritance Tree (DIT) It is shown that the maximum level. In other word, longest path from the class to the

root of the tree [47]. If a high count of steps from the root to the leaf node or inherited

methods increase software complexities. So, the level should be low.

Efferent Couplings (CE) It is Martin’s Metric. It is a count of classes, which is called a given or specific class.

Inheritance Coupling (IC) It is a count of parent classes to couples with a given or specific class.

Lack of Cohesion of Methods (LCOM) The number of methods pairs not having any common attributes that pass references to

variables. High LCOM shows that weak encapsulation is available in the software. It

should be low.

Lack of Cohesion Among Methods of a

Class 3 (LCOM3)

It is minor improvements and variation of cohesion level calculation of the LCOM by

Henderson-Sellars.

Line of Code (LOC) In the method, the number of code lines with non-commented. Comment and blank

lines do not include.

Maximum McCabe’s Cyclomatic

Complexity (MAX_CC)

It is the maximum count of the independent values of the method.

Measure of Aggression (MOA) It is the percentage of user-defined data declarations in the given class. It is associated

with the composition.

Measure of Functional

Abstraction (MFA)

It is the ratio in the count of methods. These methods inherited by a class divided by

the total defined methods number available [53]. It is associated with inheritance.

Number of Children (NOC) NOC is associated with inheritance. Because it measures the count of subclasses or

direct children of a given class. It should be low to maintainability of the software.

Number of Public Methods (NPM) It is the count of convenient public methods in a given class.

Response for a Class (RFC) It responds to a message obtained by some method or class object after a set of all

methods in a class executed [47]. Internal and external methods in a class. It should be

low.

Weighted Methods Per Class (WMC) It is a CK metric. Sum of methods complexities in a class. High WMC values indicate

a more complex software class. If software complexity increases, software class

maintainability can be more difficult. [47, 40]. The complexity level should be low.

Defect Count It is binary classification shown as absence or presences of the defects.

11

3.3 Machine Learning Software Tools

ML software is a data mining tool that includes various ML algorithms. Tools contain

regression, data process, classification, clustering, data mining and visualization features.

For using ML algorithms, most popular tools RapidMiner and WEKA are selected. Both

tools are easy to use, fast, stable and provide various ML algorithms. Moreover, both tools

provide visualization and different performance analyses features. ML tools provide various

features. For instance, train models, enable them to find new methods and support deep

learning.

3.3.1 WEKA machine learning software

Weka is an open-source software tool. It can use it through a graphical user interface.

Weka images interface available in appendix 1.

• Preprocess section provide edit and add features of dataset columns and display

statistic of selected attribute. Also, the preprocess section allows various

modifications of columns. For example, in dataset Table 3.1, all attributes are

numeric. Defect attributes should be binary value mean “True” or “False”. For this

reason, defect attributes changed to the “NumericToNominal” below “unsupervised”

filter. Interfaces available in appendix 2.

• Classify sections provide various ML algorithms. It provides an analysis of the

dataset. Furthermore, different test options like cross-validation, training and test set

can be prepared.

• Select attributes section enables to find and analysis of major and minor attributes in

the dataset.

Weka Knowledge Flow environment also used to compare ROC curves. Weka

Knowledge Flow interface available in appendix 3.

• Arrf loader import to arrf file format.

• Numeric to nominal section change to numeric attributes into nominal.

• Class assigner set or unset to the configuration of the class index.

• Cross-validation fold maker provides number of folds and random seed

configurations.

• The classifier of the performance evaluator section manages to evaluate metrics.

• The performance chart of the model visualizes the performance metrics such as ROC

curve.

12

3.3.2 RapidMiner machine learning software

RapidMiner can work on cross-platform operating systems and has a friendly user

interface. It enables to create own models with drag and drop feature. It provides data

preparation, text mining and deep learning. In the RapidMiner IDE, a visual representation

of the data mining process flow is available [46].

• The data access section enables us to read and write a file with different formats such

as CSV, Excel and ARFF. Also, it provides read and writes from database and cloud

storage.

• The blending section provides a modification of columns, transformation attributes

to different types and join features.

• The modeling section provides various ML algorithms, correlations matrix, feature

weights and optimizations.

• The validation section provides various predictive performance features and

visualizations.

RapidMiner interface available in appendix 17.

13

4 TECHNIQUES & EXPERIMENTS

ML algorithms are well proven to be significantly effective in software maintainability

and reliability. ML prediction and classification techniques provide useful information from

the dataset for software quality. In this chapter, mostly used ML techniques were analyzed

with different parameters and options in WEKA and RapidMiner tools. Thus, the

effectiveness of techniques can be evaluated for dataset. Default and different configuration

of each ML techniques compared to each other for improving performance results in WEKA

and RapidMiner tools. In used dataset, the bug label should be changed numeric to a nominal

attribute.

Furthermore, Decision Stump, Random Tree, Logistic Model Tree (LMT) classifiers

analyzed in Bagging and Boosting algorithms. Decision Stump is a one-level simple tree

structure of the Decision Tree model. Also, it is called 1-rules, which uses a single instance

for splitting. Random Tree can deal with both regression and classification problems.

Multiple Random Trees consist of the RF method. LMT is logistic model tree for

classification problems. It consists of classification trees with a logistic regression model

and decision tree at the leaves.

Moreover, various criteria analyzed, such as information gain, gain ratio and gini

index. All the features or attribute entropies calculated to find the best feature and maximum

information about a class for information gain. Try to decrease the level of entropy, which

is starting from the root to the leave nodes. It is used by ID3 and C4.5 algorithms. The gain

ratio is an alternative of information gain that modifies the information gain. Gini index

calculates the amount of specific feature probability. These specific features mislabeled. It

is also called gini impurity and used by CART algorithms.

Others affect the pruning rule is the confidence factor parameter and reduced error

pruning. For little pruning, confidence factor value should be large. For heavy pruning,

confidence factor should be small. The confidence factor threshold range should be between

0 and 1 and shows that internal error while pruning the decision tree in data. If a large amount

of data is analyzed, reduced error pruning can be useful. Because decision tree branches may

have noise data. These branches can be removed and identified. As a result, the classification

result improves. Nevertheless, scalability can be a problem if a large amount of dataset is

14

available [45]. It is starting and checking each internal node for changing it with the most

popular or repeated class that does not decrease the prediction accuracy of the trees. [3].

4.1 Decision Tree

The decision tree is a classification and predictive model. It is flow-chart and tree-

classifying the instance by sorting them down the tree where each node shows all reachable

decisions with edges. Decision tree algorithms such as C4.5 and ID3 are successful

algorithms and try to find an attribute that returns the highest information gain. The decision

tree is available as J48 in Weka [37]. Screenshot of WEKA tool usage is available in

appendix 4 for Decision Tree.

The confidence factor default value is 0.25 in Weka. For comparison between

RapidMiner and WEKA, RapidMiner confidence factor specified 0.25 and there were no

additional filters in both tools in Table 5.2 and Table 5.3. Value of the improved attributes

to achieve higher AUC performance is given in Table 4.1 for WEKA and is given in Table

4.6 for RapidMiner.

4.1.1 Decision Tree analyses in WEKA

Table 4.1 Default and improved configurations of Decision Tree in WEKA

Settings Default Value Improvement

Confidence Factor 0.25 0.1

Reduced Error

Pruning

False True

The default value of the “confidence factor” parameter is 0.25, the “reduced error

pruning” parameter is false. After a series of experiments, the “confidence factor” should be

0.25 and “reduced error pruning” should be true to get a better performance result. The

differences between the performance results of default and improved values are given in

Table 4.2.

15

Table 4.2 Performance results of default and improved configurations of Decision Tree in WEKA

Only reduced error pruning should be true to get the highest AUC value for Decision

Tree. The default value of “subtreeRaising” is true and “unpruned” is false. Subtree raising

is post-pruning operations. It replaces or reclassify a tree with one of its subtrees and has a

minor effect on the decision tree. The unpruned decision trees are larger than pruned trees.

If the tree is pruned, the size of branches or nodes can be removed. If “subTreeRaising”

options set to false or “unpruned” set to true, the value of AUC and accuracy results decrease.

Performance results of “subTreeRaising” and “unpruned” configuration is given in Table

4.3.

Table 4.3 Performance results of Subtree Raising and Unpruned configurations of Decision Tree in WEKA

Confusion matrix of 0.25 confidence factor without reduced error pruning is given in

Table 4.4. Confusion matrix of 0.25 confidence factor with reduced error pruning is given

in Table 4.5. Comparison of default and improved ROC curves are given in Figure 4.1.

Table 4.4 Confusion matrix of default configurations of Decision Tree in WEKA

Classified As a b

a = 0 4273 862

b = 1 1384 1574

Confidence

Factor

Reduced

Error

Pruning

Accuracy

AUC

Precision Recall

MAE

RMSE

0.25

(Default)

False

(Default)

72.25% 0.694 0.715 0.722 0.325 0.480

0.1 False 73.15% 0.703 0.725 0.731 0.336 0.460

0.25

(Improved)

True

(Improved)

73.13% 0.724 0.725 0.731 0.340 0.453

Subtree

Raising

Unpruned Accuracy

AUC

Precision Recall

MAE

RMSE

False True 71.46% 0.698 0.709 0.715 0.315 0.494

16

Data are classified 72% correctly. According to the confusion matrix, 862 instances

should be non-defect but classified as defective and 1384 instances should be defective but

classified as non-defective.

Table 4.5 Confusion matrix of improved configurations of Decision Tree in WEKA

Classified As a b

a = 0 4456 679

b = 1 1496 1462

Data are classified 73% correctly. According to the confusion matrix, 679 instances

should be non-defect but classified as defective and 1496 instances should be defective but

classified as non-defective.

Figure 4.1 ROC curves of default and improved configurations of Decision Tree in WEKA

4.1.2 Decision Tree analyses in RapidMiner

For default and improved RapidMiner configuration, the confidence factor should be

0.25 to comparing with the WEKA tool.

Table 4.6 Default and improved leaf size count of Decision Tree in RapidMiner

Settings Default Value Improvement

Minimal Leaf Size 2 5

The default value of the minimal leaf size is 2. After a series of experiments, the

minimal leaf size should be 5 to get a better performance result. Leaf size is the number of

observations or cases in that leaf.

17

The end of the node is a leaf in a decision. Minimal leaf size use for a more prone

model to find noise in train data. The differences between the performance results of default

and improved leaf size are given in Table 4.7.

Table 4.7 Performance results of leaf size count of Decision Tree in RapidMiner

In this thesis study, the experiment results show that minimal leaf size should be 5 to

get the highest AUC value for Decision Tree. Nevertheless, there are not any significant

differences between 4 and 6 minimal leaf size according to AUC value. The selection gain

ratio, information gain, and gini index criterion do not affect the performance results for used

dataset. The default value of the “apply pre-running” option is true. If “apply pre-running”

option set to false or more than 5 minimal leaf size, the value of AUC and accuracy results

decrease.

For Decision Tree, confusion matrix result for 2 minimal leaf size is given in Table

4.8. Confusion matrix result for 5 minimum leaf size is given in Table 4.9. ROC curve of 5

minimum leaf size is given in Figure 4.2.

Table 4.8 Confusion matrix of 2 leaf size of Decision Tree in RapidMiner

Accuracy: 72.94% True 1 True 0 Class Precision

Prediction 1 1349 581 89.90%

Prediction 0 1609 4554 73.89%

Class Recall 45.81% 88.69%

Minimal

Leaf Size

Pre-

Pruning

Accuracy

AUC

Precision Recall

MAE

RMSE

2

(Default)

TRUE

(Default)

72.94% 0.730 0.738 0.886 0.346 0.440

3 TRUE 73.04% 0.733 0.739 0.888 0.347 0.439

4 TRUE 72.74% 0.732 0.737 0.885 0.349 0.439

5

(Improved)

TRUE 72.82% 0.735 0.737 0.887 0.351 0.437

6 TRUE 72.77% 0.734 0.737 0.887 0.351 0.437

18

Table 4.9 Confusion matrix of 5 leaf size of Decision Tree in RapidMiner

Accuracy: 72.82% True 1 True 0 Class Precision

Prediction 1 1336 581 89.90%

Prediction 0 1822 4557 73.75%

Class Recall 45.17% 88.74%

Figure 4.2 ROC curve of 5 leaf size of Decision Tree in RapidMiner

4.2 Random Forest

RF technique is ensemble learning for supervised classification. It uses by constructing

multiple decision trees. RF consists of bagging of different decision trees. The feature

selection of each split is randomized. Individual predictor strength affects the predictions

[31]. RF can handle missing values in the dataset and prevent the overfitting problem. A

voting mechanism selects the predictions of whole trees. For example, the majority voting.

Screenshot of WEKA tool usage is available in appendix 5 for RF.

The maximum depth of the default value is 0 in Weka. For comparison between

RapidMiner and WEKA, RapidMiner maximum depth specified 0 and there were not any

19

additional filters in both tools in Table 5.2 and Table 5.3. Values of the improved attribute

to achieve higher AUC performance is given in Table 4.10 for WEKA.

4.2.1 Random Forest analyses in WEKA

Table 4.10 Default and improved iterations count of RF in WEKA

Settings Default Value Improvement

Number of Iterations 100 500

The default value of the number of iterations is 100. The iteration parameter affects

the results as positive. Iterations count provide number of trees. According to experiments,

the iterations should be 500 to achieve a better AUC result. The differences between the

performance results of iterations count are given in Table 4.11.

Table 4.11 Performance results of iterations count of RF in WEKA

The experiment results show that number of iterations parameter should be 500 to get

the highest AUC value for RF in WEKA. Out of the bag calculate the bag errors and

verifying the RF model. It is not involved and used in training data. The out of bag score is

determined as the correctly predicted rows count from the out of bag example. Therefore, if

the dataset is not large enough and uses it totally as the training dataset, the out of bag rate

affords can be useful. The default value of “calcOutOfBag” is false. If “calcOutOfBag”

options change to true, accuracy and AUC performance results do not change.

Another option is the maximum depth value. Parameter of maximum dept defined the

maximum depth of all trees. It described as the longest route between the leaf and the root

node. The default value is false, which indicates that each tree will increase until every leaf

is pure. It means all the data on the leaf gets from the same class. If this value increases, the

Number of

Iterations

Accuracy

AUC

Precision Recall

MAE

RMSE

100

(Default)

76.94% 0.812 0.766 0.769 0.321 0.402

300 76.94% 0.815 0.767 0.769 0.321 0.401

500 77.07% 0.816 0.768 0.771 0.320 0.400

600 76.93% 0.810 0.767 0.769 0.320 0.400

20

overall performance result decreases for the used dataset. Performance results of maximum

depth of tree are given in Table 4.12.

Table 4.12 Performance results of maximum depth of tree count of RF in WEKA

The default value of maximum depth is 0 to provide the best performance results.

Nevertheless, there are not any significant differences between 300 and 500 iteration

according to AUC value. From these results, it is clear that performance results decrease if

more than 500 iterations are available. Comparison of 100 and 500 iterations ROC curves

are given in Figure 4.3. Confusion matrix of 100 iteration is given in Table 4.13 and 500

iteration is given in Table 4.14.

Table 4.13 Confusion matrix of 100 iteration of RF in WEKA

Classified As a b

a = 0 4517 564

b = 1 1302 1656

Data are classified 77% correctly. According to the confusion matrix, 564 instances

should be non-defect but classified as defective and 1302 instances should be defective but

classified as non-defective.

Table 4.14 Confusion matrix of 500 iteration of RF in WEKA

Classified As a b

a = 0 4590 545

b = 1 1310 1648

Data are classified 77% correctly. According to the confusion matrix, 545 instances

should be non-defect but classified as defective and 1310 instances should be defective but

classified as non-defective.

Number of

Iterations

Maximum

Depth of Tree

Accuracy

AUC

Precision Recall

MAE

RMSE

100 0 76.94% 0.812 0.766 0.769 0.321 0.402

100 5 72.71% 0.748 0.733 0.727 0.391 0.432

21

Figure 4.3 ROC curves of 100 and 500 iteration of RF in WEKA

4.2.2 Random Forest analyses in RapidMiner

The criterion of gain ratio, information gain and gini index affect the results. The

default criterion in RapidMiner is a gain ratio. Performance results of criterion are given in

Table 4.15. Criterion selection means is that a determined split of which attributes will be

selected. For default and improvement of RapidMiner configuration, “maximalDept” is set

to 0 to compare with the WEKA tool.

Table 4.15 Criterion performance results of RF in RapidMiner

Criterion should be information gain to get the highest AUC value for RF.

Nevertheless, there are no significant differences between gini index and information gain

according to AUC performance result. Another improvement of the RF performance result

is the random splits option in RapidMiner. The default option of “random splits” option is

disabled. Random splits parameter splits of numerical attributes to be chosen randomly

instead of being optimized. If the “random splits” option enabled, the performance result of

the AUC value is 0.810. However, still the selection of information gain has the highest

performance value for AUC.

Criterion Accuracy AUC

Precision Recall

MAE

RMSE

Gain Ratio

(Default)

74.46% 0.792 0.753 0.889 0.335

0.412

Information

Gain

76.62% 0.815 0.772 0.894 0.324

0.401

Gini Index 76.67% 0.813 0.774 0.891 0.325 0.401

22

For RF, confusion matrix result for gain ratio is given in Table 4.16. Confusion matrix

result for information gain is given in Table 4.17. ROC curve of information gain is given

in Figure 4.4.

Table 4.16 Confusion matrix of Gain Ratio of RF in RapidMiner

Accuracy: 74.46% True 1 True 0 Class Precision

Prediction 1 1460 569 71.96%

Prediction 0 1498 4566 75.30%

Class Recall 49.36% 88.92%

Table 4.17 Confusion matrix of Information Gain of RF in RapidMiner

Accuracy: 76.62% True 1 True 0 Class Precision

Prediction 1 1608 542 74.79%

Prediction 0 1350 4593 77.28%

Class Recall 54.36% 89.44%

Figure 4.4 ROC curve of Information Gain of RF in RapidMiner

23

4.3 Bayesian Network

The Bayesian classifier based on Bayes theorem and it is a simple probabilistic

classifier. It is independence assumptions between features and predictors. The network form

of Bayesian shows graphical attributes description and attributes conditional dependencies.

The K2 search algorithm is used in Bayesian Network [26, 28]. Bayesian Network is

available in WEKA, but RapidMiner has not Bayesian Network. For this reason, it was

analyzed only the WEKA tool. Screenshot of WEKA tool usage is available in appendix 6

for Bayesian Network.

Search algorithms affect to the performance results. The various search algorithms are

available in WEKA.

• K2 is a score-based and greedy search algorithm that explores the Bayesian Network

structure space to decrease search space. It tries to receive the network structure. K2

makes better learning capability [58].

• Hill climbing iterative algorithm is a heuristic search and mostly applied in Artificial

Intelligence for mathematical optimization problems. Hill climbing attempts to find a

more suitable solution for optimization difficulties. The most famous example of a hill-

climbing problem is the traveling salesman. Traveled measure by salesman needs to

decrease.

• LAGDHillClimber is a different Bayes Network learning algorithm. It is the Look

Ahead Hill Climbing algorithm. The algorithm does not calculate a best greedy

operation such as deleting or adding but estimates a sequence of best greedy operations.

Because it is ineffective and slow to consider all the potential arcs.

• RepeatedHillClimber Bayes Network algorithm begins with a randomly created

network and then uses hill climber.

• Tabu Search algorithm used for mathematical optimization difficulties and local

heuristic search approaches.

K2 greedy search and simple estimator algorithm used with 2 maximum number of

parent parameter for default values. Performance results of search algorithms and maximum

number of parents are given in Table 4.18.

24

Table 4.18 Performance results of search algorithms and maximum number of parents

Search Algorithm Estimator Result

K2 (Default) Simple Estimator

maxNrOfParents: 2

(Default)

Accuracy: 71.518% AUC: 0.733

Precision: 0.707 Recall: 0.715

MAE: 0.350 RMSE: 0.443

K2 Simple Estimator

maxNrOfParents: 3

(Improved)

Accuracy: 72.544% AUC: 0.738

Precision: 0.719 Recall: 0.725

MAE: 0.348 RMSE: 0.437

K2 Simple Estimator

maxNrOfParents: 4

Accuracy: 72.309% AUC: 0.735

Precision: 0.716 Recall: 0.723

MAE: 0.345 RMSE: 0.439

Hill Climber SimpleEstimator

maxNrOfParents: 2

Accuracy: 71.802% AUC: 0.732

Precision: 0.710 Recall: 0.718

MAE: 0.353 RMSE: 0.442

LAGDHillClimber SimpleEstimator

maxNrOfParents: 2

Accuracy: 70.666% AUC: 0.707

Precision: 0.698 Recall: 0.707

MAE: 0.385 RMSE: 0.446

RepeatedHillClimber SimpleEstimator

maxNrOfParents: 2

Accuracy: 69.665% AUC: 0.725

Precision: 0.693 Recall: 0.697

MAE: 0.336 RMSE: 0.473

Tabu Search SimpleEstimator

maxNrOfParents: 2

Accuracy: 69.492% AUC: 0.724

Precision: 0.688 Recall: 0.695

MAE: 0.343 RMSE: 0.466

The experiment results display that the K2 search algorithm should be selected with 3

number of parents to get the highest AUC value. Hill Climber, LAGDHillClimber,

RepeatedHillClimber and Tabu Search algorithms AUC results lower than K2. Confusion

matrix of K2 search algorithm with 2 parent number is given in Table 4.19. Confusion matrix

of K2 search algorithm with 3 parent number is given in Table 4.20. Comparison of 2 and 3

parent ROC curves are given in Figure 4.5.

25

Table 4.19 Confusion matrix of K2 search algorithm with 2 parent number of Bayesian Network

Classified As a b

a = 0 4380 755

b = 1 1550 1408

Data are classified 72% correctly. According to the confusion matrix, 755 instances

should be non-defect but classified as defective and 1550 instances should be defective but

classified as non-defective.

Table 4.20 Confusion matrix of K2 search algorithm with 3 parent number of Bayesian Network

Classified As a b

a = 0 4476 659

b = 1 1563 1395

Data are classified 73% correctly. According to confusion matrix, 659 instances should

be non-defect but classified as defective and 1563 instance should be defect but classified as

non-defective.

Figure 4.5 ROC curves of K2 search algorithm with 2 and 3 parent number of Bayesian Network

Two different Bayesian network forms are prepared to determine the most effective

defect prediction metrics and relationships among all software metrics. The most effective 9

software defect prediction metrics selected after a review of the literature [48].

26

Figure 4.6 Bayesian Network formed for 9 software prediction metrics.

Figure 4.7 Bayesian Network formed for 20 software prediction metrics.

Figure 4.6 and Figure 4.7 display that WMC is the primary useful software metric of

defect prediction. Secondary, NOC, CBO, LCOM, NPM, CAM, DIT and RFC software

metrics are useful for defect prediction. However, CBM and AVG_CC software metrics are

not effective for predicting the defect prone class. Also, DAM, MOA, IC, AMC and

MAX_CC software metrics have not significant effectiveness.

27

4.4 Naïve Bayes

Naïve Bayes is the fastest classification algorithm suitable for a large dataset. Naïve

Bayes technique is mostly used in many applications such as text classification, spam

filtering and sentiment analysis. It is supervising prediction model that uses Bayes theorem

and make classifications of dataset or classify objects based on independent series feature

“naive” assumptions. It is widely used and popular for ML techniques. Because the

implementation is simple, robustness and effective. The used dataset, software metrics have

non-normal distribution. This problem solved with the kernel density estimation of Naïve

Bayes [21]. It is effective when the attributes number is high. Screenshot of WEKA tool

usage is available in appendix 7 for Naïve Bayes.

Kernel Estimator used in Weka and RapidMiner tools to improve prediction accuracy

but default options in WEKA and RapidMiner, Kernel Estimator parameter is false. The

kernel is estimation techniques that are used in non-parametric estimation and used in kernel

density estimation. It is estimated the random variable probability density function. Values

of the improved attribute to achieve higher AUC performance is given in Table 4.21 for

WEKA.

4.4.1 Naïve Bayes analyses in WEKA

Using the kernel estimator parameter affects the performance results as positively. The

performance results of Kernel Estimator value are given in Table 4.21.

Table 4.21 Kernel Estimator configuration for improving Naïve Bayes performance in WEKA

Settings Default Value Improvement

useKernelEstimator False True

For Naïve Bayes, performance results of without Kernel Estimator and with Kernel

Estimator are given in Table 4.22. Comparison of Kernel Estimator ROC curves are given

in Figure 4.8.

https://en.wikipedia.org/wiki/Density_estimation
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Probability_density_function

28

Table 4.22 Performance results of Kernel Estimators of Naïve Bayes in WEKA

Confusion matrix of without kernel estimator is given in Table 4.23. Confusion

matrix of kernel estimator is given in Table 4.24.

Table 4.23 Confusion matrix of without kernel estimator of Naïve Bayes in WEKA

Classified As a b

a = 0 4637 498

b = 1 2154 804

Data are classified 67% correctly. According to the confusion matrix, 498 instances

should be non-defect but classified as defective and 2154 instances should be defective but

classified as non-defective.

Table 4.24 Confusion matrix of kernel estimator of Naïve Bayes in WEKA

Classified As a b

a = 0 4421 714

b = 1 1846 1112

Data are classified 68% correctly. According to the confusion matrix, 714 instances

should be non-defect but classified as defective and 1846 instances should be defective but

classified as non-defective.

useKernelEstimator Accuracy AUC Precision Recall MAE RMSE

False

(Default)

67.23% 0.676 0.659 0.672 0.329 0.554

True

(Improved)

68.36% 0.686 0.670 0.684 0.326 0.517

29

Figure 4.8 ROC curves of kernel estimators of Naïve Bayes in WEKA

4.4.2 Naïve Bayes analyses in RapidMiner

Performance results of Naïve Bayes are given in Table 4.25. Confusion matrix results

of Naïve Bayes without kernel are given in Table 4.26. Confusion matrix results of Naïve

Bayes Kernel are given in Table 4.27. ROC curve of Naïve Bayes Kernel is given in Figure

4.9. The experiment results show that Naïve Bayes Kernel provides better AUC value.

Table 4.25 Performance results of Naïve Bayes in RapidMiner

Table 4.26 Confusion matrix of Naïve Bayes in RapidMiner

Accuracy: 67.07% True 1 True 0 Class Precision

Prediction 1 810 517 61.04%

Prediction 0 2148 4618 68.25%

Class Recall 27.38% 89.93%

Type Accuracy AUC

Precision Recall

MAE

RMSE

Naïve Bayes

(Default)

67.07% 0.678 0.682 0.899 0.329 0.555

Naïve Bayes

Kernel

67.81% 0.688 0.691 0.890 0.327 0.527

30

Table 4.27 Confusion matrix of Naïve Bayes Kernel in RapidMiner

Accuracy: 67.81% True 1 True 0 Class Precision

Prediction 1 916 563 61.93%

Prediction 0 2042 4572 69.13%

Class Recall 30.97% 89.04%

Figure 4.9 ROC curve of Naïve Bayes Kernel in RapidMiner

4.5 Rule based classification

Rule-based classification classifies the records use of IF-THEN rules for class

prediction. IF part is condition THEN part is conclusion. Rules are easier to learn than deep

trees. One rule is built for each route from the root to a leaf. These classification rules extract

from decision trees. Rule-based classification is available as PART in only WEKA [37].

Screenshot of WEKA tool usage is available in appendix 8 for Rule Based classification.

Various combinations of the confidence factor, the minimum number of instances per rule

and the reduced error-pruning performance result is given in Table 4.28. If the confidence

factor set to 0.01 or enable a reduced error pruning option, the prediction accuracy rate

decreases.

31

Table 4.28 Performance results of default and improved configurations of Rule Based Classification

According to Table 4.28, the default value of WEKA configuration gives the best AUC

results. However, there are no crucial differences between 2 and 4 numbers of instances per

rule with 0.25 confidence factor. Confusion matrix of 2 minimum number of instances with

0.25 confidence factor is given in Table 4.29. Confusion matrix of 4 minimum number of

instances with 0.25 confidence factor is given in Table 4.30. Comparison of 2 and 4 number

of instances per rule with 0.25 confidence factor ROC curves are given in Figure 4.10.

Table 4.29 Confusion matrix of 2 minimum number of instances with 0.25 confidence factor of Rule Based

classification

Classified As a b

a = 0 4397 738

b = 1 1483 1475

Data are classified 73% correctly. According to the confusion matrix, 738 instances

should be non-defect but classified as defective and 1483 instances should be defective but

classified as non-defective.

Confidence

Factor

Minimum

Number of

Instance Per

Rule

Reduced

Error

Pruning

Accuracy

AUC

Precision Recall

MAE

RMSE

0.25

(Default)

2

(Default)

False

(Default)

72.55% 0.748 0.718 0.726 0.341 0.434

0.25 3 False 71.61% 0.733 0.720 0.716 0.351 0.441

0.25 4 False 71.29% 0.746 0.704 0.713 0.347 0.438

0.25 2 True 71.11% 0.725 0.702 0.711 0.354 0.446

0.01 2 False 71.95% 0.740 0.717 0.720 0.346 0.439

0.01 2 True 71.11% 0.725 0.702 0.711 0.354 0.446

32

Table 4.30 Confusion matrix of 4 minimum number of instances with 0.25 confidence factor of Rule Based

classification

Classified As a b

a = 0 4445 690

b = 1 1633 1325

Data are classified 71% correctly. According to the confusion matrix, 690 instances

should be non-defect but classified as defective and 1633 instances should be defective but

classified as non-defective.

Figure 4.10 ROC curves of 2 and 4 minimum number of instances with 0.25 confidence factor of Rule Based

classification

4.6 Support Vector Machine

SVM is used for both classification and regression problems. It is supervised learning

model. For finding an optimal decision boundary and non-linear data mapping, the

polynomial kernel function is used. SVM tries to find an optimal decision boundary or

maximum margin of the plane in the mapped dimension. In short, attempt to find an optimal

boundary between the possible outputs. LibLINEAR and a LibSVM are widely used libraries

external of WEKA. LibSVM and SMO is non-linear SVMs. Both of them are using a one-

vs-one strategy for resolving the multi-class problem. This approach creates a classifier for

each couple of classes.

A significant problem is kernel selection in SVM. Thus, analysis focused on various

kernel types. The impact of different kernel types analysis provides different performance

results. For this reason, kernel types of SMO are essential for improving the performance

results.

33

Kernel function map to data to a higher-dimensional space of feature. Thus, data

separation can be more easily and could become a better structure. Feature space of kernel

function large and allow flexible conditions. The formulas of kernel functions are given in

Table 4.31.

Table 4.31 Kernel functions formulas and parameters

Kernel Functions Formulas Parameters

Linear K(x, y) = xTy+c c: constant

Polynomial K(x, y) = ((x.y) + 1)p p: Polynomial Degree

Normalized

Polynomial

K(x, y) =
((𝑥.𝑦)+1)𝑝

√((𝑥.𝑦)+1)
𝑝

((𝑦.𝑦)+1)
𝑝
 p: Polynomial Degree

Radial Basis Function K(x, y) = 𝑒−𝑦∥(𝑥−𝑥𝑖)∥2
 y: Kernel Size

Pearson VII universal

kernel function (PUK)

K(x, y) =
1

[1+ (
2.√∥𝑥−𝑦∥2√2(1/ω)−1

σ
)

2

]

 ω ,σ : Pearson width

Sigmoid K(x, y) = tanh(axTy+c) c: constant

Dot K(x,y)=x*y i.e -

• Linear is the purest kernel function type. If data is linearly separable, the linear function

can be used. It separates data using a single line [11, 54].

• Polynomial is a not fixed kernel. If all training data is normalized, a polynomial kernel

is a good choice. It is useful for non-linear model learning. It is often used in Speech

Recognition. For a more flexible decision boundary, higher degree kernels of

polynomial should be used [20].

• Radial Basis Function, also known as Gaussian Kernel and most used in computer vision

[11, 54].

• PUK can be an alternative to linear, polynomial and radial basis kernel functions and

solve regression problems [20]. Karl Pearson developed it.

• The sigmoid kernel is also known as Hyperbolic Tangent and Multilayer Perceptron

kernel and mostly used in image classification.

• Dot is an inner product. It is non-stationary and can be obtained from linear regression.

It is a simple model of the similarity measure.

34

SVM answers a quadratic programming difficulty. SMO divides the problem into

various smaller quadratic problems. It is linear SVM. The binary classifier of the SMO

algorithm is available in WEKA [37]. In WEKA, the default kernel type of SMO is

polynomial. For comparing with WEKA and RapidMiner results, default kernel type set to

polynomial in RapidMiner tool. There were not any additional changes for both tools.

Screenshot of WEKA tool usage available in appendix 9 for SMO.

4.6.1 Sequential Minimal Optimization analyses in WEKA

Using the kernel type affects the performance results. For improvement of the SMO

performance result, the PUK kernel type should be selected to achieve a better performance

result in WEKA. Other performance results of the kernel types are given in Table 4.32. The

calibrator of SMO does not affect results.

Table 4.32 Performance results of kernel types of SMO in WEKA

Calibrator Kernel Type Results

Gaussian,

LibSVM,

LinearRegression,

Logistic,

MultilayerPerceptron,

SGD,

SimpleLinearRegression,

SimpleLogistic,

SMO,

SMOreg,

VotedPerceptron

Polynomial

(Default)

Accuracy: 68.04% AUC: 0.575

Precision: 0.705 Recall: 0.680

MAE: 0.319 RMSE: 0.565

Normalized

Polynomial

Accuracy: 70.04% AUC: 0.606

Precision: 0.721 Recall: 0.700

MAE: 0.299 RMSE: 0.547

PUK

(Improved)

Accuracy: 73.18% AUC: 0.661

Precision: 0.736 Recall: 0.732

MAE: 0.268 RMSE: 0.517

Radial Basis

Function

Accuracy: 63.51% AUC: 0.501

Precision: 0.647 Recall: 0.635

MAE: 0.364 RMSE: 0.604

Radial Basis Function kernel type decreases the performance results when compare

with Polynomial kernel type. Nevertheless, other kernel types such as Normalized

Polynomial, PUK increasing the performance results.

35

Confusion matrix of Polynomial kernel is given in Table 4.33 and PUK kernel is given

in Table 4.34. Comparison of PUK and Polynomial kernel type ROC curves are given in

Figure 4.11.

Table 4.33 Confusion matrix of Polynomial kernel of SMO in WEKA

Classified As a b

a = 0 4966 169

b = 1 2417 541

Data are classified 68% correctly. According to the confusion matrix, 169 instances

should be non-defect but classified as defective and 2417 instances should be defective but

classified as non-defective.

Table 4.34 Confusion matrix of PUK kernel of SMO in WEKA

Classified As a b

a = 0 4740 395

b = 1 1775 1183

Data are classified 73% correctly. According to confusion matrix, 395 instances should

be non-defect but classified as defective and 1775 instance should be defect but classified as

non-defective.

Figure 4.11 ROC curves of Polynomial and PUK kernels of SMO in WEKA

36

4.6.2 Sequential Minimal Optimization analyses in RapidMiner

For the improvement of the SMO result, the dot kernel type selected in RapidMiner.

Other performance results of the kernel types are given in Table 4.35. Dot kernel type

increases the performance results when compare with Polynomial kernel type.

Table 4.35 Performance results of kernel types of SMO in RapidMiner

Kernel Type Results

Polynomial

(Default)

Accuracy: 64.88% AUC: 0.666 Precision: 0.669 Recall: 0.900

MAE: 0.423 RMSE: 0.477

Dot

(Improved)

Accuracy: 68.82% AUC: 0.691 Precision:0.681 Recall: 0.953

MAE: 0.405 RMSE: 0.456

Confusion matrix of Polynomial kernel is given in Table 4.36 and Dot kernel is given

in Table 4.37. ROC curve is given in Figure 4.12 for Dot kernel.

Table 4.36 Confusion matrix of Polynomial kernel of SMO in RapidMiner

Accuracy: 64.88% True 1 True 0 Class Precision

Prediction 1 627 511 55.10%

Prediction 0 2331 4624 66.48%

Class Recall 21.20% 90.05%

Table 4.37 Confusion matrix of Dot kernel of SMO in RapidMiner

Accuracy: 68.82% True 1 True 0 Class Precision

Prediction 1 674 239 73.82%

Prediction 0 2284 4896 68.19%

Class Recall 22.79% 95.35%

37

Figure 4.12 ROC curve of Dot kernel of SMO in RapidMiner

4.7 Library for Support Vector Machines

LibSVM is a one-class classification and it is non-linear SVMs. It provides regression

and classification. LibSVM implements the SMO method. For both tools, the default kernel

type is Radial Basis. Thus, there were not any additional changes in RapidMiner for

comparing each other. Screenshot of WEKA tool usage is available in appendix 10 for

LibSVM.

4.7.1 Library for Support Vector Machines analyses in WEKA

For the improvement of the LibSVM performance result, the Linear kernel type was

selected in WEKA. Performance results of other kernel types analyses are given in Table

4.38.

38

Table 4.38 Performance results of kernel types of LibSVM in WEKA

Kernel Type Results

Radial Basis

(Default)

Accuracy: 67.66% AUC: 0.563 Precision: 0.728 Recall: 0.677

MAE: 0.323 RMSE: 0.568

Linear Accuracy: 68.57% AUC: 0.607 Precision: 0.676 Recall: 0.686

MAE: 0.314 RMSE: 0.560

Polynomial Accuracy: 50.78% AUC: 0.502 Precision: 0.538 Recall: 0.508

MAE: 0.492 RMSE: 0.701

Sigmoid Accuracy: 53.49% AUC: 0.494 Precision: 0.531 Recall: 0.535

MAE: 0.465 RMSE: 0.682

Radial Basis Function kernel type decreases the performance results when compared

with Linear kernel type. Moreover, other kernel types such as Polynomial and Sigmoid

decrease the performance results.

Confusion matrix of Radial Basis kernel type is given in Table 4.39 and Linear kernel

type is given in Table 4.40. ROC curves of Radial Basis and Linear kernel type are given in

Figure 4.13.

Table 4.39 Performance results of Radial Basis kernel of LibSVM in WEKA

Classified As a b

a = 0 5052 83

b = 1 2534 424

Data are classified 68% correctly. According to the confusion matrix, 83 instances

should be non-defect but classified as defective and 2534 instances should be defective but

classified as non-defective.

Table 4.40 Performance results of Linear kernel of LibSVM in WEKA

Classified As a b

a = 0 4617 518

b = 1 2025 933

39

Data are classified 69% correctly. According to the confusion matrix, 518 instances

should be non-defect but classified as defective and 2025 instances should be defective but

classified as non-defective.

Figure 4.13 ROC curves of Radial Basis and Linear kernels of LibSVM in WEKA

4.7.2 Library for Support Vector Machines analyses in RapidMiner

Radial Basis Kernel is the default value of the RapidMiner tool that provides the best

AUC value. However, in WEKA, the Linear kernel type gives the best performance result.

Other performance results of kernel types are given in Table 4.41. Confusion matrix of

Radial Basis is given in Table 4.42 and ROC curve is given in Figure 4.14.

Table 4.41 Performance results of kernel types of LibSVM in RapidMiner

Kernel Type Results

Radial Basis

(Default)

Accuracy: 66.91% AUC: 0.674 Precision: 0.678 Recall: 0.910

MAE: 0.422 RMSE: 0.463

Linear Accuracy: 65.34% AUC: 0.659 Precision: 0.650 Recall: 0.982

MAE: 0.426 RMSE: 0.472

Polynomial Accuracy: 63.50% AUC: 0.645 Precision: 0.634 Recall: 0.999

MAE: 0.437 RMSE: 0.490

Sigmoid Accuracy: 58.88% AUC: 0.403 Precision: 0.676 Recall: 0.676

MAE: 0.411 RMSE: 0.638

Sigmoid kernel type gives the worst performance results when comparing the other

kernel types. There are no significant differences between Radial Basis and Linear kernel

type according to AUC value.

40

Table 4.42 Confusion matrix of Radial Basis kernel of LibSVM in RapidMiner

Accuracy: 66.91% True 1 True 0 Class Precision

Prediction 1 740 460 61.67%

Prediction 0 2218 4675 67.82%

Class Recall 25.02% 91.04%

Figure 4.14 ROC curve of Radial Basis kernel of LibSVM in RapidMiner

4.8 Library for large linear classification

LibLINEAR is logistic regression methods and uses L1 norm. It implements linear

SVM that answers the classification problem linearly without kernels. This can decrease the

training time. Previous researches show that LibLINEAR performance faster than LibSVM

and SMO [23]. Prediction accuracy and AUC results effected by SVM type. Due to this, all

SVM types analyzed and results are given in Table 4.43. Screenshots of WEKA tool usage

available in appendix 11 and for LibLINEAR.

L2-norm is famous for classification problems and most used 2 class classification.

L1-norm has higher dimensional feature spaces than L2-norm. It ignores unnecessary

41

features and puts more weight on the most significant features. L1 regularized logistic

regression can solve convex optimization problems.

4.8.1 Library for large linear classification analyses in WEKA

The default SVM type of WEKA for the LibLINEAR algorithm is L2-regularized L2-

loss support vector classification (dual) and performance results of analyses are given in

Table 4.43. All other SVM types increase the performance results except L2-regularized L2-

loss support vector classification (dual) and Support vector classification by Crammer and

Singer Multi-class classification when comparing the L2-regularized L2-loss support vector

classification (dual) default SVM type. Nevertheless, there are no critical differences

between L2-regularized L2-loss support vector classification (dual) and L2-regularized L1-

loss support vector classification (dual) according to AUC values. Support vector

classification by Crammer and Singer Multi-class classification SVM type has the worst

performance results.

42

Table 4.43 Performance results of SVM types of LibLINEAR in WEKA

SVM Type Results

L2-regularized logistic regression (primal)

Multi-class classification

Accuracy: 69.86 % AUC: 0.619

Precision: 0.695 Recall: 0.699

MAE: 0.301 RMSE: 0.549

L2-regularized L2-loss support vector

classification (dual) (Default)

Multi-class classification

Accuracy: 64.09% AUC: 0.563

Precision: 0.614 Recall: 0.614

MAE: 0.359 RMSE: 0.599

L2-regularized L2-loss support vector

classification (primal)

Multi-class classification

Accuracy: 69.59% AUC: 0.611

Precision: 0.696 Recall: 0.696

MAE: 0.304 RMSE: 0.551

L2-regularized L1-loss support vector

classification (dual)

Accuracy: 63.30% AUC: 0.562

Precision: 0.608 Recall: 0.633

MAE: 0.367 RMSE: 0.605

Support vector classification by Crammer and

Singer

Multi-class classification

Accuracy: 63.79% AUC: 0.543

Precision: 0.605 Recall: 0.638

MAE: 0.362 RMSE: 0.601

L1-regularized L2-loss support vector

classification

Multi-class classification

Accuracy: 69.56% AUC: 0.612

Precision: 0.694 Recall: 0.696

MAE: 0.304 RMSE: 0.551

L1-regularized logistic regression Accuracy: 69.87% AUC: 0.620

Precision: 0.695 Recall: 0.699

MAE: 0.301 RMSE: 0.548

L2-regularized logistic regression (dual) Accuracy: 64.89% AUC: 0.614

Precision: 0.644 Recall: 0.649

MAE: 0.351 RMSE: 0.592

The L1-regularized logistic regression model improves prediction accuracy results.

Confusion matrix of L2-regularized L2-loss support vector classification (dual) is given in

Table 4.44 and L1-regularized logistic regression is given in Table 4.45. Comparison of L2-

regularized L2-loss support vector classification (dual) and L1-regularized logistic

regression ROC curves are given in Figure 4.15.

43

Table 4.44 Confusion matrix of L2-Regularized L2-Loss Support Vector Classification (Dual) of

LibLINEAR in WEKA

Classified As a b

a = 0 4377 758

b = 1 2148 810

Data are classified 64% correctly. According to the confusion matrix, 758 instances

should be non-defect but classified as defective and 2148 instances should be defective but

classified as non-defective.

Table 4.45 Confusion matrix of L1-Regularized Logistic Regression of LibLINEAR in WEKA

Classified As a b

a = 0 4684 451

b = 1 1987 971

Data are classified 77% correctly. According to the confusion matrix, 451 instances

should be non-defect but classified as defective and 1987 instances should be defective but

classified as non-defective.

Figure 4.15 ROC curves of L2-Regularized L2-Loss Support Vector Classification (Dual) and L1-

Regularized Logistic Regression of LibLINEAR in WEKA

44

4.8.2 Library for large linear classification analyses in RapidMiner

The default setting of RapidMiner provides the best prediction results. Confusion

matrix result is given in Table 4.46. ROC curve is given in Figure 4.16.

Table 4.46 Confusion matrix of LibLINEAR default configurations in RapidMiner

Accuracy: 68.97% True 1 True 0 Class Precision

Prediction 1 582 235 74.37%

Prediction 0 2276 4900 68.28%

Class Recall 23.06% 95.42%

Figure 4.16 ROC curve of LibLINEAR default configurations in RapidMiner

4.9 Logistic Regression

LR algorithm is a predictive regression analysis based on a statistical model and it is

supervised learning classification. It is beneficial for binary classification problems and

categorical target value. It is a binary regression form. Screenshots of WEKA tool usage

available in appendix 12 for LR.

45

The default value of both tools provides the best results. For comparison between

RapidMiner and WEKA, RapidMiner maximum iteration specified -1 because the default

value of maximum iteration is -1 in WEKA. There were not any additional filters in both

tools in Table 5.2 and Table 5.3. Changing of maximum iterations decreases performance

results.

4.9.1 Logistic Regression analyses in WEKA

The default value of the number of decimal places is 4 in WEKA. Changing of decimal

places count do not affect to performance results. Confusion matrix of default configurations

is given in Table 4.47 and ROC curve is given in Figure 4.17 for WEKA.

Table 4.47 Confusion matrix of default configurations of LR in WEKA

Classified As a b

a = 0 4685 450

b = 1 1982 976

Data are classified 70% correctly. According to the confusion matrix, 450 instances

should be non-defect but classified as defective and 1982 instances should be defective but

classified as non-defective.

Figure 4.17 ROC curve of default configurations of LR in WEKA

4.9.2 Logistic Regression analyses in RapidMiner

The default values of the LR model provide the best AUC value. For LR, confusion

matrix result of RapidMiner is given in Table 4.48 and ROC curve is given in Figure 4.18.

46

Table 4.48 Confusion matrix of default configuration of LR in RapidMiner

Accuracy: 69.86% True 1 True 0 Class Precision

Prediction 1 980 461 68.01%

Prediction 0 1978 4674 70.26%

Class Recall 33.13% 91.02%

Figure 4.18 ROC curve of default configuration of LR in RapidMiner

4.10 Bagging

Bagging is a bootstrap aggregation. It is an ensemble model that creates a strong

learner with a combined group of weak learners. An ensemble approach combines the

multiple ML techniques together. Thus, prediction accuracy performance better than the

individual ML techniques. As a result, weak learner variance and bias reduce for better

performance. For that reason, this model improves stability and increases robustness. Also,

it helps to avoid overfitting [33]. Differences from Boosting; Bagging algorithm tries to

overcome over-fitting difficulty. If the classifier is unstable or high variance, bagging should

be selected. The bagging weight is equal for each model. It is trying to decrease the model’s

variance.

47

As a result, the accuracy of the bagging result is high. The default classifier of the

Bagging algorithm is Regression Tree, also called REPTree in WEKA. For comparison

between RapidMiner and WEKA tools, the Decision Tree classifier was selected in the

Boosting algorithm in RapidMiner. Nevertheless, if the RF classifier is selected instead of

Regression Tree, the best AUC result is obtained for both tools. There were no additional

filters in both tools in Table 5.2 and Table 5.3. Screenshots of WEKA tool usage in appendix

13 for Bagging.

4.10.1 Bagging analyses in WEKA

Random Forest classifier in bagging affects the results as positive. However,

performance results of other classifiers are given in Table 4.49 for WEKA. The default

settings of WEKA for the bagging algorithm is REPTree and confusion matrix is given in

Table 4.50. The best classifier is the RF. Confusion matrix of RF is given in Table 4.51.

Table 4.49 Performance results of Bagging classifiers in WEKA

Classifier Results

REPTree (Default) Accuracy: 75.22% AUC: 0.786 Precision: 0.749

Recall: 0.752 MAE: 0.335 RMSE: 0.413

Random Tree Accuracy: 74.96 % AUC: 0.786 Precision: 0.746

Recall: 0.750 MAE: 0.320 RMSE: 0.417

Random Forest

(Improved)

Accuracy: 76.59% AUC: 0.811 Precision: 0.764

Recall: 0.766 MAE: 0.329 RMSE: 0.402

LMT Accuracy: 74.64 % AUC: 0.791 Precision: 0.741

Recall: 0.746 MAE: 0.316 RMSE: 0.415

J48 Accuracy: 74.83% AUC: 0.789 Precision: 0.743

Recall: 0.748 MAE: 0.319 RMSE: 0.414

Decision Stump Accuracy: 66.52% AUC: 0.653 Precision: 0.669

Recall: 0.665 MAE: 0.438 RMSE: 0.464

In the experiments, REPTree and Random Tree classifiers have the same AUC value.

Although REPTree accuracy value better than Random Tree.

48

Decision stump is a less effective classifier compared to others. ROC curves of

REPTree and RF are given in Figure 4.19.

Table 4.50 Confusion matrix of REPTree in Bagging for WEKA

Classified As a b

a = 0 4569 566

b = 1 1439 1519

Data are classified 75% correctly. According to the confusion matrix, 566 instances

should be non-defect but classified as defective and 1439 instances should be defective but

classified as non-defective.

Table 4.51 Confusion matrix of RF in Bagging for WEKA

Classified As a b

a = 0 4611 524

b = 1 1370 1588

Data are classified 77% correctly. According to the confusion matrix, 524 instances

should be non-defect but classified as defective and 1370 instances should be defective but

classified as non-defective.

Figure 4.19 ROC curves of REPTree and Random Forest in Bagging for WEKA

49

4.10.2 Bagging analyses in RapidMiner

RF classifier in bagging affects the results as positive too. The criterion of information

gain and gini index provides the same AUC results for RF. Information gain and gini index

criterion does not affect Random Tree performance results. However, other classifiers and

criterion analysis results are given in Table 4.52 for RapidMiner.

Table 4.52 Performance results of Bagging classifiers in RapidMiner

Classifier Criterion Results

Decision Tree Gain Ratio Accuracy: 65.95% AUC: 0.590 Precision: 0.655

Recall: 0.981 MAE: 0.444 RMSE: 0.469

Decision Tree

(Default)

Information Gain

(Default)

Accuracy: 73.14% AUC: 0.746 Precision: 0.726

Recall: 0.926 MAE: 0.363 RMSE: 0.429

Decision Tree Gini Index Accuracy: 73.58% AUC: 0.764 Precision: 0.737

Recall: 0.907 MAE: 0.353 RMSE: 0.424

Random Tree Gain Ratio,

Information Gain

Accuracy: 63.45% AUC: 0.500 Precision: 0.634

MAE: 0.464 RMSE: 0.482

Random Tree Gini Index Accuracy: 70.04% AUC: 0.717 Precision: 0.698

Recall: 0.930 MAE: 0.419 RMSE: 0.449

Random Forest Gain Ratio Accuracy: 65.28% AUC: 0.698 Precision: 0.647

Recall: 0. 992 MAE: 0.445 RMSE: 0.467

Random Forest

(Improved)

Information Gain

(Improved)

Accuracy: 74.66% AUC: 0.790 Precision: 0.738

Recall: 0.930 MAE: 0.361 RMSE: 0.415

Random Forest Gini Index Accuracy: 74.68% AUC: 0.790 Precision: 0.739

Recall: 0.929 MAE: 0.361 RMSE: 0.414

Decision Stump Gain Ratio Accuracy: 64.34% AUC: 0.515 Precision: 0.640

Recall: 0. 998 MAE: 0.458 RMSE: 0.478

Decision Stump Information Gain Accuracy: 67.66% AUC: 0.613 Precision: 0.675

Recall: 0.943 MAE: 0.438 RMSE: 0.467

Decision Stump Gini Index Accuracy: 67.66% AUC: 0.606 Precision: 0.675

Recall: 0. 943 MAE: 0.438 RMSE: 0.467

50

Confusion matrix of Decision Tree classifier is given in Table 53. Confusion matrix

of RF classifier is given in Table 4.54 and ROC curve is given in Figure 4.20.

Table 4.53 Confusion matrix of Decision Tree classifier in Bagging for RapidMiner

Accuracy: 73.14% True 1 True 0 Class Precision

Prediction 1 1162 378 75.45%

Prediction 0 1796 4757 72.59%

Class Recall 39.28% 92.64%

Table 4.54 Confusion matrix of RF classifier in Bagging for RapidMiner

Accuracy: 74.66% True 1 True 0 Class Precision

Prediction 1 1264 357 77.98%

Prediction 0 1694 4778 73.83%

Class Recall 42.73% 93.05%

Figure 4.20 ROC curve of RF in Bagging for RapidMiner

51

4.11 Boosting

Boosting is another ensemble algorithm. It changes weak learners to strong learners.

They have similar definitions with Bagging. Differences from Bagging; Boosting algorithm

tries to overcome bias. If the classifier is simple or high bias, boosting should be selected.

The weight of boosting calculates according to their performance results. It is trying to

decrease the model’s bias. It is implemented as AdaBoost in Weka. Adaboost joins various

weak learners into a single strong learner. In WEKA, the default classifier of Boosting

algorithms is Decision Stump. For comparison between RapidMiner and WEKA tools, the

Decision Stump classifier was selected in the Boosting algorithm in RapidMiner. In the

experiments, the RF classifier should be selected instead of Decision Stump for best AUC

results in both tools and there were no additional filters in Tables 5.2 and 5.3. As is seen in

Table 4.55 and Table 4.56, RF algorithms provide the best results for prediction accuracy

for Weka and RapidMiner. Screenshots of WEKA tool usage in appendix 14 for Boosting.

4.11.1 Boosting analyses in WEKA

RF classifier affects the results as positive in boosting algorithm. However,

performance results of other classifiers results are given in Table 4.55 for WEKA. The

default settings of WEKA for the boosting algorithm is Decision Stump and the confusion

matrix is given in Table 4.56. Confusion matrix of RF are given in Table 4.57. The best

classifier is the RF same as the bagging algorithm.

Table 4.55 Performance results of Boosting classifiers in WEKA

Classifier Results

Decision Stump (Default) Accuracy: 70.29% AUC: 0.712 Precision: 0.698 Recall: 0.703

MAE: 0.395 RMSE: 0.445

Random Tree Accuracy: 73.12% AUC: 0.766 Precision: 0.725 Recall: 0.731

MAE: 0.276 RMSE: 0.492

Random Forest Accuracy: 76.62% AUC: 0.781 Precision: 0.763 Recall: 0.766

MAE: 0.238 RMSE: 0.471

LMT Accuracy: 72.38% AUC: 0.765 Precision: 0.719 Recall: 0.724

MAE: 0.281RMSE: 0.489

J48 Accuracy: 72.82% AUC: 0.768 Precision: 0.724 Recall: 0.728

MAE: 0.279 RMSE: 0.483

REPTree Accuracy: 73.34% AUC: 0.760 Precision: 0.728 Recall: 0.733

MAE: 0.297 RMSE: 0.462

52

In the experiments, REPTree and Random Tree classifiers have the close AUC value

the same as the bagging algorithm. ROC curves of Decision Stump and RF are given in

Figure 4.21. The decision stump algorithm is the less effective classifier compared to others.

Table 4.56 Confusion matrix of Decision Stump in Boosting for WEKA

Classified As a b

a = 0 4644 491

b = 1 1913 1045

Data are classified 70% correctly. According to the confusion matrix, 491 instances

should be non-defect but classified as defective and 1913 instances should be defective but

classified as non-defective.

Table 4.57 Confusion matrix of RF in Boosting for WEKA

Classified As a b

a = 0 4579 556

b = 1 1336 1622

Data are classified 77% correctly. According to the confusion matrix, 566 instances

should be non-defect but classified as defective and 1336 instances should be defective but

classified as non-defective.

Figure 4.21 ROC curves of Decision Stump and RF in Boosting for WEKA

53

4.11.2 Boosting analyses in RapidMiner

RF classifier and information gain criterion affect the results as positive too. The

criterion of information gain and gini index provides the same AUC results for Random

Tree. Information gain and gini index criterion does not affect Random Tree performance

results. However, performance results of other classifiers and criterion are given in Table

4.58 for RapidMiner.

Table 4.58 Performance results of Boosting classifiers in RapidMiner

Classifier Criterion Results

Decision Tree Gain Ratio Accuracy: 65.57% AUC: 0.552 Precision: 0. 651

Recall: 0. 988 MAE: 0.443 RMSE: 0.473

Decision Tree Information Gain Accuracy: 71.83% AUC: 0.656 Precision: 0.718

Recall: 0.915 MAE: 0.380 RMSE: 0.452

Decision Tree Gini Index Accuracy: 73.03% AUC: 0.676 Precision: 0. 743

Recall: 0. 879 MAE: 0.366 RMSE: 0.448

Random Tree Gain Ratio,

Information Gain

Accuracy: 63.45% AUC: 0.500 Precision: 0. 634

MAE: 0.464 RMSE: 0.482

Random Tree Gini Index Accuracy: 68.73% AUC: 0.667 Precision: 0.698

Recall: 0. 892 MAE: 0.370 RMSE: 0.475

Random Forest Gain Ratio Accuracy: 66.12% AUC: 0.547 Precision: 0.654

Recall: 0.990 MAE: 0.443 RMSE: 0.473

Random Forest

(Improved)

Information Gain Accuracy: 74.46% AUC: 0.693 Precision: 0.738

Recall: 0.925 MAE: 0.339 RMSE: 0.443

Random Forest Gini Index Accuracy: 74.58% AUC: 0.692 Precision: 0.739

Recall: 0. 926 MAE: 0.334 RMSE: 0.444

Decision Stump Gain Ratio Accuracy: 64.34% AUC: 0.513 Precision: 0.640

Recall: 0.999 MAE: 0.459 RMSE: 0.479

Decision Stump Information Gain Accuracy: 67.19% AUC: 0.653 Precision: 0. 674

Recall: 0. 933 MAE: 0.414 RMSE: 0.462

Decision Stump

(Default)

Gini Index

(Default)

Accuracy: 67.66% AUC: 0.655 Precision: 0. 675

Recall: 0. 943 MAE: 0.413 RMSE: 0.461

54

Confusion matrix of the Decision Stump classifier result is given in Table 4.59 and the

RF classifier is given in Table 4.60. ROC curve is given in Figure 4.22.

Table 4.59 Confusion matrix of Decision Stump classifier in Boosting for RapidMiner

Accuracy: 67.76% True 1 True 0 Class Precision

Prediction 1 630 289 68.55%

Prediction 0 2328 4846 67.55%

Class Recall 21.30% 94.37%

Table 4.60 Confusion matrix of RF classifier in Boosting for RapidMiner

Accuracy: 74.46% True 1 True 0 Class Precision

Prediction 1 1273 382 76.92%

Prediction 0 1685 4753 73.83%

Class Recall 43.04% 92.56%

Figure 4.22 ROC curve of RF in Boosting for RapidMiner

55

4.12 Artificial Neural Networks

An Artificial Neural Network (ANN) is a data processing model that stimulated the

human brain works. The ANN model is known as a Multilayer Perceptron (MLP) in Weka

[18, 37]. The prediction accuracy is most robust and can work if training instances include

errors. ANN can be separated into two main sections: Feed-backward and feed-forward

neural network connections. It is a feed-forward learning algorithm and inspired by human

brain neural networks. ANN models are composed of links that are the connection between

nodes and multiple nodes, which are processing units and has input, hidden and output layers

[1]. At the input layer nodes, layers take the input, which includes CK metrics value. Weights

used for output computation and assigned on the links connected to the nodes. The fault

prediction accuracy rate is output.

Some experiments and rules are available in past researches to determine the neurons

number in the hidden nodes. One of the rules is that hidden layer neuron count should be

70% to 90% of the input layer size. Another rule is that in the input layer, neurons of the

hidden layer number should be less than twice the neurons number [8, 10, 9]. Another critical

issue for determining of hidden layers count is an activation function complexity level.

Neural network complexity is increasing if hidden layers up to three [29]. If hidden layers

number less than it should be, prediction accuracy decreases. If hidden layers number more

than it should be, prediction results may overfit. Eventually, the optimal count of hidden

layers should be determined. To achieve the best performance result, learning rate, training

cycle and momentum values are critical.

• The learning rate is also called the size of the step and range between 0.0 and 1.0. The

common default value of the learning rate is 0.1. It means that weights in the network

are updated the 10% estimated weight error of the model with each time using the

backpropagation. It controls the speed or rates the model learns. A ratio of large learning

rate allows learning faster, but the small ratio of learning rate allows learning more

optimal the model.

• The training cycle is the number of times repeated cycle and the default value is 500 in

WEKA.

• Momentum and learning rate similar and it can improve both accuracy and training

speed. Momentum range is between 0 and 1. After updating the learning rate weight,

prior updates weighted average includes the weight exponentially.

56

20 software metrics analyzed with Neural Network graphical user interface in Figure

4.23. The most effective nine software defect prediction metrics have been selected after

reviewing past researches [48]. 9 software metrics analyzed with Neural Network form in

Figure 4.24.

Figure 4.23 Neural Network graphical user interface form for 20 software metrics

The neural network has 20 input nodes, which are software metrics. The number of

hidden layers specified as 13, 14, 13.

Figure 4.24 Neural Network graphical user interface form for 9 software metrics

57

The neural network has 9 input nodes, which are software metrics. The number of

hidden layers specified as 6, 7, 6. The output layer number is 2. One of the defects the other

is a non-defect binary classification. Default values in WEKA, Multilayer Perceptron using

0.2 momentum with 500 epochs and 0.3 learning rate. Default values in RapidMiner,

momentum is 0.9 with 200 training cycles and 0.01 learning rate.

For comparison between RapidMiner and WEKA tools, momentum is specified as 0.2

with 500 training cycles and 0.3 learning rate in RapidMiner and there were no additional

filters in both tools in Table 5.2 and Table 5.3. Screenshots of WEKA tool usage available

in appendix 15 for Neural Network.

4.12.1 Artificial Neural Networks analyses in WEKA

Table 4.61 showing that 0.01 learning rate, 500 training cycle, 0.2 momentum values

provide the best performance results with 13, 14, 13 hidden layers. For example, decreasing

training cycles affects performance results negatively.

Table 4.61 Performance results of Training Cycle, Learning Rate, Momentum combinations of ANN in

WEKA

Learning

Rate

Training

Cycles

Momentum Results

0.3

(Default)

500

(Default)

0.2

(Default)

Accuracy: 70.91% AUC: 0.704 Precision: 0.700

Recall: 0.709 MAE: 0.379 RMSE: 0.447

0.3 500 0.9 Accuracy: 65.17% AUC: 0.597 Precision: 0.630

Recall: 0.652 MAE: 0.424 RMSE: 0.480

0.01

500 0.2 Accuracy: 71.12% AUC: 0.715 Precision: 0.705

Recall: 0.711 MAE: 0.388 RMSE: 0.442

0.01 500 0.9 Accuracy: 71.23% AUC: 0.709 Precision: 0.706

Recall: 0.712 MAE: 0.386 RMSE: 0.444

0.01 200 0.9 Accuracy: 70.62% AUC: 0.705 Precision: 0.698

Recall: 0.706 MAE: 0.393 RMSE: 0.446

58

Default settings are 0.3 learning rate, 500 training cycles and 0.2 momentum in WEKA

and confusion matrix is given in Table 4.62. Improved settings, 0.01 learning rate, 500

training cycles and 0.2 momentum combination provide the best accuracy result and

confusion matrix is given in Table 4.63. Default and improved settings ROC curves are given

in Figure 4.25. 0.9 momentum with 500 epochs and 0.3 learning rate combinations has a less

effective performance.

Table 4.62 Confusion matrix of 0.3 learning rate, 500 training cycles and 0.2 momentum combination of

ANN in WEKA

Classified As a b

a = 0 4473 662

b = 1 1692 1266

Data are classified 71% correctly. According to the confusion matrix, 662 instances

should be non-defect but classified as defective and 1692 instances should be defective but

classified as non-defective.

Table 4.63 Confusion matrix of 0.01 learning rate, 500 training cycles and 0.2 momentum combination of

ANN in WEKA

Classified As a b

a = 0 4568 567

b = 1 1770 1188

Data are classified 71% correctly. According to the confusion matrix, 567 instances

should be non-defect but classified as defective and 1770 instances should be defective but

classified as non-defective.

59

Figure 4.25 ROC curves of 0.3 learning rate, 500 training cycles, 0.2 momentum and 0.01 learning rate, 500

training cycles, 0.2 momentum combinations of ANN in WEKA

4.12.2 Artificial Neural Networks analyses in RapidMiner

Performance results of RapidMiner can be improved with different training cycles,

momentum and learning rate with 13, 14, 13 hidden layers. The experiments are given in

Table 4.64.

Table 4.64 Performance results of Training Cycle, Learning Rate, Momentum combinations of ANN in

RapidMiner

Learning

Rate

Training

Cycles

Momentum Results

0.3

(Default)

500

(Default)

0.2

(Default)

Accuracy: 71.42% AUC: 0.716 Precision: 0.726

Recall: 0.883 MAE: 0.373 RMSE: 0.444

0.3 500 0.9 Accuracy: 66.08 % AUC: 0.637 Precision: 0.668

Recall: 0.939 MAE: 0.402 RMSE: 0.488

0.3 200 0.2 Accuracy: 70.54% AUC: 0.717 Precision:

Recall: 0.871 MAE: 0.382 RMSE:0.445

0.3 200 0.9 Accuracy: 66.18% AUC: 0.649 Precision: 0.681

Recall: 0.900 MAE: 0.404 RMSE: 0.481

0.01 500 0.2 Accuracy: 70.95% AUC: 0.720 Precision: 0.718

Recall: 0.892 MAE: 0.388 RMSE: 0.443

0.01 500 0.9 Accuracy: 71.25% AUC: 0.723 Precision: 0.726

Recall: 0.878 MAE: 0.384 RMSE: 0.442

0.01 200 0.2 Accuracy: 63.45% AUC: 0.624 Precision: 0.634

MAE: 0.464 RMSE: 0.481

0.01 200 0.9 Accuracy: 70.57% AUC: 0.715 Precision: 0.722

Recall: 0.873 MAE: 0.396 RMSE: 0.446

60

The default settings of RapidMiner is 0.3 learning rate, 500 training cycles and 0.2

momentum and confusion matrix is given in Table 4.65. Improved settings, 0.01 learning

rate, 500 training cycles and 0.9 momentum combination provide the best accuracy result

and confusion matrix is given in Table 4.66. ROC curve is given in Figure 4.26 for improved

settings. The least effective combination is 0.2 momentum with 200 epochs and 0.01

learning rate for performance accuracy.

Table 4.65 Confusion matrix of 0.3 learning rate, 500 training cycles and 0.2 momentum combination of

ANN in RapidMiner

Accuracy: 71.42% True 1 True 0 Class Precision

Prediction 1 1246 601 67.46%

Prediction 0 1712 4534 72.59%

Class Recall 42.12% 88.30%

Table 4.66 Confusion matrix of 0.01 learning rate, 500 training cycles and 0.9 momentum combination of

ANN in RapidMiner

Accuracy: 71.25% True 1 True 0 Class Precision

Prediction 1 1253 622 66.83%

Prediction 0 1705 4513 72.58%

Class Recall 42.36% 87.89%

61

Figure 4.26 ROC curve of 0.01 learning rate, 500 training cycles, 0.9 momentum combination of ANN in

RapidMiner

4.13 Nearest Neighbors

For solving problems of regression and classification, K-Nearest Neighbors (KNN)

algorithm is a widely used pattern classification and supervised ML algorithm. In WEKA,

Nearest neighbors are available as Ibk [37]. KNN is a sample of lazy learner algorithm which

is non-parametric. The algorithm tries to find closest neighbors and data points in the training

dataset aim to the classification of the new examples. It tries to solve how neighbors should

be a classified problem. Usually, the Euclidean distance measure function is used to calculate

distance. Other distance functions are Canberra, Chebychev, Manhattan methods [15]. The

formulas of distance functions are given in Table 4.67.

• Euclidean is also called straight-line, the ordinary distance between the two data

points divided by their standard deviation in Euclidean space. Euclid discusses the

shortest distance and similarity between data points [4, 14].

• Canberra distance measures the sum of series differences between the feature

coordinates of an object pair [35, 13].

• Chebychev also called Tchebyshev distance. It calculates the total differences

distance between the pair of vectors or data points features [15].

62

• Manhattan distance is also known as a city block, rectilinear and taxicab. Measure

the distance between the pair of data points is the sum of the absolute differences

between coordinate axes [14].

Table 4.67 Distance functions formulas and parameters

Distance Functions Formulas Parameters

Euclidean √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 x, y points

Canberra

∑
|𝑥𝑖 − 𝑦𝑖|

|𝑥𝑖| + |𝑦𝑖|

𝑑

𝑖=1

x, y vectors

Chebychev 𝑚𝑎𝑥|𝑥𝑖𝑘 − 𝑦𝑗𝑘| x, y points and ik, jk

standart coordinates

Manhattan
∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

x, y points

Two different search algorithms are available in analysis. These are Linear Search and

Cover Tree.

• Cover tree data structure aims to accelerate of nearest neighbor or range search. It

was proved to be effective in view of space complexity. The data structure of Cover

Tree can be created in O(c6 n log n) time [5].

• There is no space complexity in the linear search. It is proved to find the right nearest

neighbors but has a high estimated value. The linear search method tries to find an

item sequentially. For example, it starts at the initial element. Later moves to all parts

on the list until the data is found. It is called a linear search and an example of a brute-

force search method. Every element visited to each other in the data structure.

‘k’ in KNN is a parameter show that the number of nearest neighbors should include.

One problem is determining the best value of “k”. Because if k value is too small, it is

responsive to noise in data. For enormous “k” value, consider more neighbors made it less

sensitive to noise and computationally expensive. Mostly choosing the “k” value calculated

as the square root of N. N mean is sample number in the training dataset. The default “k”

value is 1 and the distance function is Euclidean in WEKA, but the default “k” value is 5 in

RapidMiner.

63

For comparison between RapidMiner and WEKA tools, the “k” value is specified to 1

and Euclidean distance function is selected in RapidMiner. After a series of experiments, it

was found that the “k” value should be 14 and Manhattan distance should be selected for the

highest prediction accuracy for both tools. Screenshots of WEKA tool usage available in

appendix 16 for Nearest Neighbors.

4.13.1 Nearest Neighbors analyses in WEKA

According to experiments, the neighbor number should be 14 with Manhattan distance

function in the Linear Search algorithm in order to more staple defect prediction accuracy.

Moreover, different search algorithms and distance functions were analyzed. Performance

results are given in Table 4.68 using WEKA. The default settings of WEKA for the Nearest

Neighbors algorithm is Euclidean. ROC curves of Euclidean and Manhattan distance

function are given in Figure 4.27.

Table 4.68 Performance results of search algorithms and distance functions of KNN in WEKA

Search Algorithm Distance Function

(k=14)

Results

LinearNNSearch

(Default)

Euclidean

(Default)

Accuracy: 72.72% AUC: 0.745 Recall: 0.727

Precision: 0.724 MAE: 0.350 RMSE: 0.433

LinearNNSearch Chebyshev Accuracy: 71.61% AUC: 0.729 Recall: 0.716

Precision: 0.710 MAE: 0.364 RMSE: 0.440

LinearNNSearch Manhattan Accuracy: 72.72% AUC: 0.747 Recall: 0.727

Precision: 0.726 MAE: 0.346 RMSE: 0.432

Cover Tree Euclidean Accuracy: 72.87% AUC: 0.746 Recall: 0.729

Precision: 0.726 MAE: 0.349 RMSE: 0.433

The accuracy rate of Euclidean distance is the same as the Manhattan distance.

However, Manhattan distance AUC value better than Euclidean distance. Confusion matrix

of Linear search with Euclidean distance is given in Table 4.69. Confusion matrix of Linear

search with Manhattan distance is given in Table 4.70.

64

Table 4.69 Confusion matrix of Linear search with Euclidean distance of KNN in WEKA

Classified As a b

a = 0 4604 531

b = 1 1676 1282

Data are classified 73% correctly. According to confusion matrix, 531 instances should

be non-defect but classified as defective and 1676 instance should be defect but classified as

non-defective.

Table 4.70 Confusion matrix of Linear search with Manhattan distance of KNN in WEKA

Classified As a b

a = 0 4661 474

b = 1 1733 1225

Data are classified 73% correctly. According to confusion matrix, 474 instances should

be non-defect but classified as defective and 1733 instance should be defect but classified as

non-defective.

Figure 4.27 ROC curves of Euclidean with Manhattan distance of KNN in WEKA

4.13.2 Nearest Neighbors analyses in RapidMiner

The “k” value is 14 and Manhattan Distance provides the best accuracy results like

WEKA. Furthermore, different search algorithms and distance functions were analyzed.

Performance results are given in Table 4.71.

65

Table 4.71 Performance results of search algorithms and distance functions of KNN in RapidMiner

Measure Results (k=14)

euclideanDistance

(Default)

Accuracy: 68.18% AUC: 0.690 Precision: 0.705

Recall: 0.854 MAE: 0.395 RMSE: 0.459

canberraDistance Accuracy: 50.22% AUC: 0.500 Precision: 0.684

Recall: 0.398 MAE: 0.496 RMSE: 0.525

chebychevDistance Accuracy: 66.34% AUC: 0.675 Precision: 0.702

Recall: 0.816 MAE: 0.409 RMSE: 0.464

Manhattan Distance Accuracy: 69.64% AUC: 0.709 Precision: 0.715

Recall: 0.867 MAE: 0.384 RMSE: 0.452

Confusion matrix of Euclidean distance is given in Table 4.72. Confusion matrix of

Manhattan distance is given in Table 4.73 and ROC curve is given in Figure 4.28. Canberra

distance of performance has the worst AUC value.

Table 4.72 Confusion matrix of Euclidean distance of KNN in RapidMiner

Accuracy: 68.18% True 1 True 0 Class Precision

Prediction 1 1129 746 60.21%

Prediction 0 1829 4389 70.59%

Class Recall 38.17% 85.47%

Table 4.73 Confusion matrix of Manhattan distance of KNN in RapidMiner

Accuracy: 69.64% True 1 True 0 Class Precision

Prediction 1 1183 682 63.43%

Prediction 0 1775 4453 71.50%

Class Recall 39.99% 86.72%

66

Figure 4.28 ROC curve of Manhattan distance of KNN in RapidMiner

67

5 RESULTS

5.1 Performance Evaluation Results

Performance evaluation parameters results are given in Table 5.1 for software defect

prediction. The confusion matrix is another evaluation metrics. It shows the count of

correctly classified and misclassified examples. False negative (FN) represents the negative

classes that were incorrectly classified. For positive instance classified as negative. False

positive (FP) represents the positive classes that were incorrectly classified. For negative

instance classified as positive. True negative (TN) represents the negative classes that were

correctly classified. True positive (TP) represents the positive classes that were correctly

classified.

Table 5.1 Faulty and not faulty class confusion matrix

 Actual Values

True False

Predicted

Values

Positives True Positives

(TP)

False Positives

(FP)

 Negatives False Negatives

(FN)

True Negatives

(TN)

Accuracy is mostly used for evaluation analyses and binary class problem. It is the

ratio of total count correct classify of values amongst the total count of predictions. It

displayed in Equation 5.1.

 Accuracy =
TP +TN

(TP + FP +TN +FN)
 (5.1)

Precision is the ratio of predicted positive instances correctly to all the instances, which

is positive. The precision calculation is in Equation 5.2.

 Precision =
TP

(TP + FP)
 (5.2)

68

Sensitivity (Recall) is the ratio of fault-prone classes which are correctly classified to

all fault-prone classes. Recall calculation is in Equation 5.3.

 Recall =
TP

(TP + FN)
 (5.3)

The Area Under the Curve (AUC) means a characteristic ROC. AUC represented a

two-dimensional graph with FP instances on the x-axis and TP instances on the y-axis [26].

For unbalanced and noisy data, AUC is an effective method. AUC is the most effective and

reliable technique for the evaluation of performance and classification algorithms. MAE

measure all absolute errors average and differences between predicted and original instance.

The lower of the MAE value means better performance for prediction.

Another performance indicator is the RMSE. It compares observed and the predicted

value by a model. The small value of RMSE indicates that predicted values are close.

Performance results of 11 ML techniques and 2 SVM libraries are given in Table 5.2. and

5.4 for Weka. For the RapidMiner tool, 9 ML techniques and 2 SVM libraries are given in

Table 5.3 and Table 5.5. Because Bayesian Network and Part techniques are not available,

both default and improved results are represented. Thus, the effectiveness of improvements

can be evaluated.

69

Table 5.2 Performance results of reliability prediction by default values of WEKA

Technique Accuracy AUC Precision Recall MAE RMSE

J48 72.25% 0.694 0.715 0.722 0.325 0.480

RF 76.94% 0.812 0.766 0.769 0.321 0.402

Naïve

Bayes

67.23% 0.676 0.659 0.672 0.329 0.554

Bayesian

Network

71.51% 0.733 0.707 0.715 0.350 0.443

Part 72.55% 0.748 0.718 0.726 0.341 0.434

KNN 72.72% 0.745 0.724 0.727 0.350 0.433

SMO 68.04% 0.575 0.705 0.680 0.319 0.565

LibSVM 67.66% 0.563 0.728 0.677 0.323 0.568

LibLinear 64.09% 0.563 0.614 0.614 0.359 0.599

ANN 70.91% 0.704 0.700 0.709 0.379 0.447

Bagging 75.22% 0.786 0.749 0.752 0.335 0.413

AdaBoost 66.52% 0.653 0.669 0.665 0.438 0.464

LR 69.94% 0.712 0.696 0.699 0.402 0.448

Performance results were analyzed with the default values of WEKA in Table 5.2. The

default value of iteration is 100 in RF and the classifier is REPTree in Bagging. The default

value of kernel type is Radial Basis in LibSVM and L2-regularized L2-loss support vector

classification in LibLinear. Performance results show that RF and Bagging techniques have

the highest AUC value and accuracy rate. However, LibSVM and LibLinear have the worst

AUC value. These techniques are the least effective models for predicting software

reliability for the default values of LibSVM and LibLinear in WEKA. The AUC value of

LibSVM and LibLinear same, but the accuracy rate of LibLinear worse than LibSVM.

70

Table 5.3 Performance results of reliability prediction by default values of RapidMiner

Technique Accuracy AUC Precision Recall MAE RMSE

J48 72.94% 0.730 0.738 0.886 0.346 0.440

RF 74.46% 0.792 0.753 0.889 0.335

0.412

Naïve

Bayes

67.07% 0.678 0.682 0.899 0.329 0.555

KNN 68.18% 0.690 0.705 0.854 0.395 0.459

SMO 64.88% 0.666 0.669 0.900 0.423 0.477

LibSVM 66.91% 0.674 0.678 0.910 0.422 0.463

LibLinear 68.97% 0.692 0.683 0. 954 0.405 0.456

ANN 71.42% 0.716 0.726 0.883 0.373 0.444

Bagging 73.14% 0.746 0.726 0.926 0.363 0.429

AdaBoost 67.66% 0.655 0.675 0.943 0.413 0.461

LR 69.86% 0.711 0.702 0.910 0.403 0.448

Performance results were analyzed with the default values of RapidMiner in Table 5.3.

The default value of iteration is 100 with gain ratio criterion in RF and the classifier is

Decision Tree with information gain in Bagging. The default value of kernel type is

Polynomial in SMO. The default value of the classifier is Decision Stump in AdaBoost.

Performance results show that RF and Bagging techniques have the highest AUC value and

accuracy rate. However, AdaBoost and SMO have the worst AUC value. These techniques

are the least effective models for predicting the reliability of software for the default values

of RapidMiner.

71

Table 5.4 Performance results of reliability prediction by improved values of WEKA

Technique Accuracy AUC Precision Recall MAE RMSE

J48 73.13% 0.724 0.725 0.731 0.340 0.453

RF 77.07% 0.816 0.768 0.771 0.320 0.400

Naïve

Bayes

68.36% 0.686 0.670 0.684 0.326 0.517

Bayesian

Network

72.54% 0.738 0.719 0.725 0.348 0.437

Part 72.55% 0.748 0.718 0.726 0.341 0.434

KNN 72.72% 0.747 0.726 0.727 0.346 0.432

SMO 73.18% 0.661 0.736 0.732 0.268 0.517

LibSVM 68.57% 0.607 0.676 0.686 0.314 0.560

LibLinear 69.87% 0.620 0.695 0.699 0.301 0.548

ANN 71.12% 0.715 0.705 0.711 0.388 0.442

Bagging 76.59% 0.811 0.764 0.766 0.329 0.402

AdaBoost 76.62% 0.781 0.763 0.766 0.238 0.471

LR 69.94% 0.712 0.696 0.699 0.402 0.448

Performance results were analyzed with improved values of WEKA in Table 5.4. The

improved value of iteration is 500 in RF and the classifier is RF in Bagging. The improved

value of kernel type is Linear in LibSVM and L1-regularized logistic regression in

LibLinear. Performance results show that RF and Bagging techniques have the highest AUC

value. However, LibSVM and LibLinear have the worst AUC value. These techniques are

the least effective models for predicting the reliability of software for improved values of

WEKA.

72

Table 5.5 Performance results of reliability prediction by improved values of RapidMiner

Technique Accuracy AUC Precision Recall MAE RMSE

J48 72.82% 0.735 0.737 0.887 0.351 0.437

RF 76.62% 0.815 0.772 0.894 0.324

0.401

Naïve

Bayes

67.81% 0.688 0.691 0.890 0.327 0.527

KNN 69.64% 0.709 0.715 0.867 0.384 0.452

SMO 68.82% 0.691 0.681 0.953 0.405 0.456

LibSVM 66.91% 0.674 0.678 0.910 0.422 0.463

LibLinear 68.97% 0.692 0.683 0.954 0.405 0.456

ANN 71.25% 0.723 0.726 0.878 0.384 0.442

Bagging 74.66% 0.790 0.738 0.930 0.361 0.415

AdaBoost 74.46% 0.693 0.738 0.925 0.339 0.443

LR 69.86% 0.711 0.702 0.910 0.403 0.448

Performance results were analyzed with improved values of RapidMiner in Table 5.5.

The improved value of iteration is 500 with information gain in RF and the classifier is RF

with information gain in Bagging. The improved value of kernel type is Radial Basis in

LibSVM. Performance results show that RF and Bagging techniques have the highest AUC

value. However, LibSVM and LibLinear have the worst AUC value. These techniques are

the least effective models for predicting the reliability of software for improved values of

RapidMiner.

73

Table 5.6 AUC results of WEKA and RapidMiner by improved values

Technique WEKA AUC RapidMiner AUC

J48 0.724 0.735

RF 0.816 0.815

Naïve Bayes 0.686 0.688

Bayesian Network 0.738 -

Part 0.748 -

KNN 0.747 0.709

SMO 0.661 0.691

LibSVM 0.607 0.674

LibLinear 0.620 0.692

ANN 0.715 0.723

Bagging 0.811 0.790

AdaBoost 0.781 0.693

LR 0.712 0.711

Bayesian network and Part is not available in RapidMiner. RF has the highest AUC

result for WEKA and RapidMiner tool. According to Table 5.6, AUC results of RF are nearly

same for WEKA and RapidMiner tool. The AUC value of WEKA is 0.816 and RapidMiner

is 0.815 for RF. There are no significant differences between Naïve Bayes AUC results of

WEKA and RapidMiner. Moreover, AUC results of LR are nearly same for WEKA and

RapidMiner.

74

Figure 5.1 Default configuration of SVMs ROC curves

ROC curves comparisons of SVMs such as SMO, LibLINEAR and LibSVM are given

in Figure 5.1 for default configuration in WEKA. The y-axis presents the true positive rate.

The x-axis presents false positive rate. SMO uses polynomial, LibSVM uses Radial Basis

kernel type and LibLINEAR uses L2-regularized L2-loss support vector classification (dual)

SVM type. AUC performance results are 0.575 for SMO, 0.563 for LibLINEAR and

LibSVM. LibLINEAR and LibSVM have the same AUC result, but the accuracy rate of

LibSVM higher than LibLINEAR. It is 67%.

75

Figure 5.2 Improved configuration of SVMs ROC curves

ROC curves comparison of SMO, LibLINEAR and LibSVM are given in Figure 5.2

for improved configuration in WEKA. The y-axis presents the true positive rate. The x-axis

presents false positive rate. SMO uses PUK, LibSVM uses linear kernel type and

LibLINEAR uses L1-regularized logistic regression SVM type. AUC performance results

are 0.661 for SMO, 0.620 for LibLINEAR, 0.607 for LibSVM.

76

Figure 5.3 Default configuration of Bagging and Boosting ROC curves

ROC curves comparison of Bagging and Boosting are given in Figure 5.3 for default

configuration in WEKA. The y-axis presents the true positive rate. The x-axis presents false

positive rate. Bagging uses REPTree, AdaBoost uses the Decision Stump classifier. AUC

performance results are 0.786 for Bagging, 0.653 for AdaBoost.

77

Figure 5.4 Improved configuration of Bagging and Boosting ROC curves

ROC curves comparison of Bagging and Boosting are given in Figure 5.4 for improved

configuration in WEKA. The y-axis presents the true positive rate. The x-axis presents false

positive rate. Bagging and AdaBoost use the Random Forest classifier. AUC performance

results are 0.811 for Bagging, 0.781 for Boosting.

Figure 5.5 Improved configuration of RF and Naïve Bayes ROC curves

78

ROC curves comparison of RF and Naïve Bayes are given in Figure 5.5 for improved

configuration in WEKA. The y-axis presents the true positive rate. The x-axis presents false

positive rate. RF iteration count is 500. Naïve Bayes use kernel. AUC performance results

are 0.816 for RF, 0.686 for Naïve Bayes.

Figure 5.6 Improved configuration of RF and Nearest Neighbors ROC curves

ROC curves comparison of RF and KNN are given in Figure 5.6 for improved

configuration in WEKA. The y-axis presents the true positive rate. The x-axis presents false

positive rate. RF iteration count is 500. “k” value is 14 for KNN. AUC performance results

are 0.816 for RF, 0.747 for KNN.

79

Figure 5.7 Improved configuration of RF and Decision Tree ROC curves

ROC curves comparison of RF and Decision Tree are given in Figure 5.7 for Ant

software. The version of Ant is 1.7 and include 745 instance, 166 defective modules. The y-

axis presents the true positive rate. The x-axis presents false positive rate. AUC performance

results are 0.816 for RF, 0.724 for Decision Tree.

5.2 Findings

According to Bayesian Network, from the results, it is clear that the WMC software

metric was found significant predictor for both 9 and 20 software prediction metrics. Other

significant predictors are NOC, CBO, LCOM, NPM, CAM, DIT and RFC software metrics

for defect prediction. Tertiary software metrics are CA, CE, LCOM3, MFA and LOC.

Fourthly software metrics are DAM, MOA, IC, AMC and MAX_CC. The least effective

software metrics are CBM and AVG_CC. However, results changed for most used 9

software metrics. For 9 CK metrics, WMC is still a major attribute followed by NOC, CBO,

RFC, LCOM and DIT. Tertiary software metrics are LOC and IC. The least useful software

metric is CBM. These findings of this study could be included significant effective results

for the reliability issue. From these results, it is clear that more reliable software and less

defect classes in software systems may provide.

80

Values of AUC and accuracy rate were obtained by the ML techniques performance

results and evaluated with each other to comparing performance measurement. Performance

results show that RF and Bagging techniques have the highest and effective accuracy rate

and AUC values for both default and improved results, according to RapidMiner and WEKA

ML tools. RF provides the highest AUC value in RapidMiner and WEKA performance

results. AUC is 0.815 for RapidMiner and 0.816 for WEKA. After the improvement of ML

techniques, still, RF and Bagging have the highest accuracy and AUC value. Followed by

these ML techniques are Boosting and Rule-based classifications. Both of them have

excellent accuracy and AUC value according to improved performance results of WEKA.

However, the AUC value of Rule-based and Nearest Neighbors nearly the same. According

to improved performance results of RapidMiner, Decision Tree and Neural Network

techniques have good accuracy and AUC value after RF and Bagging techniques. After the

improvement of the default configuration of WEKA, Neural Network techniques become

better than Decision Tree. Also, Boosting algorithm performance results is increasing. After

the improvement of the default configuration of RapidMiner, Nearest Neighbor and

Boosting techniques become better than Naïve Bayes's performance results. Nevertheless,

the AUC value of Nearest Neighbor and LR nearly the same.

Regarding accuracy rate and AUC performance results, there are no essential

differences between Rule-based classification and Nearest Neighbors for improved results

of WEKA. LibSVM has the worst accuracy rate and AUC value for both tools. SMO and

LibLinear performance are better than LibSVM for both tools. However, this analysis found

evidence for SMO, LibSVM and LibLinear techniques are the least effective models for

predicting defect-prone modules. Another finding is that the AUC value of SMO and

LibLINEAR nearly the same for the improved result of RapidMiner.

The results demonstrated that from the best ML techniques to the worst for software

defect predictions are RF, Bagging, AdaBoosting, Rule-based classification, Naïve Bayes,

Bayesian Network, Decision Tree, Neural Network, LR, SMO, LibLinear and LibSVM for

improved performance results of WEKA. For improved performance results of RapidMiner

tool, RF, Bagging, Decision Tree, Neural Network, LR, Neural Network, Boosting,

LibLinear, SMO, Naïve Bayes, LibSVM from the best ML techniques to the worst.

81

6 CONCLUSION

This thesis argues predicting and improving software reliability by comparing the

performance of various 11 ML techniques and 2 SVM libraries with tenfold cross-validation

and OO software metrics. Overall, the results demonstrate a significant effect of ML

techniques and OO software metrics. Besides, these results provide additional information

about the significant attributes of software metrics. For 20 software metrics, WMC is a major

attribute followed by NOC, CBO, LCOM, NPM, CAM, DIT and RFC. The results provide

evidence for which software metric is more important for software reliability.

Moreover, these findings provide additional information about ML tools, which are

WEKA and RapidMiner, but results may change according to the analyzed tool. The main

conclusion shows and confirms that RF and Bagging are important contributors to software

reliability and useful for fault prediction. SMO, LibSVM, LibLINEAR SVMs are the least

effective model for defect classification. The main contribution of these analyses to evaluate

the performance of ML algorithms with a large OO software dataset. Another contribution

of this study is to display software metrics effectiveness for the prediction of a software

reliability and quality.

The answers to research questions are WMC is the most and CBM and AVG_CC’s

least effective software metrics to determine software reliability. Random Forest is the most

effective ML techniques to estimate software defect prediction.

In future studies, the number of OO software projects should be increased. It is also

planned to apply new ML algorithms with various kernel types, confidence factors,

iterations, search algorithms, classifiers, estimators, and different software metrics. The

quality of defect prediction standards depends on the choice of dataset and ML techniques.

Future investigations are necessary to validate performance conclusions. The performance

results provide a good starting point for discussion and further research.

82

REFERENCES

[1] A. K. Jain, J. Mao and K. M. Mohiuddin, “Artificial neural networks: A tutorial,”

IEEE Comput., pp. 31–44, Mar., 1996.

[2] A. Okutan and O. Yildiz, “Software defect prediction using bayesian networks,”

Empirical Software Engineering, pp. 1–28, 2012.

[3] A. S. Galathiya, A. P. Ganatra and C. K. Bhensdadia, “Improved Decision Tree

Induction Algorithm with Feature Selection, Cross Validation, Model Complexity

and Reduced Error Pruning,” (IJCSIT) International Journal of Computer Science

and Information Technologies, Vol. 3 (2) , 2012.

[4] Akarsh Goyal, Neel Sheth, N Sujith Kumar Reddy, “Software Defect Prediction

using Euclidean distance probability,” International Journal of Soft

Computing 11(3):203-206, 2016.

[5] Alina Beygelzimer, Sham Kakade, John Langford, “Cover Trees for Nearest

Neighbor,” Appearing in Proceedings of the 23rd International Conference on

Machine Learning, Pittsburgh, 2006.

[6] Arisholm, E., Briand, L.C., Johannessen, “A Systematic and Comprehensive

Investigation of Methods to Build and Evaluate Fault Prediction Models,” Journal of

System and Software, 83, 1, 2–17, 2010.

[7] Bansiya, J. and Davis, “A Hierarchical Model for Quality Assessment of Object-

Oriented Designs,” IEEE Transactions on Software Engineering, Vol. 28, No.1, pp.4-

17, 2002.

[8] Berry, M.J.A. and Linoff, “Data Mining Techniques,” NY: John Wiley & Sons, 1997

[9] Blum, “Neural Networks in C++,” NY: Wiley, 1992.

[10] Boger, Z., and Guterman, “Knowledge extraction from artificial neural network

models,” IEEE Systems, Man and Cybernetics Conference, Orlando, FL, USA, 1997.

https://www.researchgate.net/profile/Akarsh_Goyal
https://www.researchgate.net/scientific-contributions/2117643254_Neel_Sheth
https://www.researchgate.net/scientific-contributions/2172059845_N_Sujith_Kumar_Reddy
https://www.researchgate.net/journal/1816-9503_International_Journal_of_Soft_Computing
https://www.researchgate.net/journal/1816-9503_International_Journal_of_Soft_Computing

83

[11] Chih-Jen Lin, S. Sathiya Keerthi, “Asymptotic Behaviors of Support Vector

Machines with Gaussian Kernel,” Neural Computation, Volume: 15, Issue: 7, 2003.

[12] D. P. Tegarden, S. D. Sheetz, and D. E. Monarchi, “A software complexity model of

object-oriented systems,” Decision Support Systems, vol. 13, no. 3-4, pp. 241–262,

1995.

[13] Deepinder Kaur, “A Comparative Study of Various Distance Measures for Software

fault prediction,” International Journal of Computer Trends and Technology

(IJCTT), volume 17 Issue 3, 2014.

[14] Derya Birant, Elife Öztürk Kıyak, Kökten Ulaş Birant, “An Ordinal Classification

Approach for Software Bug Prediction,” 2019.

[15] Dinesh Kumar, Jitender Kumar Chhabra, Vijay Kumar, “Performance Evaluation of

Distance Metrics in the Clustering Algorithms,” INFOCOMP, v. 13, no. 1, p. 38-51,

2014.

[16] F. B. Abreu, “Design metrics for object-oriented software systems,” ECOOP’95

quantitative methods workshop, Aarhus, 1995.

[17] G. Boetticher, T. Menzies and T. J. Ostrand, “Promise repository of empirical

software engineering data," 2007. [Online]. Available: http://

promisedata.org/repository.

[18] G. Holmes, A. Donkin, and I. Witten, “Weka: A machine learning workbench,” in

Proc. 2nd Aust. New Zealand Conf. Intell. Inf.Syst., pp. 1269–1277, 1994.

[19] Genero M., “Defining and Validating Metrics for Conceptual Models,” Ph.D. thesis,

University of Castilla-La Mancha, 2002.

[20] Haidar Osman, Mohammad Ghafari, Oscar Nierstrasz, “Hyperparameter

Optimization to Improve Bug Prediction Accuracy,” IEEE Workshop on Machine

Learning Techniques for Software Quality Evaluation, 2017.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6720226
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6789399
https://ieeexplore.ieee.org/xpl/conhome/7879540/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7879540/proceeding

84

[21] Haijin JI, Song HUANG, Xuewei LV, Yaning WU, Nonmembers and Yuntian

FENG, “Empirical Studies of a Kernel Density Estimation Based Naive Bayes

Method for Software Defect Prediction,” IEICE Transactions 102-D(1): 75-84, 2019.

[22] Harrison R., Counsell S. and Nithi R., “Coupling Metrics for Object-Oriented

Design,” 5th International Software Metrics Symposium Metrics, pp. 150-156, 1998.

[23] Hsu, Chan and Lin, “A Practical Guide to support vector classification,” 2010.

[24] I. Gondra, “Applying machine learning to software fault proneness prediction,”

Journal of Systems and Software, vol. 81, no. 2, pp. 186–195, 2008.

[25] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction using

ensemble learning on selected features,” Information and Software Technology,

58:388– 402, 2015.

[26] K. Huang, “Discriminative Naive Bayesian Classifiers,” Department of Computer

Science and Engineering, the Chinese University of Hong Kong, 2003.

[27] K. O. Elish and M. O. Elish, “Predicting defect-prone software modules using

support vector machines,” J. Syst. Softw., vol. 81, no. 5, pp. 649–660, 2008.

[28] K. P. Murphy, “Naive Bayes Classifiers,” Technical Report, October, 2006.

[29] Karsoliya, “Approximating Number of Hidden layer neurons in Multiple Hidden

Layer BPNN Architecture,” International Journal of Engineering Trends and

Technology, 2012.

[30] Kim E. M, Chang O. B, Kusumoto S, Kikuno T., “Analysis of metrics for object-

oriented program complexity,” Computer Software and Applications Conference,

IEEE Computer, pp. 201-207, 1994.

[31] L. Breiman, “Random Forests,” Machine Learning, 2001, vol. 45, no. 1, pp. 5-32,

2001.

85

[32] L. Briand, J. Daly, V. Porter, and J. Wust, “Exploring the relationships between

design measures and software quality,” Journal of Systems and Software, vol. 5, pp.

245-273, 2000.

[33] L. Brieman, “Bagging Predictors,” Machine Learning, vol. 24, pp. 123-140, 1996.

[34] L. Etzkorn, J. Bansiya, and C. Davis, “Design and code complexity metrics for OO

classes,” Journal of Object-Oriented Programming, vol. 12, no. 1, pp. 35–40, 1999.

[35] Lance, G. N. and Williams, “Computer programs for hierarchical polythetic

classification (similarity analyses),” Computer, 9(1):60–64, 1966.

[36] M. H. Halstead, “Elements of Software Science,” Elsevier Science, New York, NY,

USA, 1997.

[37] M. Hal et al., “The WEKA data mining software: An update,” SIGKDD Explor., vol.

11, no. 1, pp. 10-18, 2009.

[38] M. Lorenz and J. Kidd, “Object-Oriented Software Metrics,” Prentice Hall,

Englewood, NJ, USA, 1994.

[39] M.-H. Tang, M.-H. Kao, and M.-H. Chen, “Empirical study on object-oriented

metrics,” in Proceedings of the 6th International Software Metrics Symposium, pp.

242–249, November, 1999.

[40] M.M.T. Thwin, T.-S. Quah, "Application of Neural Networks for Software Quality

Prediction Using Object-Oriented Metrics," Proc. IEEE Int'l Conf. Software

Maintenance (ICSM), 2003.

[41] Malhotra, Shukla and Sawhney, “Assessment of Defect Prediction Models Using

Machine Learning Techniques for Object-Oriented Systems,” 5th International

Conference on Reliability, Infocom Technologies and Optimization, 2016.

[42] P. Yu, T. Systa and H. Muller, “Predicting Fault-Proneness Using OO Metrics: An

Industrial Case Study,” Proc. Sixth European Conf. Software Maintenance and

Reeng. (CSMR 2002), pp. 99-107, Mar., 2002.

86

[43] Pai, G.J., Dugan, J.B., “Empirical analysis of software fault content and fault

proneness using Bayesian methods,” IEEE Transactions on Software Engineering.

33, 10, 675–686, 2007.

[44] R. Martin, “OO design quality metrics—an analysis of dependencies,” in

Proceedings of the Workshop Pragmatic and Theoretical Directions in Object-

Oriented Software Metrics, 1994.

[45] Rajanikanth Aluvalu, “A Reduced Error Pruning Technique for Improving Accuracy

of Decision Tree Learning,” International Journal of Engineering and Advanced

Technology (IJEAT) ISSN: 2249 – 8958, Volume-3, Issue-5, June, 2014.

[46] RapidMiner Open Source Predictive Analytics Platform Available:

https://rapidminer.com/get-started/.

[47] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object Oriented Design,”

IEEE Transactions on Software Engineering, 20(6), pp. 476-493, 1994.

[48] Sandeep Reddivari and Jayalakshmi Raman, “Software Quality Prediction: An

Investigation based on Machine Learning,” IEEE 20th International Conference on

Information Reuse and Integration for Data Science, 2019.

[49] SharbleR. C. and Cohen S., “The object-oriented brewery: A comparison of two

object oriented development methods,” ACM SIGSOFT Software Engineering

Notes, 18, 2, pp.60-73, 1993.

[50] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented

metrics on open source software for fault prediction,” Software Engineering, IEEE

Transactions on, vol.31, no. 10, pp. 897 – 910, Oct, 2005.

[51] T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Software

Engineering, vol. 2, no. 4, pp. 308–320, 1976.

[52] T. Zimmermann, R. Premraj and A. Zeller, “Predicting defects for eclipse,” in

Predictor Models in Software Engineering, PROMISE’07: ICSE Workshops,

International Workshop on May, 2007.

87

[53] V. Basili, L. Briand and W.L. Melo, “A Validation of Object Oriented Design

Metrics as Quality Indicators,” IEEE Trans. Software Eng.,1996.

[54] Vasileios Apostolidis-Afentoulis, Konstantina-Ina Lioufi, “SVM Classification with

Linear and RBF Kernels,” 2015.

[55] W. Li and S. Henry, “Object-oriented metrics that predict maintainability,” Journal

of Systems and Software, 23(2):111–122, 1993

[56] W.Melo and F. B. E. Abreu, “Evaluating the impact of object oriented design on

software quality,” in Proceedings of the 3rd International Software Metrics

Symposium, pp. 90–99, Berlin, Germany, March, 1996.

[57] Y. Singh, A. Kaur and R. Malhotra, R, “Empirical validation of object-oriented

metrics for predicting fault proneness models,” Software Quality Journal, vol. 18, no.

1, pp. 3-35, 2010.

[58] Zhongqiang Wei, Hongzhe Xu, Wen Li, Xiaolin Gui, and Xiaozhou Wu, “Improved

Bayesian Network Structure Learning with Node Ordering via K2 Algorithm,”

Springer International Publishing Switzerland LNAI 8589, pp. 44–55, 2014.

https://www.researchgate.net/profile/Vasileios_Apostolidis-Afentoulis

APPENDIX

APPENDIX 1: WEKA PREPROCESS SCREEN

APPENDIX 2: WEKA FILTER OPTIONS

APPENDIX 3: WEKA KNOWLEDGE FLOW

APPENDIX 4: DECISION TREE

APPENDIX 5: RANDOM FOREST

APPENDIX 6: BAYESIAN NETWORK

APPENDIX 7: NAÏVE BAYES

APPENDIX 8: RULE BASED CLASSIFICATION

APPENDIX 9: SMO CLASSIFICATION

APPENDIX 10: LIBSVM

APPENDIX 11: LIBLINEAR

APPENDIX 12: LOGISTIC REGRESSION

APPENDIX 13: BAGGING

APPENDIX 14: BOOSTING

APPENDIX 15: ARTIFICAL NEURAL NETWORKS

APPENDIX 16: NEAREST NEIGHBORS

APPENDIX 17 RAPIDMINER

