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K E Y   P O INT   S

•		 The combined utility of routine 
laboratory results using machine 
learning (ML) models can provide 
precious opportunities to assist 
coronavirus disease 2019 
(COVID-19) diagnosis.

•		 The ML models can be used as 
clinical decision support tools to 
contribute to physicians’ clinical 
judgment about COVID-19 
diagnosis.

•		 The accuracy values of all models 
ranged from 74% to 91%.The 
best performance on the external 
validation data set belonged to 
the support vector model trained 
from clinical chemistry and CBC 
parameters (accuracy, 91.18%).
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A B S TRACT   

Objectives:  The present study aimed to develop a clinical decision support tool to assist 
coronavirus disease 2019 (COVID-19) diagnoses with machine learning (ML) models using 
routine laboratory test results.

Methods:  We developed ML models using laboratory data (n = 1,391) composed of six 
clinical chemistry (CC) results, 14 CBC parameter results, and results of a severe acute respi-
ratory syndrome coronavirus 2 real-time reverse transcription–polymerase chain reaction 
as a gold standard method. Four ML algorithms, including random forest (RF), gradient 
boosting (XGBoost), support vector machine (SVM), and logistic regression, were used to 
build eight ML models using CBC and a combination of CC and CBC parameters. Performance 
evaluation was conducted on the test data set and external validation data set from Brazil.

Results:  The accuracy values of all models ranged from 74% to 91%. The RF model trained 
from CC and CBC analytes showed the best performance on the present study’s data set 
(accuracy, 85.3%; sensitivity, 79.6%; specificity, 91.2%). The RF model trained from only 
CBC parameters detected COVID-19 cases with 82.8% accuracy. The best performance 
on the external validation data set belonged to the SVM model trained from CC and CBC 
parameters (accuracy, 91.18%; sensitivity, 100%; specificity, 84.21%).

Conclusions:  ML models presented in this study can be used as clinical decision support 
tools to contribute to physicians’ clinical judgment for COVID-19 diagnoses.

INTR    O D U CTI   O N

Coronavirus disease 2019 (COVID-19) was first seen in China after severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) infections in December 2019. The disease became a 
global health problem and was declared a pandemic on March 3, 2020, by the World Health 
Organization.1

Clinical chemistry (CC), hematology, coagulation, and specific protein test results of pa-
tients with COVID-19 changed during the illness. Zhang et  al2 reported that patients with 
COVID-19 could have lymphopenia (75.4%) and eosinopenia (52.9%). In this study, high 
C-reactive protein, procalcitonin, and D-dimer were associated with disease severity. Lippi 
and Plebani3 stated that procalcitonin levels increased in in patients with COVID-19 who 
had bacterial coinfection. In a meta-analysis study from Lippi et al,4 thrombocytopenia was 
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associated with increased mortality risk in patients with COVID-19. 
Furthermore, higher neutrophil, D-dimer, prothrombin time, alanine 
aminotransferase (ALT), lactate dehydrogenase (LDH), total biliru-
bin, high sensitive troponin I, and lower lymphocyte and albumin 
levels were detected in patients with COVID-19 who were hospital-
ized in an intensive care unit (ICU).5 Prothrombin time, fibrin deg-
radation products, and D-dimer were higher in patients who died of 
COVID-19 pneumonia than in surviving patients.6 The recommended 
laboratory tests and their changes during COVID-19 were extensively 
described by the International Federation of Clinical Chemistry 
(IFCC) and Laboratory Medicine Taskforce on COVID-19.7 Although 
the literature covered which analytes were valuable in diagnosis, 
monitoring, and estimating prognosis, it did not quantitatively re-
flect the overall contribution and use of analytes in SARS-CoV-2 de-
tection concerning the accuracy, sensitivity, and specificity.

Real-time reverse transcription–polymerase chain reaction 
(rRT-PCR) is a gold standard method that detects the SARS-CoV-2 
RNA.8 Errors originating from the preanalytical phase, such as im-
proper handling and transportation of specimens, contamination, 
inadequate sample quality, the presence of PCR inhibitors, and 
misidentifications, lead to false-negative test results.9-11 Thus, a 
negative test result cannot exclude infection where strong clinical 
suspicion exists.12

Machine learning (ML) models using routine laboratory re-
sults can provide valuable tools that support clinical decisions for 
detecting COVID-19 cases. The present study aimed to detect SARS-
CoV-2 cases with high accuracy, sensitivity, and specificity with ML 
models using routine laboratory test results.

M ATERIAL       S  AN  D   M ETH   O D S

Study Population
The present study was approved by the Ministry of Health (form 
No. 2020-05-28T154351) and the Başkent University Institutional 
Review Board (project No. KA20-169).

 FIGURE 1  schematically shows the data collection process and 
ML model development.

The demographic information and laboratory results of patients 
with COVID-19 detected by rRT-PCR were obtained from the labo-
ratory information system. Data from patients with COVID-19 were 
collected from April 2020 to November 2020. Only patient data 
consisting of concomitant CC and CBC test results within a 48-hour  
window from rRT-PCR testing were selected. CC test parameters 
comprised total bilirubin, ALT, aspartate aminotransferase (AST), 
LDH, creatinine, and C-reactive protein (CRP). CBC parameters in-
cluded eosinophils, monocytes, lymphocytes, red cell distribution 
width, platelets, mean corpuscular hemoglobin, leukocytes, mean 
corpuscular volume, mean corpuscular hemoglobin concentration, 
neutrophils, hemoglobin, hematocrit, basophils, and RBCs. Patients 
with multiple PCR results were considered follow-up patients, and 
only the first rRT-PCR results of these patients were included in the 
study. In line with the Republic of Turkey Ministry of Health’s deci-
sion, only symptomatic patients were tested by rRT-PCR for SARS-
CoV-2. In our hospital, patients with suspected COVID-19 are almost 

always admitted to the COVID-19 outpatient clinic. Thus, only outpa-
tient cases were included in the present study. The patient data from 
January 2018 to November 2019 were recruited from the laboratory 
information system to establish a PCR-negative group. The following 
exclusion criteria were then used for PCR-positive and PCR-negative 
groups: inpatients, patients with missing corresponding laboratory 
test parameters, and patients younger than 18 years and older than 
65 years, as shown in  FIGURE 1 . The data belonged to patients admit-
ted to Başkent University Ankara Hospital, which is a single-center 
university hospital in Ankara, Turkey. The present study’s data did 
not include a COVID-19 vaccinated individual.

We obtained the public data set from the Israelita Albert Ein-
stein Hospital in São Paulo, Brazil,13 for external validation of ML 
models. The São Paulo data set (n =  5,644) included SARS-CoV-2 
rRT-PCR results and routine laboratory results of patients admit-
ted to the abovementioned hospital from March 8, 2020, to April 
3, 2020. The data set was divided into two subsets comprising con-
comitant CC and CBC (n = 34) results and only CBC (n = 513) results. 
The CBC data set had imbalanced SARS-CoV-2 results (positive 
SARS-CoV-2 results, 75; negative SARS-CoV-2 results, 438). There-
fore, we randomly sampled 75 patients’ data whose SARS-CoV-2 re-
sults were negative. The final CBC data set comprised 150 patients’ 
results (positive SARS-CoV-2 results, 75; negative SARS-CoV-2 re-
sults, 75), as shown in  FIGURE 1 .

Clinical Laboratory Analyses
Serum AST, ALT, total bilirubin, creatinine, LDH, and CRP levels 
were measured using the Abbott Alinity c analyzer (Abbott Diagnos-
tics). The following methods were used for CC tests: the enzymatic 
NADH method without pyridoxal-5′-phosphate for AST and ALT. 
The IFCC recommended the lactate to pyruvate forward reaction 
method for LDH, the diazo reaction for total bilirubin, the kinetic al-
kaline picrate method for creatinine, and the immunoturbidimetric 
method for CRP. CBC analyses were performed using Abbott CELL 
DYN Ruby hematology analyzers (Abbott Diagnostics).

The rRT-PCR analysis was conducted on a Rotor-Gene Q rRT-
PCR quantification system  (Qiagen) with a Diagnovital HS SARS-
CoV-2 rRT-PCR kit (A1 Life Sciences)  that targets ORF1ab and N 
genes.

Internal quality control materials ran every 12 hours at two 
levels for CC analytes (Technopath Clinical Diagnostics) and every 
8 hours at three levels for CBC parameters (Abbott Diagnostics) in 
our laboratory. Our laboratory also enrolled in a monthly external 
quality control program (Randox Quality Control) for all analytes. 
Total error values are given in Supplementary Materials (all sup-
plemental materials can be found at American Journal of Clinical 
Pathology online).

Our laboratory followed health quality standards determined 
by the Republic of Turkey Ministry of Health.

Development and Evaluation of ML Models
In this study’s context, two data sets were formed using patient re-
cords. Data set A contained both CC and CBC results, and data set B 
consisted of only CBC results  FIGURE 1 . The data sets’ results were 
used as input variables, with rRT-PCR results the target variable.
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The Boruta feature selection method was applied to detect the 
model’s noninformative or redundant features.14 The Boruta method 
created a corresponding shadow for each attribute, whose values were 
obtained by shuffling the original attributes’ values across properties. 
Then, the algorithm trained a random forest (RF) model to evaluate 
the importance of each data set feature. The importance measure of 
the real feature was compared with a threshold value using z scores. 
The threshold was determined dynamically using a binomial distribu-
tion. Finally, importance was classified into three classes: discard (red), 
speculative (blue), and keep (green) to identify important features.14 
Every parameter’s importance was confirmed, as given in  FIGURE 2 .

ML methods, including RF, XGBoost, logistic regression, and 
support vector machine (SVM), were used to predict SARS-CoV-2 
results. The RF classifier model was constructed using 200 decision 
trees, entropy for information gain, and other default parameters 

based on the scikit-learn 0.24.1 package.15,16 The XGBoost classifier 
model was built using 100 decision trees and other default param-
eters based on the scikit-learn 0.24.1 package.16,17 The support vec-
tor classifier18 and logistic regression models were implemented 
using default parameters based on the scikit-learn 0.24.1 package.16 
Hyperparameter optimization was not performed for any model.

The first ML construction process was to split all data into 
training and test data sets using 80% and 20% of the overall data, 
respectively. Then, the data sets were standardized by z score 
transformation. The training data set was used for ML models’ 
construction and 10-fold cross-validation19 to assess the proposed 
models’ performance. Finally, model performances were independ-
ently evaluated using the test data set with accuracy, sensitivity, 
specificity, F score values, receiver operating characteristic (ROC) 
curve analysis, and κ statistics.20 Furthermore, the ML models’ 
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FIGURE 1  Study design. CC, clinical chemistry; LIS, laboratory information system; ML, machine learning; PCR, polymerase chain reaction; SARS-CoV-2, 
severe acute respiratory syndrome coronavirus 2.

performances were assessed on the São Paulo data set using accu-
racy, sensitivity, specificity, F score values, and ROC curve analysis 
for external validation.

Data preprocessing, implementation of artificial intelligence 
models, and statistical analyses were conducted using Python 
3.7.621 and R statistical software 3.6.0.22 The Python codes of the 
present study’s steps are given in our GitHub account (https://
github.com/hikmetc/COVID-19-AI).

RE  S U LT  S

The demographic features and laboratory measurements of the 
present study’s population are summarized in  TABLE 1 . The PCR-
positive and PCR-negative groups were matched by sex; however, 
the PCR-positive group’s median age was lower than that of the 
PCR-negative group (42 vs 48, P <  .001). While there was no sta-
tistical difference detected for LDH (186 vs 187 IU/L), the most 
significant difference among laboratory parameters was the eosino-
phils count (0.04 vs 0.13 × 103/μL; effect size, 0.62). Furthermore, 
the COVID-19–positive and COVID-19–negative groups differed in 
terms of pulmonary and gastrointestinal symptoms  TABLE 1 .

The São Paulo data set did not include analyzer, sex, race, or  
clinical information. The data set’s laboratory results consisted of 
standardized values, and the patients’ ages were given as quantiles. 
Therefore, the exact values of the laboratory results and ages were un-
known due to the São Paulo data set’s inherent characteristics. Positive 
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FIGURE 1  Study design. CC, clinical chemistry; LIS, laboratory information system; ML, machine learning; PCR, polymerase chain reaction; SARS-CoV-2, 
severe acute respiratory syndrome coronavirus 2.

performances were assessed on the São Paulo data set using accu-
racy, sensitivity, specificity, F score values, and ROC curve analysis 
for external validation.

Data preprocessing, implementation of artificial intelligence 
models, and statistical analyses were conducted using Python 
3.7.621 and R statistical software 3.6.0.22 The Python codes of the 
present study’s steps are given in our GitHub account (https://
github.com/hikmetc/COVID-19-AI).

RE  S U LT  S

The demographic features and laboratory measurements of the 
present study’s population are summarized in  TABLE 1 . The PCR-
positive and PCR-negative groups were matched by sex; however, 
the PCR-positive group’s median age was lower than that of the 
PCR-negative group (42 vs 48, P <  .001). While there was no sta-
tistical difference detected for LDH (186 vs 187 IU/L), the most 
significant difference among laboratory parameters was the eosino-
phils count (0.04 vs 0.13 × 103/μL; effect size, 0.62). Furthermore, 
the COVID-19–positive and COVID-19–negative groups differed in 
terms of pulmonary and gastrointestinal symptoms  TABLE 1 .

The São Paulo data set did not include analyzer, sex, race, or  
clinical information. The data set’s laboratory results consisted of 
standardized values, and the patients’ ages were given as quantiles. 
Therefore, the exact values of the laboratory results and ages were un-
known due to the São Paulo data set’s inherent characteristics. Positive 

and negative cases in the São Paulo data set were determined based 
on rRT-PCR testing. See  TABLE 2  for patients’ admission information.

The ML models’ performance for COVID-19 detection on our data 
set is given in  TABLE 3 . Models trained from CBC and CC analytes rep-
resented better performance than the models trained from CBC analytes 
alone. The moderate agreements (Cohen’s κ, 0.6-0.7) were observed 
between all models’ predicted results and rRT-PCR results. The ML 
models’ accuracy on the present study’s data set ranged from 80% to 
85%, and the area under the curve (AUC) values of all models were 
higher than 0.8. On the other hand, in the external validation, the ML 
models’ accuracies ranged from 74% to 91%. Interestingly, sensitivity 
values of ML models were higher in the external validation data set 
than in the present study’s data set. Moreover, found sensitivity val-
ues were 100% on the external validation data set for all ML models 
trained from CC and CBC results, as shown in  TABLE 4 .

The RF model trained from CC and CBC analytes showed the best 
performance among the models (accuracy, 85.30%; specificity, 91.24%; 
sensitivity, 79.58%; positive predictive value, 90.40%; AUC, 0.925) on 
our data set, as shown in  TABLE 3  and illustrated in  FIGURE 3 . How-
ever, in external validation, the SVM model’s performance was better 
than other ML models, as given in  TABLE 4  and  FIGURE 4 .

D I S C U S S I O N

We developed eight ML models to predict SARS-CoV-2 results. 
The ML models trained from CC and CBC results showed better 
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performance than the models trained from only CBC results. While 
our RF model showed the best performance on the present study’s 
data set (85.30% accuracy with CC and CBC parameters, 82.80% 
for CBC parameters), the SVM model’s performance was superior 

to other ML models when performed on the external validation data 
set (91.18% accuracy with CC and CBC parameters, 80% for CBC 
parameters). The accuracy values of the ML models obtained from 
10-fold cross-validation were comparable to their corresponding 

TABLE 1  Demographic Features and Laboratory Measurements of the Present Study Populationa

Characteristic COVID-19 Positive COVID-19 Negative P Value Effect Size

Age, median (IQR), y 41.9 (20.4) 48.4 (15.4) <.001b 0.23c

Sex, No. (%)     

  Female 341 (48.2) 340 (49.7) .582d 0.01e

  Male 366 (51.8) 344 (50.3)

White race, No. (%) 707 (100) 684 (100)   

Turkish ethnicity, No. (%) 707 (100) 684 (100)   

ALT, median (IQR), IU/L 21.00 (18.00) 18.00 (14.00) <.001b 0.17c

AST, median (IQR), IU/L 21.00 (11.00) 17.00 (9.00) <.001b 0.24c

Basophils, median (IQR), × 103/µL 0.05 (0.04) 0.06 (0.04) <.001b 0.28c

CRP, median (IQR), mg/L 6.60 (12.85) 2.00 (4.50) <.001b 0.38c

Eosinophils, median (IQR), × 103/µL 0.04 (0.06) 0.13 (0.12) <.001b 0.62c

Hemoglobin, median (IQR), g/dL 14.50 (2.00) 13.60 (2.22) <.001b 0.32c

Hematocrit, median (IQR), % 43.50 (5.80) 40.80 (6.10) <.001b 0.32c

Creatinine, median (IQR), mg/dL 0.86 (0.25) 0.78 (0.21) <.001b 0.24c

LDH, median (IQR), IU/L 186.00 (62.00) 187.00 (56.00) .343b 0.03c

Lymphocytes, median (IQR), × 103/µL 1.47 (0.88) 2.01 (1.03) <.001b 0.37c

Leukocytes, median (IQR), × 103/µL 5.48 (2.25) 7.03 (3.23) <.001b 0.40c

MCH, median (IQR), pg 29.30 (2.00) 29.05 (2.70) .006b 0.09c

MCHC, median (IQR), % 33.30 (1.20) 33.20 (1.20) .005b 0.09c

MCV, median (IQR), fL 87.90 (5.45) 87.10 (6.60) .020b 0.07c

Monocytes, median (IQR), × 103/µL 0.53 (0.30) 0.51 0.25) .130b 0.05c

Neutrophils, median (IQR), × 103/µL 3.21 (1.94) 3.96 (2.53) <.001b 0.29c

RBC, median (IQR), × 106/µL 4.98 (0.61) 4.70 (0.72) <.001b 0.28c

RDW, median (IQR), % 13.70 (3.70) 14.40 (3.40) <.001b 0.28c

Total bilirubin, median (IQR), mg/dL 0.50 (0.30) 0.57 (0.42) <.001b 0.12c

Platelets, median (IQR), × 103/µL 200.00 (69.00) 244.00 (103.25) <.001b 0.37c

Symptoms, No. (%)     

  Fever 549 (77.7) 89 (13.0) <.001d 0.65e

  Cough 340 (48.1) 21 (3.1) <.001d 0.51e

  Fatigue 320 (45.3) 103 (15.1) <.001d 0.37e

  Myalgia 289 (40.9) 69 (10.1) <.001d 0.35e

  Sore throat 173 (24.5) 35 (5.1) <.001d 0.27e

  Headache 117 (16.5) 45 (6.6) <.001d 0.16e

  Diarrhea 89 (12.6) 18 (2.6) <.001d 0.19e

  Shortness of breath 62 (8.8) 42 (6.1) .056d 0.05e

  Loss of taste or smell 24 (3.4) 0 (0.0) <.001d 0.13e

  Stomachache 17 (2.4) 110 (16.1) <.001d 0.24e

  Other 63 (8.9) 199 (29.1) <.001d 0.26e

ALT, alanine aminotransferase; AST, aspartate aminotransferase; COVID-19, coronavirus disease 2019; CRP, C-reactive protein; IQR, interquartile range; LDH, lactate dehydrogenase; 
MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; RDW, red cell distribution width.

aCohen’s w values with 0.1, 0.3, and 0.5 correspond to small, medium, and high large effect sizes, respectively. Rank biserial correlation values with 0.1, 0.24, and 0.37 correspond to 
small, medium, and large effect sizes, respectively.

bMann-Whitney U test.
cRank biserial correlation.
dχ 2 test.
eCohen’s w effect size. 
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test set accuracy, which demonstrated the models’ generalizability. 
We performed external validation to show our ML models’ repro-
ducibility and found that sensitivity values were quite satisfactory, 
as shown in  TABLE 4 .

Several ML models using routine laboratory tests have been 
proposed to support COVID-19 diagnoses. Some models were 
built using only CBC parameters and others with extended routine 
laboratory parameters and other clinical features. Cabitza et  al23 
reported that the RF model trained from CBC parameters could 
predict COVID-19 with 76% accuracy, 76% sensitivity, 82% spec-
ificity, and an AUC of 0.76. Another RF model trained from CBC 
parameters proposed by Tschoellitsch et  al24 showed 86% accu-
racy; however, the positive predictive value was only 20%. Our RF 
model trained from CBC parameters outperformed the previously 
reported models and showed 82.8% accuracy, 80.28% sensitivity, 
85.4% specificity, and 85.07% positive predictive value (PPV) in the  
present study’s data set and 79.33% accuracy, 90.67% sensitivity, 
68% specificity, and 73.91% PPV in the external validation data set. 
In a study from Joshi et al,25 the specificity and positive predictive 
values of logistic regression models using CBC parameters and sex 
information were lower than 50% and 30%, respectively. In the 
present study’s data, our logistic regression model’s specificity and 
positive predictive values trained from only CBC parameters were 
78.10% and 79.45%, respectively, as given in  TABLE 3 .

The ML models offered by Schwab et al26 were developed using 
106 laboratory tests, demographics, and clinical parameters. In 
this study, the models’ best AUC, sensitivity, and specificity values 
were 0.66, 75%, and 59%, respectively. Goodman-Meza et al27 used 
a combination of seven ML models using age, sex, and broad labo-
ratory test spectrum to predict COVID-19 diagnoses. Although their 
model’s AUC, sensitivity, and specificity values were 0.91, 93%, and 
63%, respectively, the positive predictive value was only 29%. More 
balanced performance characteristics were reported in a study from 
Yang et al.28 The XGBoost model, using 27 laboratory test param-
eters and three demographic features, showed 85% sensitivity, 
81% specificity, and 0.854 AUC. Likewise, our study also reached 
balanced performance characteristics for our data set and external 
validation data set. Our ML models used 20 CC and CBC and 14 CBC 
routine laboratory test parameters as input variables to predict a 
SARS-CoV-2 result. With only 14 CBC parameters, our ML models 
achieved 79.9% to 82.8% accuracy  TABLE 3 .

While the highest value of the ML models’ sensitivities was 
81.67% in the present study’s data set, the ML models’ sensitivities 

ranged from 85.33% to 100% in the external validation, as shown 
in  TABLE 4 . Our data set comprised outpatients whose ages were 
younger than 65 years. On the other hand, the external validation 
data set included outpatients and patients referred to the regular 
ward, semi-ICU, and ICU, as given in  TABLE 2 . Therefore, even if 
the exact ages were not available, the external validation data set 
probably included more severe cases considering admission char-
acteristics. Furthermore, severe cases in the external validation 
data set might have had more abnormal laboratory results than the  
present study’s outpatients. Thus, it can be suggested that ML 
models can distinguish true positives from false negatives more 
efficiently when the population has more severe cases, eventually 
leading to improved sensitivity.

The importance of input parameters in COVID-19 prediction 
differs among studies. Some studies reported that leukocytes,24 
arterial lactic acid,26 and LDH23,27,28 were the most important 
parameters. However, consistent with the present study, Plante 
et al29 found eosinophils as the most important feature. Eosinophil 
count is lower in patients with COVID-19,30 which is related to the 
disease’s severity.31 Moreover, it was demonstrated that eosinophils 
were recruited in lung tissue during severe viral respiratory infec-
tions.32 Similarly, the present study found eosinophils are the most 
important feature, followed by CRP, as illustrated in the Boruta 
plot  FIGURE 2 .

A single routine laboratory test cannot accurately detect a 
COVID-19 case.33 However, the combined utility of routine labo-
ratory tests using ML methods can contribute to more accurate 
COVID-19 diagnoses, as shown in the present study. The turna-
round time for routine laboratory tests is relatively shorter than 
that for rRT-PCR tests. For example, in our laboratory the mean 
turnaround times for CBC, CC, and rRT-PCR tests were 22 minutes, 
41 minutes, and 8 hours, respectively. Furthermore, the total cost 
of routine laboratory tests is cheaper than rRT-PCR. While routine 
laboratory parameters’ total reagent cost in the present study was 
only ~$1 per analysis, the rRT-PCR’s reagent market cost was $5. 
Therefore, we can infer that ML models using routine laboratory 
test results can serve as cheaper and quicker clinical decision sup-
port tools for COVID-19 diagnoses.

When our ML models were first developed, their performances 
were evaluated using laboratory results from a single-centered 
university hospital. A  limitation of the study was that our PCR-
positive and PCR-negative groups in our data set were not age 
matched, even though they comprised 18- to 65-year-old adults. 

TABLE 2  São Paulo Data Set: COVID-19 Outpatients and the Patients Referred to General Ward, Semi–Intensive Care Unit, or Intensive Care Unit

SARS-CoV-2 No. Regular Ward, No. (%) Semi–Intensive Care Unit, No. (%) Intensive Care Unit, No. (%) Outpatient, No. (%)

CBC data set      

  Positive 75 25 (33.3) 7 (9.3) 7 (9.3) 36 (48)

  Negative 75 5 (6.6) 4 (5.3) 1 (1.3) 65 (86.6)

CBC + CC data set      

  Positive 15 7 (46.6) 3 (20) 3 (20) 2 (13.3)

  Negative 19 5 (26.3) 2 (10.5) 1 (5.3) 11 (57.9)

CC, clinical chemistry.
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TABLE 3  Performances of Machine Learning Models for COVID-19 Prediction

Parameter/Model PPV,a % Sensitivity,a % Specificity,a % F1 Score,a % Accuracy,a % AUCa
Validation Accuracy,b  
Mean ± SD

Cohen's 
κ a

CBC + CC         

  Random forest 90.40 79.58 91.24 84.64 85.30 0.925 84.98 ± 3.06 0.707

  XGBoost 91.82 71.13 93.43 80.16 82.08 0.887 85.53 ± 2.10 0.643

  SVM 87.02 80.28 87.59 83.52 83.87 0.890 81.83 ± 2.85 0.678

  Logistic regression 80.42 80.99 79.56 80.70 80.29 0.883 80.39 ± 2.44 0.606

CBC         

  Random forest 85.07 80.28 85.40 82.61 82.80 0.881 83.63 ± 3.10 0.656

  XGBoost 83.21 76.76 83.94 79.85 80.29 0.867 82.73 ± 3.39 0.606

  SVM 81.69 81.69 81.02 81.69 81.36 0.866 80.84 ± 2.94 0.627

  Logistic regression 79.45 81.69 78.10 80.56 79.93 0.874 79.67 ± 2.08 0.598

AUC, area under the curve; CC, clinical chemistry; PPV, positive predictive value; SVM, support vector machine.
aMeasures obtained from the evaluation of the models’ performance on the test set.
bPerformance measure obtained from 10-fold cross-validation.

TABLE 4  Performances of Machine Learning Models for COVID-19 Prediction on the São Paulo Data Set

Parameter/Model PPV, % Sensitivity, % Specificity, % F1 Score, % Accuracy, % AUC Cohen's κ

CBC + CC        

  Random forest 68.18 100.00 63.16 81.08 79.41 0.911 0.602

  XGBoost 65.22 100.00 57.89 78.95 76.47 0.856 0.548

  SVM 83.33 100.00 84.21 90.91 91.18 0.958 0.825

  Logistic regression 71.43 100.00 68.42 83.33 82.35 0.902 0.657

CBC        

  Random forest 73.91 90.67 68.00 81.44 79.33 0.849 0.587

  XGBoost 69.57 85.33 62.67 76.65 74.00 0.855 0.480

  SVM 73.68 93.33 66.67 82.35 80.00 0.844 0.600

  Logistic Regression 68.37 89.33 58.67 77.46 74.00 0.827 0.480

AUC, area under the curve; CC, clinical chemistry; PPV, positive predictive value; SVM, support vector machine.

A B

0.0 0.2 0.4

Random forest
(AUC = 0.925)
SVM
(AUC = 0.890)
XGBoost
(AUC = 0.887)
Logistic
(AUC = 0.883)

False-Positive Rate

0.6 0.8 1.0

Tr
ue

-P
o

si
ti

ve
 R

at
e

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4

Random forest
(AUC = 0.881)
Logistic
(AUC = 0.874)
SVM
(AUC = 0.866)
XGBoost
(AUC = 0.867)

False-Positive Rate

0.6 0.8 1.0

Tr
ue

-P
o

si
ti

ve
 R

at
e

0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 3  Receiver operating characteristic curves of the machine learning (ML) models. A, ML models built using clinical chemistry and CBC parameters. 
B, ML models built using CBC parameters. AUC, area under the curve; SVM, support vector machine.
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In addition, the COVID-19–positive group was sicker than the his-
toric outpatient group regarding pulmonary symptoms, as inferred 
from  TABLE 1 . On the other hand, stomachaches and other symp-
toms were more prevalent in the control group  TABLE 1 . Further-
more, the study patients’ comorbidities were not available. Hence, 
we could not confirm that our PCR-positive and PCR-negative 
groups were congruent, which may have affected the initial per-
formance evaluation. Second, while our PCR-negative group’s 
data were gathered from January 2018 to November 2019, the 
PCR-positive group included patients admitted from April 2020 
to November 2020. Therefore, our PCR-positive group’s data did 
not include the winter season, which may have confounded the 
study’s outcome. Third, due to the reliance on rRT-PCR results, our 
study might have omitted false positives that came from rRT-PCR 
testing. In addition, our data set may have included predominantly 
mild/moderate cases due to the inclusion of outpatients whose 
ages were younger than 65 years. On the other hand, patients in the 
PCR-positive group had at least one symptom during admission. 
Thus, the present study’s data did not include severe and asymp-
tomatic patients with COVID-19. For these reasons, we externally 
evaluated our ML models’ performance on the public data set from 
the Israelita Albert Einstein Hospital in São Paulo. The São Paulo 
data set  also lacked detailed clinical-demographical characteris-
tics and the exact laboratory results due to the standardized val-
ues presented for the sake of anonymity. However, the São Paulo 
data set included patients referred to the regular ward, semi-ICU, 
and ICU in addition to outpatients. Thus, we could externally 
evaluate our ML model’s performance on the data set with more 
severe cases. Nevertheless, our ML models showed a satisfactory 
performance on the external validation data set. While the present 
study’s data set includes only true negatives in the PCR-negative 
group, the external validation data set may contain false-negative 

results due to the reliance on rRT-PCR tests. Hence, the external 
validation performance should be interpreted with this limitation. 
Furthermore, ML models presented in this study still need to be 
validated in asymptomatic cases.

The external validation data set used in the present study con-
sisted of 34 and 150 concomitant patient results for CC and CBC and 
CBC parameters, respectively  TABLE 2 . Therefore, external valida-
tion studies of the proposed models should be performed on larger 
data sets to ensure the reliability of the developed ML models. On 
the other hand, the models’ performance could be improved by 
incorporating additional input variables, such as medical imaging, 
symptoms, physical examination, vital signs, and increasing sample 
size. The absence of vaccinated subjects limits the present study. 
Moreover, none of the recent SARS-CoV-2 variants, such as Beta and 
Delta, were in circulation when the current study was conducted in 
Turkey.34 The external validation data set suffered from the same 
limitation. Hence, ML models should be validated against vaccin-
ated populations and more recent SARS-CoV-2 variants.

The false-negative results from rRT-PCR that originated from 
preanalytical errors are still an important problem in the fight 
against the pandemic.35 We selected our PCR-negative group from 
prepandemic data for the ML models’ training. Thus, the present 
study’s data set was free of the false-negative results that originated 
from the preanalytical errors, such as inappropriate sampling, and 
they did not influence the ML models’ development. The ML models 
presented in this study can be used as clinical decision support tools 
to contribute to physicians’ clinical judgments on COVID-19 or di-
rect them to offer repeat rRT-PCR testing in case of preanalytical 
error suspicions.

Acknowledgments: We thank Başkent University Faculty of Medicine Clinical 
Laboratory’s personnel for their unseen endeavors in the COVID-19 pandemic.
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FIGURE 4  Receiver operating characteristic curves of the machine learning (ML) models on São Paulo data set. A, ML models built using clinical chemistry 
and CBC parameters. B, ML models built using CBC parameters. AUC, area under the curve; SVM, support vector machine.
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