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Abstract
The copula Gaussian graphical model (CGGM) is one of the major mathematical models
for high dimensional biological networks which provides a graphical representation, espe-
cially, for sparse networks. Basically, this model uses a regression of the Gaussian graphical
model (GGM) whose precision matrix describes the conditional dependence between the
variables to estimate the coefficients of the linear regression model. The Bayesian inference
for the model parameters is used to overcome the dimensional limitation of GGM under
sparse networks and small sample sizes. But from the application in bench-mark data
sets, it is seen that although CGGM is successful in certain systems, it may not fit well
for non-normal multivariate observations. In this study, we propose the vine copulas to
relax the strict normality assumption of CGGM and to describe networks from a variety
of copulas alternates besides the Gaussian copula. Accordingly, we evaluate the best fitted
bivariate copula distribution for every pairwise gene and compute the estimated adjacency
matrix which denotes the presence of an edge between the corresponding genes. We assess
the performance of our proposed approach in three network data via distinct accuracy
measures by comparing the outputs with the results of the CGGM.
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1. Introduction
The construction of biological networks is a challenging problem since the amount of

available data increases sharply and the interpretation of these data sets becomes impor-
tant to understand complex systems diseases like cancers. Hereby, many mathematical
models are suggested to better describe this complexity. The graphical models are one
of the successful modeling groups in this field. Basically, these models present the in-
teractions between systems elements, which are genes or proteins affecting the flow of
activation in networks via undirected edges that are typically computed by pairwise cor-
relations between underlying elements. The copula Gaussian graphical model (CGGM),
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which is one of the recent and promising graphical models, explains the functional rela-
tionship between genes under the multivariate normal distribution. In this model, the
joint function is represented by the Gaussian copula in a lasso regression. The inference
of this model is conducted via different Bayesian algorithms. The reversible jump Markov
chain Monte Carlo (RJMCMC) algorithm is one of the methods used to construct the
conditional dependence between the nodes in the CGGM introduced by [12]. Herein, the
captured dependence structure is the undirected edge between the nodes and the used
copula is the Gaussian copula because of its exclusive property that the uncorrelateness
implies the independence. But in some cases, Gaussian may not be an appropriate model
between the marginals of the variables since it requires the symmetry and a zero tail of
the dependence. So another copula could be more appropriate for modeling this type of
data sets. Thereby, in this study, we aim to use vine copulas which enable us the flexibility
to select the non-Gaussian copula for every pair of genes in the construction of protein-
protein interaction networks models. As the common properties of all these mentioned
models is that they are parametric approaches. But, in the literature of the construction
of biological networks, there exists different types of non-parametric models as well. One
of the recent methods is called the loop-based multivariate adaptive regression splines
(LMARS) [1, 4] and its conic version [5]. These two models adapt the multivariate adap-
tive regression splines (MARS) and conic MARS (CMARS) model for the protein-protein
interaction networks by iteratively performing MARS and CMARS, respectively, for each
protein via main effects and second-order interaction terms. Indeed, these two models have
wide application in different fields such as in finance [2], supply chain management [29],
optimization problems in mathematics [46], analysing the environmental statistics [28] and
neuroscience [9]. Besides MARS and its extension, there are some other alternative non-
parametric approaches that have been already adapted to the description of the complex
biological networks or can be adapted in this field with some modifications. The random
forest [14, 37], generalized partial linear model [30, 44], neural networks [18, 23], support
vector machines [22] and ordinary differential equation models [15] are some examples for
this type of non-parametric methods. On the other side, in terms of handling the un-
certainty there are some general methods for complex models. The robust optimization
[25, 27] stochastic optimal control [36, 41] and the chance constrained optimization meth-
ods [3,16,21] can be seen some known examples in this area. In general, these methods are
successful in the description of the systems. Whereas, they do not take into account the
distributional knowledge of the data for their model descriptions. Thus, the parametric
approaches are considered if the distributional features of the data are known. Hereby,
in order to include this information, distinct parametric approaches are suggested. The
Gaussian graphical model is one of the strong alternatives while presenting the systems’
changes via the multivariate normal distribution [20,38]. Whereas, its inference is limited
for the large system. Accordingly, the CGGM whose inference is conducted either the
Bayesian algorithm [24, 32] or the vine copula approaches, as mentioned previously, are
the alternative solutions for the limitation of the Gaussian graphical model.

Accordingly, in the first section, RJMCMC is introduced briefly. Then, in the Materials
and Methods part, the copula is defined as its types and the formats of vine copulas.
Finally, in the Application and Conclusion parts, we compare the mentioned methodologies
by some accuracy measures such as F1 score and Matthews correlation coefficient and
summarize our results, respectively.

2. Materials and methods
Gaussian copula that is used for CGGM via RJMCMC in inference has some advantages

such as using the correlation to get the dependence and is also being conjugate with the G-
Wishart distribution. In RJMCMC, the inverse of the correlation matrix which is called the
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precision matrix, shows the conditional dependence in such a way that each zero element
of the precision matrix implies the conditionally independence between corresponding
variables. In the graphical models, each variable is indicated by a node and the conditional
dependence between them is described by an undirected edge. But, we do not need to
know the strength of the edges in CGGM. On the other hand, the vine copula deals with
the joint distribution function which can be written by bivariate (pair) copulas in a way
that all of the pair copulas can be from a different copula type with different parameters.
Hereby, the advantage of the vine copula is its flexibility and its ability to define the full
model without the necessity of any specific assumption. In the following part, initially,
we explain briefly the RJMCMC algorithm within CGGM and then, present shortly some
methods for the selection of the best pairwise vine copula models.

2.1. Reversible jump markov chain Monte Carlo method
The Gaussian graphical model (GGM) is the probabilistic version of the graphical ap-

proach where the nodes are described by a multivariate normal distribution with a p-
dimensional mean vector µ = (µ1, µ2, . . . , µp) and a (p×p)-dimensional covariance matrix
Σ for totally p nodes. The precision matrix, which is the inverse of Σ and also denoted by
Θ = Σ−1, represents the conditional dependence between nodes in a way that the signif-
icantly large values point a highly possible dependency between two related nodes given
remaining nodes in the network. Thereby, the mathematical description of the model is
denoted as below

Yp = βY−p + ϵ, (2.1)
where Yp stands for the state of the pth node and Y−p shows the states of all other nodes
except the pth node, respectively. β is a vector of the regression coefficient associated with
Y−p and ϵ refers to the p-dimensional vector of the normally distributed random error.
Accordingly, the distribution of Y is indicated as

f(Y |µ, Θ) = (2π)−n/2 det(Θ)n/2 exp{−1
2

(Y − µ)TΘ(Y − µ)}. (2.2)

Herein, det(.) and (.)T describe the determinant and the transpose of the given matrix,
in order. Thus, in the inference of this model, β has a direct relation with Θ via β =
Θ−pp

Θpp
in which Θ−pp is the ((p− 1) × p)-dimensional submatrix of Θ when the associated

term of the pth node is discarded. So, the knowledge of Θ implies the knowledge of β,
resulting in the information about the coefficients of the regression expression came from
the conditional dependency between the related nodes.

RJMCMC is an approach which deals with mostly the Cholesky decomposition to get
a positive definite precision matrix due to its conjugate advantageous in the prior distri-
bution for Θ which is supposed as the G-Wishart distribution with a density

p(Θ|G) = 1
IG(σ,D)

exp{−1
2
tr(ΘTD)}. (2.3)

In this expression, G implies the given graphical structure of the data. On the other
hand, the G-Wishart prior is the generalized version of the chi-square distribution and
the conjugate with the multivariate normal density [43]. Thus, the posterior distribution
Θ of the given G is presented as the G-Wishart distribution with parameters (σ + n)
and (D + U). Accordingly, the RJMCMC algorithm performs a three-stage procedure
by utilizing the Metropolis-Hasting algorithm to calculate the probability of the update
in every step, namely, resampling the latent data, resampling the precision matrix and
resampling the graph iteratively, until all parameters are convergent. The mathematical
details of each step can be found in [12].
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2.2. Vine copula
The base theorem of the general version of the copula method is the Sklar’s theorem in

which every joint distribution function of two or more variables can be written by their
marginal distributions and a copula as in the below

F (y) = C(F1(y1), F2(y2), .., Fd(yd), (2.4)

where y = (y1, y2, .., yd)T and F is the d-dimensional cumulative distribution function
of the random variable Y . It means for every two or more random variable, there is a
unique copula that defines the joint distributions of the variables based on their marginal
distributions and a copula term for the dependence between them.In order to use the
multivariate copula some strict assumptions are needed which are discussed in detail in
the study of [19]. As a solution for the complexity problem of the multivariate copula,
the vine copula decomposes the joint distribution function f(y) into the bivariate cases
to reduce the complexity of the multivariate model. Therefore the vine copula is based on
the conditional bivariate distributions.

To show how the multivariate distribution function is decomposed to some bivariate
functions by applying the Sklar’s theorem and the chain rule of probability and the condi-
tional distribution definition, the simplest form of the multivariate joint distribution .i.e,
d = 3 is used. In the first step the chain rule of probability is used as below

f(y1, y2, y3) = f1(y1)f(y2|y1)f(y3|y2, y1). (2.5)

The f(y2|y1) term of Equation 2.5 can be written as its definition for the conditional
probability function via f(y2,y1)

f1(y1) . Then, the Sklars theorem is applied in a way that
f(y1, y2) = c1,2(F1(y1), F2(y2))f1(y1)f2(y2). Accordingly the conditional distribution func-
tion of y1 and y1 is written as

f(y2|y1) = c1,2(F1(y1), F2(y2))f2(y2). (2.6)

Hence, f(y3|y1, y2) = c(2,3|1)(F (y2y1), F (y3y1))c1,3(F1(y1), F3(y3))f3(y3). Finally, we have

f(y1, y2, y3) = c1,2(F1(y1), F2(y2))c2,3|1(F (y2|y1)F (y3|y1))c1,3(F1(y1)F3(y3))f1(y1)f2(y2)f3(y3).

Meanwhile, there are more than one way to write the joint probability function as pair
copula terms and marginal probability functions. In the above statement, the order is
1, 2, 3. But, it can have another order of the variables and the structure of the network
depends completely on the associated order. Hereby, below we introduce the types of
vine copulas and some analytical tools that can select the order and the best pair-copula
among the possible pair-copula for the systems network. In the graphical representation
of the network, each node states one variable and each edge or connection undirected
line shows the dependence structure between the corresponding variables (nodes). This
representation is allocated to the pair copula construction while the multivariate copula
representation is not possible by nodes and edges where there are more than two variables
connected (depend) each other. So, the other advantage of the vine copula is its ability
to be represented graphically.

2.2.1. Types of vine copula. The family types of the copula is more than two while
there are two main families, namely, the Elliptical and Archimedean copulas. These
families will be used to represent the dependence structure between two variable in the
vine copula. Some of them have only one parameter and some have two parameters.
The elliptical bivariate copula is written as u1, u2 ∈ [0, 1] in the form of C(u1, u2) =
F (F (−1)

1 (u1), F (−1)
2 (u2)), where F is a bivariate distribution function with invertible F1

and F2. This copula family includes the Gaussian and student-t copulas which are both
symmetric with one and two parameters, respectively. Whereas, the Gaussian copula
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has no tail dependence while the student-t has an extra parameter ν showing the tail-
dependence, adjusted via the degrees of freedom. That means the bivariate Gaussian
(student-t) function is used as the pair copula function and the inverse marginal cumulative
function of y1 and y2 are used as u1 and u2 in the copula function.

On the other side, the formula of the Archimedean copula families are not straight-
forward unlike the Elliptical family. Therefore, the generator function ψ is used which can
give the function by using the following statement

C(u1, u2) = ψ[−1](ψ1(u1) + ψ2(u2)),

here ψ is a strictly decreasing and continuous generator function while the pseudo inverse
of the generator function is defined as ψ[−1](t) = I[0,ψ(0))(ψ(−1)(t)). Some of the one-
parameter Archimedean copulas are Clayton, Gumbel, Frank and Joe. There are some
other two-parameter copulas made by the combination of two one-parameter copulas that
make them more flexible about the shape and the tail-dependence. The properties of the
mentioned one-parameter and two-parameter Archimedean copula family are represented
in Table 1.

Table 1. Denotation and properties of the bivariate Archimedean families

Name Generator func (ψ) Prm range Kendall’s τ Tail dependence
Clayton 1

θ
(t−θ − 1) θ > 0 θ

θ+2 (2− 1
θ , 0)

Gumbel −(logt)θ θ ≥ 1 1 − 1
θ

(0, 2 − 2− 1
θ )

Frank −log( e−θt−1
e−θ−1 ) θ ∈ R 1 − 4

θ
+ 4 D(θ)

θ
(0,0)

Joe −log(1 − (1 − t)θ) θ > 1 1 + 4
θ2

∫
tlog(t)(1 − t)2(1−θ)/θdt (0, 2 − 2− 1

θ )
BB1 (t−θ − 1)σ θ > 0, σ ≥ 1 1 − 2

σ(θ+2) (2− 1
θσ , 2 − 2

1
σ )

BB6 (−log(1 − (1 − t)θ))σ θ > 0, σ ≥ 1 1 + 4
θ2

∫
(1 − log(1 − (1 − t)θ))dt (0, 2 − 2− 1

θσ )
BB7 (1 − (1 − t)θ)−σ − 1 θ ≥ 1, σ > 0 1 + 4

θσ

∫
(−(1 − (1 − t)θ))σ+1dt (2− 1

σ , 2 − 2
1
θ )

BB8 −log( 1−(1−σθ)θ

1−(1−σ)θ ) θ ≥ 1, σ ∈ (0, 1) 1 + 4
θσ

∫
(−log( (1−tσ)θ−1

(1−σ)θ−1 ))dt (0, 0)

The BB1, BB6, BB7 and BB8 stand for the Clayton-Gumbel, the Joe-Gumbel, the
Joe-Clayton and the Joe-Frank copulas. These families are more flexible as they are the
combined version of other Archimedean families which can describe the one-sided tail
dependence between two variables apart from their complicated joint distributions. For
instance the BB7 copula is the combination of Joe and Clayton families has two-parameter:
θ for Joe copula and σ for the Clayton copula and can define the models with two-sided
non-symmetric tail dependence.

The vine copulas, as discussed previously, are in the form of the bivariate or pair
copula. There are two types of the vine copula which are in good order named by the
canonical (shortly denoted C-vine) and the drawable (shortly denoted D-vine) copulas.
The structure of the C-vine copula has the shape of the star via all trees and the nodes
should be determined in advance. Thus, the order of variables is determined based on the
roots of each tree. On the contrary, the structure of the D-vine copula is a path and, in
this type, the first tree is the root tree and all other trees are made from the first tree.
In both of vine copula types, the number of roots equal to (d − 1). Figure 1 shows the
structure of both vine copula types for d = 5 as an example.

2.2.2. Analytical tools. The general form of the vine copula is called the regular vine
copula (shortly denoted R-vine) is the disordered vine which includes the combination of
both C and D-vine copulas. That means in some points the connection in in the star
shape like the C-vine and in some other points it is in the form of a path like the D-vine.
Figure 2 represents a R-vine structure.
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Figure 1. The examples of 5-dimensional C-(left panel) and D-vine trees (right
panel) with edge indices [7]

Figure 2. The examples of 5-dimensional R-vine trees (right panel) with edge
indices [39]

There are several ways to write a joint density function via pair copulas as there are
(d(d−1))

2 pair copulas. As it is mentioned previously, the order of variables determines the
root of each tree in the C-vine and the path in the first tree in the D-vine. The algorithm
of the order selection for the C-vine copula is briefly described as follows [8]:

• Compute the empirical distribution function of the data to transform them into
the uniformly distributed data.

• Compute the Kendalls τ correlation coefficient of the new data and select the
variable with the largest τ as the first root.
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• Select the best copula for each node between the first root and other variables and
then, estimate the parameter(s).

• Transform the data by conditioning to the first selected variable via a function by
using the parameters estimated from the previous step.

• Select the variable among the new data which have the largest Kendalls τ as the
second root.

• Continue the process until the (d− 1)th root is found.
In order to estimate the model parameters by the maximum likelihood estimation (MLE),
the order and the copula families are computed. There are some methods to select the
best pair copula between the nodes, such as graphical tools like the contour plot and some
other statistical tests like the Vuonge-Clarke test, which are special kinds of the goodness
of fit test. Similarly, there are some other tools to compare two models by using the AIC
and BIC criteria as well as the Vuonge test [7].

3. Application
In this study, we use three benchmark data sets. The first set is called the CellSignal

data [35] which have 11 genes with 11672 samples. We call the second set as Data 2
which has 10 genes with 285 samples [34] and finally, the third data set is a kind of binary
data to see the relationship between eight factors. These factors have effects on womens
economical activities with 665 numbers of observations. The descriptions of the data sets
are given in the following part. In our analysis, we compare the accuracy of RJMCMC
and vine-copula methods for the data sets and in the comparison, we use the F1-score and
the Matthews correlation coefficient (MCC) whose expressions are presented in Equation
3.1 and 3.2, respectively. In these expressions, TP and FP denote the true positive and
false positive, in order, and similarly, TN and FN represent the true negative and false
negative values, respectively.

F1 − score = 2TP
(2TP + FP + FN)

∈ [0, 1]. (3.1)

MCC = ((TP × TN) − (FP × FN))√
((×TP + ×FP )(×TP + FN)(TN + FP)(TN + FN))

∈ [−1, 1]. (3.2)

Apart from F1 − score and MCC, the following accuracy measures control one type of
error rates unlike the F1-score and MCC that control every element of the confusion matrix.

Sensitivity = TP
(TP+FN)

. (3.3)

Specificity = TN
(TN+FP)

. (3.4)

Indeed, these kinds of measures are not applicable all the times as they control one sided
error rate as stated previously. Hence, the assumptions and the sensitivity of the network
can be helpful to select which measure should be noticed more in the given network.

3.1. The CellSignal data
The CellSignal data [35] are attached to the BDgraph package [24] with 11672 samples

in which each independent measurement consists of quantitative amounts of each of the
11 phosphorylated molecules. These molecules are measured from single cells. The corre-
sponding true network is drawn in Figure 3. In the construction of its network, we infer
the system via the C-vine copulas by using the strategy given in Section 2.2.2 and obtain
the order of genes as Akt, PKC, PIP2, Mek, Jnk, PIP3, Plcy, PKA, Raf, P38 and Erk.
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Table 2 presents the estimated matrix of the families which is obtained by the VineCopula
package [7] under the R programming language.

Figure 3. The true network of the CellSignal data.

Table 2. The upper triangular of the estimated adjacency matrix of CellSignal
data with copula families via numbers in VineCopula package [7]. The full matrix
is symmetric with respect to the diagonal

Name PKC PIP2 Mek Jnk PIP3 Plcy PKA Raf P38 Erk
Akt 10 10 10 10 5 10 2 10 10 17
PKC 2 16 10 13 1 2 40 2 9
PIP2 1 1 9 10 30 1 13 9
Mek 9 13 40 29 40 2 20
Jnk 30 6 30 7 5 20
PIP3 0 26 0 0 0
Plcy 0 0 0 0
PKA 0 0 0
Raf 0 0
P38 0

In this table, the values are related to a pair of copulas and all of the zero in the
upper triangle of the adjacency matrix implies the (conditional) independence between
associated genes. The result of the comparison Table 2 and its true graph in the study of
[35], are shown in Table 3 apart from the results of RJMCMC for this data set.

Hence, it is seen that F1-score decreases under the vine copula with the MLE method
in inference, whereas, MCC improves. As the accuracy measure, MCC can capture all
TP, FP, TN and FN values resulting in a more comprehensive measure of the accuracy
comparing to F1-score. When we compare the sensitivity and the specificity measures, it
is seen that the sensitivity is lower under RJMCMC with respect to vine copula, whereas,
the specificity improves under RJMCMC. But the vine copula has the reverse performance
under these two measures. Therefore, as shortly discussed before, regarding the impor-
tance of the TP and TN values for the study, either sensitivity or specificity values can be
controlled via RJMCMC or vine copula.
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Table 3. Results of some accuracy measures for the RJCMCMC and R-vine
approach applied for the CellSignal data

Method TP FP FN TN F1 MCC Sensitivity Specificity
True graph 16 0 0 38 1 1 1 1
RJMCMC 8 10 11 26 0.43 0.14 0.42 0.72
R-vine 13 28 3 11 0.46 0.01 0.81 0.28

On the other hand, for this data set, other methods were used in the study of [10]. The
results are shown in Table 4. In general these results indicate that the non-parametric
approaches can be more preferable to describe complex networks as seen LCMARS and
LMARS. On the other side, among the parametric approaches, the performance of GGM
via the penalized maximum likelihood approach is closer to the performance of GGM via
RJMCMC (with F1-score 0.44 versus 0.43). Whereas, the performance of vine copula
model improves this accuracy (with F1-score 0.46). Additionally, since the inference can
be conducted under MLE, it can decrease the computational demand in the estimation
regarding RJMCMC. For this data set, the computational demand via the vine copula
approach takes less than one minute, whereas, RJMCMC completes the calculation in
more than two hours. Furthermore, the accuracy of non-parametric methods are better
than parametric methods for this data set as seen from Table 4.

Table 4. The comparison of the accuracy between some non-parametric methods
such as Loop-based Conic Multivariate Adaptive Regression Splines(LCMARS),
Loop-based Multivariate Adaptive Regression Splines (LMARS) and Gaussian
Graphical Model (GGM) under F1-score

Method F1 − score
LCMARS 0.72
LMARS 0.69
GGM 0.44

3.2. Data 2
The second data which we use to see the performance of Vine copula, belong to a

gynecological cancer network whose observations are assembled from the ArrayExpress
database [31]. In these kinds of data sets, we need to have the true graph which is
obtained from biological literature. This data set includes ten proteins, named as MP2K,
PDA, MPK, IMP, ERB, TFM, MBD, CHD, CTNB and CBPB. These genes are also
selected as the core genes in the literature of gynaecological cancer and the quasi true
network structure of these genes is represented by a complete graph meaning that all
the entries of the adjacency matrix are composed of ones [6]. By using the algorithm
described in the study of [8] and explained in Section 2.2.2 under the application of the
C-vine approach, the order of the variables is estimated as (4, 6, 5, 7, 8, 2, 10, 9, 1, 3)
and the computed C-vine copulas are listed in Table 5. In this analyses, we apply the
VineCopula package in R [7].

The accuracy of the R-vine copula is represented in Table 6 by comparing with the true
graph measures and RJMCMC performance for this data set. Hereby, as seen in Table 5,
the graph related to this network is a full graph. By comparing it with the related true
network, we find F1-score=1 indicating higher accuracy via the C-vine copula for Data
2. Whereas, the F1-score is computed as 0.94 with RJMCMC. On the other side, MCC
and specificity measures cannot be computed for this data set as both TN and FN are
observed as zero. This result indicates a better accuracy under the C-vine copula model.
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Table 5. The upper triangular of the estimated adjacency matrix of Data 2 with
copula families via numbers in VineCopula package [7]

Name PDIA MPK1 IMP ERB2 TFM MBD3 CHD4 CTNB1 CBPB
MP2K 5 1 5 14 5 5 5 5 14
PDIA 0 3 13 1 1 19 5 2 1
MPK1 0 0 40 5 3 23 10 30 23
IMP 0 0 0 23 10 1 5 13 1
ERB2 0 0 0 0 3 1 5 1 2
TFM 0 0 0 0 0 14 5 1 2
MBD3 0 0 0 0 0 0 33 33 5
CHD4 0 0 0 0 0 0 0 1 5
CTNB1 0 0 0 0 0 0 0 0 5

Table 6. Results of some accuracy measures for the RJCMCMC and R-vine
approach applied for Data 2

Method TP FP FN TN F1 Sensitivity
True graph 45 0 0 0 1 1
RJMCMC 41 0 4 0 0.95 0.91
R-vine 45 0 0 0 1 1

3.3. The Rochdale data
The Rochdale data present the eight binary (yes or no) factors that influence women

activities named by a: wife economically active, b: wife age > 38, c: husband unemployed,
d: the number of children 4, e: education level of wife, (high-school+), f : education level
of husband ( high-school+), g: Asian origin, and h: other household member working.
So, the data are in eight variables done with 665 cases. The true network based on the
study by [45] is in the form of fg, ef, dh, dg, cg, cf, ce, bh, be, bd, ag, ae, ad, ac. Initially,
we transformed the data to the Gaussian data through a method suggested by [17] and
then, the R-vine method by the algorithm designed by [11] was applied to this latent data
set in order to see the relationship of those eight factors which have influences in womens
activities. Our proposed method can catch {ef, dg, cg, cf, ce, bh, be, bd, ag, ae, ad, cd}. This
means that 10 of 13 relationships are caught by the method and it has an overestimated
relationship between c and d variables. In order to show the performance of the proposed
method, it is compared with the true networks and the network found by RJMCMC via
some accuracy measures listed in Table 7.

Table 7. Results of some accuracy measures for the RJCMCMC and R-vine
approach applied for the Rochdale data

Method TP FP FN TN F1 MCC Accuracy Sensitivity Specificity
True graph 14 0 0 14 1 1 1 1 1
RJMCMC 13 1 1 13 0.93 0.85 0.93 0.93 0.93
R-vine 10 1 3 14 0.83 0.72 0.86 0.77 0.93

The accuracy measures for RJMCMC is taken from [33]. Indeed, regarding this out-
come, it is seen that although both accuracy measures decrease slightly under the vine
copula approach, the computational demand is decreased significantly by the vine ap-
proach. Similar to the results of Data 1, the former is based on the MLE method, which
is very fast and spends one minute for the computation and the latter is conducted by
the Bayesian algorithm whose estimates are found via 106 MCMC (Markov chain Monte
Carlo) runs [13].
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4. Conclusion
In this study, we have been discussed two kinds of methodologies to estimate undirected

biological networks. By comparing their performances and speeds, we have observed that
the novel proposal approach based on the vine copula methods with the MLE inference
can be a strong alternate of CGGM with RJMCMC due to its competitive performance
in accuracy and gain in computational time during inference. Furthermore, with the help
of the proposal vine copula approach, we can estimate complex biological systems via
frequentist methods without the restriction of the Gaussian copula. As the future works,
we consider to evaluate the performance of the proposed approach in different simulated
data sets which can be generated under distinct network typologies, the number of obser-
vations per genes and the number of genes in the system. Furthermore, machine learning
techniques [40,42] and more advanced machine learning methods such as the deep learning
algorithms [26] can be applied to catch the relationship between variables in biological data
sets under the non-parametric methods. Moreover, modeling based on non-parametric ap-
proaches such as the robustification of the CMARS method [28] can be also adapted to
explain the large networks. We consider that the performance of these models by compar-
ing their outcomes with the vine copula methods can be applied to detect more accurate
model in the construction of the biological networks.
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