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Given an anisotropic fluid source, we determine in closed forms, upon solving the field equations of
general relativity (GR) and teleparallel gravity (TEGR) coupled to a cosmological constant, cylindrically
symmetric four-dimensional cosmological rotating wormholes, satisfying all local energy conditions,
and cosmological rotating solutions with two axes of symmetry at finite proper distance. These
solutions have the property that their angular velocity is proportional to the cosmological constant.
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1. Introduction

The teleparallel equivalent of general relativity (TEGR) is an
quivalent formulation of Einstein’s general relativity (GR), in
hat, the formulation ensures equivalence of the field equations as
ell as of the test particle equations of motion. For a review see
he paper by Maluf [1] where an account of the history of telepar-
llel theories of gravity is given. The two theories, TEGR and
R, use different connections, the curvature-less Weitzenböck
onnection [2] and the torsion-less Levi-Civita connection [3],
espectively. The Weitzenböck connection has the property that
t allows for a definition of a condition for absolute parallelism
n space–time [1], hence the given name of ‘‘teleparallel’’. The
ensors and invariants associated to TEGR exhibit no curvature
ut torsion only, that is, the information concerning the gravita-
ional field effects are encoded in the torsion tensor instead of the
iemann tensor, as it is the case in GR.
Despite their equivalence, the two theories are conceptually

ifferent. All physical features and results known in GR are also
escribed in the TEGR. The converse is not true: The TEGR ap-
roach allows the consideration of additional concepts and defi-
itions. In the TEGR one meets tensors with three indices some
f which are behind the definition of the gravitational energy–
omentum which is consistent with the field equations [4,5]. The
oncept and definition of the gravitational angular momentum
re also introduced in the TEGR [1]. From the point of view of
est particles, there is no notion of geodesics in the TEGR but
nly force equations and the source of force is torsion, more
recisely the force is sum of a torsion-tensor component times
wo components of the velocity vector [6]. In the TEGR it is
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https://doi.org/10.1016/j.dark.2021.100802
2212-6864/© 2021 Elsevier B.V. All rights reserved.
also possible to introduce the concept of inertia-free frames [6]
and to split particle dynamical effects into distinct gravitational
effects and purely inertial effects, that is, it is possible to separate
inertia from gravity [7]. Another example of conceptual difference
between the two theories is provided in this work following
Eq. (17).

We have already mentioned some motivations for the in-
vestigation of the TEGR: Introduction of new concepts and un-
ambiguous definitions such as that of the gravitational energy–
momentum and other definitions [1] and the clear distinction of
purely inertial effects from gravitational ones. Other motivations
for the TEGR is that the theory admits some extensions by adding
quadratic and higher-order torsion terms to the action making
it a good cosmological dark energy model without truly adding
exotic matter to the cosmological field equations. Said otherwise,
these extra terms added to the action, the so-called f (T ) grav-
ity, have their counterparts in the cosmological field equations
playing the ‘‘role’’ of exotic matter [1,8]. The extended TEGR may
provide a theoretical model to the late time universe acceleration
problem [9].

Some rotating cylinders in general relativity sourced by
anisotropic fluids and Λ = 0 have been determined in [10–
12]. The purpose of this work is to consider the theories of GR
and TEGR coupled to a cosmological constant and determine
cylindrically symmetric rotating wormholes and other solutions
sourced by anisotropic fluids.

Determining rotating and static solutions around an infinite
axis is still a reviving topic. In GR there is a set of rotating
cylindrically symmetric perfect fluid solutions which may be ap-
propriate as matched interiors. Among the known solutions in GR
we find the rotating dust of Vishveshwara and Winicour [13], the
perfect fluid sources with non-zero pressure of da Silva et al. [14],
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avidson [15,16] and Ivanov [17], and the family of Krasiński [18].
he solutions that will be constructed in this work share some
hysical and geometrical properties with the solutions known
n the literature and have some other new properties. Among
he new properties we mention that their angular velocity is
roportional to the cosmological constant.
Investigating wormhole solutions is another, rather many-fold,

eviving topic. First of all, wormholes are special types of solu-
ions to the field equations of gravity theories which contain two
istant asymptotic regions or sheets, with a throat connecting
he two and providing a shortcut for long journeys from one
symptotic region to another [19,20]. Their observation has not
een confirmed yet but they may be very well lurking in the
niverse. In Ref. [21] it was shown that the diameter of the
hadow of type I supermassive wormhole overlaps with that of
he black hole candidate at the center of the Milky Way. This
hows that the existing up-to-date millimeter-wavelength very
ong baseline interferometry facilities do not lead to differenti-
te the supermassive black hole candidate at the center of the
ilky Way from a possible type I supermassive wormhole. Very

ecently, it was shown that the active galactic nuclei exhibit
ormhole behaviors rather than supermassive black holes due
o their gamma radiation resulting from collision of accreting
lows [22]. Said otherwise, wormholes may be spotted in the
ky upon detecting the gigantesque display of gamma rays that
esults from the collision of matter coming out of one mouth
f the wormhole with infalling matter [22]. A nearly similar
onclusion was made in Ref. [21]: ‘‘Other signals from the galaxy,
s the motion of orbiting hot spots, may lead to draw a conclusion
oncerning the nature of the candidate’’.
The interest to wormholes goes back to 1935. Einstein and

. Rosen were the first who described how two distant regions
f spacetime can be joined together, creating a bridge between
hem. Most of the known solutions, and their list is too large
o be cited here, are endowed with spherical symmetry, until
ecently a couple of wormhole solutions endowed with cylindri-
al symmetry were determined (see [23] are references therein).
he construction of analytical wormhole solutions, with spher-
cal or cylindrical symmetry, provides the scientific community
ith theoretical tools for further investigations (calculations of
hadow, quasi-normal modes, quasi-periodic oscillations, etc.), as
as done in [21,24,25], and for computer simulations, as was
one in [26,27] to study the collisional processes in the geometry
f rotating wormholes.
In Section 2 we introduce the mathematical tools needed for

he TEGR along with the necessary field equations. In Section 3
e reduce the field equations. In Section 4 we restrict ourselves
o anisotropic fluids with pr = ωrρ, pφ = ωφρ and pz = ωzρ,
here the equation-of-state (EoS) parameters (ωr , ωφ, ωz) are
onstants constrained by −1 ≤ ωr ≤ 1, −1 ≤ ωφ ≤ 1 and
1 ≤ ωz ≤ 1. Section 5 is devoted to the construction of
otating wormholes and Section 6 is devoted to the discussion of
heir physical and geometrical properties. In Section 7 we provide
osmological rotating solutions with two axes of symmetry at
inite proper distance. Our final conclusions are given in Section 8.
n Appendix section has been added to provide some useful
ormulas pertaining to Section 5.

. The teleparallel equivalent of general relativity

In the TEGR [28] the vielbein vector fields ea = eaµ∂µ are taken
s fundamental variables instead of the metric gµν , related to each
ther by

µν = ηabeaµebν, gµν
= ηabeaµebν, e =

√
|g|, (1)

with ηab = diag(+1, −1, −1, −1) being the metric of the 4-
imensional Minkowski spacetime and e ≡ |det(ea )| =

√
|g|. In
µ

2

this work the tetrad indices, a, b, c · · · , k, l, and Greek coordinate
indices run from 0 to 3.

The field equation in teleparallel gravity in the presence of
matter fields take the form [29,30]

Iµν
:= −δν

µ

f
2

+ 2
[
e−1eaµ∂ρ

(
eeaαSα

ρν
)

− Tα
λµSα

νλ
]

= −κT(mat)µ
ν, (2)

where κ is the gravitational constant,

(T ) = T + 2Λ, (3)

and T(mat)µ
ν is the matter stress–energy tensor (SET) which we

assume to be that of an anisotropic fluid of the form

T(mat)µ
ν

= ρuµuν
+

3∑
a=1

paeaµeaν

= (ρ + p1)uµuν
− p1δν

µ + (p2 − p1)e2µe2ν

+ (p3 − p1)e3µe3ν . (4)

ere we have chosen e0ν
= uν to be the four-velocity vector

f the fluid. The remaining quantities used in (2), including the
orsion T , are defined by1

α
µν = ebα(∂µebν − ∂νebµ),

αµν =
1
2

(Tµαν + Tναµ − Tαµν),

αµν
=

1
2

(Kµνα
− gανT σµ

σ + gαµT σν
σ ),

T = TαµνSαµν . (5)

In the definition of Tα
µν the connection ωa

bµ has been set equal
to zero as this is always possible in teleparallel gravity [31].

In cylindrical coordinates (x0 = t , x1 = r , x2 = φ, x3 = z), we
introduce the following non-diagonal vielbein to describe rotating
solutions

(
eaµ

)
=

⎛⎜⎝eγ (r) 0 −e−γ (r)Ω(r) 0
0 eα(r) 0 0
0 0 eβ(r) 0
0 0 0 eµ(r)

⎞⎟⎠ , (6)

resulting in the metric

ds2 = e2γ (r)
[dt − Ω(r)e−2γ (r)dφ]

2
− e2α(r)dr2

−e2β(r)dφ2
− e2µ(r)dz2. (7)

Using all that in (5) we obtain

T =
1
2
e−2(α+β+γ )(Ω ′

− 2Ωγ ′)2

+2e−2α(β ′γ ′
+ β ′µ′

+ γ ′µ′). (8)

The nonvanishing components of the SET (4) are

T(mat) t
t
= ρ, T(mat) r

r
= −pr , T(mat)φ

φ
= −pφ,

T(mat) z
z
= −pz, T(mat)φ

t
= −Ω(ρ + pφ)e−2γ , (9)

where we have set p1 = pr , p2 = pφ, p3 = pz .
It has become customary to introduce the vortex ω(r), which

is the norm of the curl of the tetrad eaµ [32] (see also [12,33–35]).

1 Sαµν may be given in a more compact form as:

αµν
=

1
4
(T νµα

+ Tαµα
− Tµνα) −

1
2
gανT σµ

σ +
1
2
gαµT σν

σ .

.
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his is related to Ω(r) by2

(r) := 2e2γ (r)
∫ r

eα(x)+β(x)−γ (x)ω(x)dx, (10)

yielding

T = 2ω2
+ 2e−2α(β ′γ ′

+ β ′µ′
+ γ ′µ′). (11)

One may bring the field Eqs. (2) to3

Gµ
ν

= −κτµ
ν (12)

where Gµ
ν is the Einstein tensor and τµ

ν is the total SET including
the cosmological constant and is defined by

τt
t
= ρ −

Λ

κ
, τr

r
= −pr −

Λ

κ
,

φ
φ

= −pφ −
Λ

κ
, τz

z
= −pz −

Λ

κ
,

φ
t
= −Ω(ρ + pφ)e−2γ . (13)

ince ∇νGµ
ν

≡ 0, one must have

ντµ
ν

= 0. (14)

he solutions we will derive in this work will satisfy the field
quations of GR (12) and of TEGR (2). For TEGR, the solutions are
onstrained by (11).
. Reducing the field equations

Given that T(mat) t
φ

= 0 and τt
φ

= 0, the line Itφ = 0 in (2),
nd the component t

φ of Eq. (12), reduce upon using (9) and (13)
o

t
φ

= Gt
φ

= −eγ−α−β
[ω(2γ ′

+ µ′) + ω′
] = 0,

ielding

(r) = ω0e−2γ−µ, (15)

here ω0 is a constant of integration. Using this in (10) we obtain

Ω(r) = 2ω0e2γ (r)
∫ r

eα(x)+β(x)−3γ (x)−µ(x)dx. (16)

The expression of Gr
r is just half that of T (11), Gr

r
= ω2

+

e−2α(β ′γ ′
+ β ′µ′

+ γ ′µ′) = T/2, and this implies using (12) and
(13) that pr is given by

pr =
T
2κ

−
Λ

κ
, (17)

here the last term proportional to Λ is the radial pressure due to
he cosmological constant and the first term, T/(2κ), is the radial
ressure generated by a constant torsion. Thus, in the TEGR, a
nonvanishing’ torsion generates a nonvanishing radial pressure
/(2κ) while in GR the relation (17) is written as Gr

r
= κpr + Λ

nd it merely expresses the fact that the geometric entity Gr
r

s proportional to the sum of the pressures pr and Λ/κ . This
s another example of conceptual difference between the two
heories that we mentioned in the Introduction. This is at the level
f the field equations, where the torsion appears as a force while

2 The curl ωµ of eaµ is

µ
:=

1
8

ϵµνρσ eaνeaρ;σ ,

ielding ωt
= ωr

= ωφ
= 0, ωz

= −eγ−α−β−µ(Ωe−2γ )′/2 and ω =
√

ωµωµ =

eγ−α−β (Ωe−2γ )′/2.
3 In this work

Rα
βµν := ∂νΓ

α
βµ − ∂µΓ α

βν + Γ α
ηνΓ

η

βµ − Γ α
ηµΓ

η

βν .

.

3

its counterpart in GR, the curvature scalar R, does not assume a
dynamical role in the field equations.

Substituting (13) into (14) we obtain

− 4p′

r − (β ′
+ γ ′

+ µ′)pr − γ ′ρ + β ′pφ + µ′pz = 0. (18)

4. Anisotropic fluids

We consider the simple case where pr = ωrρ, pφ = ωφρ and
pz = ωzρ, with the EoS parameters (ωr , ωφ, ωz) being constants
generally constrained by

− 1 ≤ ωr ≤ 1, −1 ≤ ωφ ≤ 1, −1 ≤ ωz ≤ 1. (19)

he differential equation (18) becomes

ωr − ωφ)β ′
+ (1 + ωr )γ ′

+ (ωr − ωz)µ′
+ 4ωr

ρ ′

ρ
= 0, (20)

resulting in

ρ = ρ0 exp
[ (ωφ − ωr )β − (1 + ωr )γ + (ωz − ωr )µ

4ωr

]
, (21)

where ρ0 is a constant of integration. Using this in (17) we can
evaluate the torsion from

T = 2(κωrρ + Λ). (22)

Since the radial coordinate r can be changed at will by a
coordinate transformation r → r̄ , from now on we fix the
coordinate gauge to be

α = β + γ + µ. (23)

In this gauge the independent field equations emanating from (12)

Rµ
ν

= −κ[τµ
ν
− (1/2)δµ

ντσ
σ
], (24)

reduce to

2e−2αγ ′′
+ 4ω2

= 2Λ + κ(1 + ωr + ωφ + ωz)ρ, (25)

2e−2αµ′′
= 2Λ + κ(−1 + ωr + ωφ − ωz)ρ, (26)

2e−2αβ ′′
− 4ω2

= 2Λ + κ(−1 + ωr − ωφ + ωz)ρ, (27)

which are the t
t , z z and φ

φ Eqs. (24), respectively. The φ
t Eq. (24) is

a combination of (25) and (27) and the r
r Eq. (24) is a combination

of (25), (26), (27) and Gr
r
= ω2

+ e−2α(β ′γ ′
+β ′µ′

+γ ′µ′) [recall
that Gr

r
= T/2].

5. Cosmological rotating wormholes

From now on, we assume ωr ̸= 0 to ensure that (21) remains
valid. We first construct cosmological rotating cylindrical worm-
holes to GR. The counterpart solutions to TEGR are the same with
the torsion given by (22).

We look for solutions with a constant shift function, that is,
γ = 0 and µ = 0. In this case α = β (23) and Eq. (26) implies
that ρ is a constant given by ρ0 = 2Λ/[κ(1 − ωr − ωφ + ωz)].
Since ρ is constant, Eq. (21) implies

ωφ = ωr , (28)

and finally

ρ0 =
2Λ

κ(1 − 2ωr + ωz)
. (29)

qs. (15) and (25) imply that ω2 is also a constant proportional
to the cosmological constant. This is given by

ω2
0 =

Λ(1 + ωz)
=

κ(1 + ωz)
ρ0. (30)
1 − 2ωr + ωz 2
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sing these vales of (ρ0, ω2
0) in (27) we bring it to the form (recall

α = β)

e−2αα′′
= q2 ≡

2Λ(1 − ωr + 2ωz)
1 − 2ωr + ωz

. (31)

his equation can be integrated in all three cases q2 < 0, q2 = 0
nd q2 > 0. In the case q2 < 0 we obtain cosmological rotating
olutions with two axes of symmetry at finite proper distance
see Section 7). The case q2 > 0 (we may assume q > 0)
ields cosmological rotating wormholes where the solution e2α
s brought to the form

2α
= e2β =

c2 sec2(cr)
q2

, (32)

ith c > 0 being a constant of integration. As to Ω is obtained
rom (16)

(r) = 2ω0

∫ r

e2α(x)dx =
2cω0

q2
tan(cr), (33)

where we have dropped an additive constant of integration. The
metric takes the form

ds2 =

[
dt −

2cω0 tan(cr)
q2

dφ
]2

−
c2 sec2(cr)

q2
dr2

−
c2 sec2(cr)

q2
dφ2

− dz2. (34)

We see that the spherical radius eβ
= c sec(cr)/q has a minimum

value at r = 0 and increases as |r| increases. On introducing
the new radial coordinate u = c tan(cr)/q and the new constant
u2
0 = c2/q2, we bring the metric (34) to the manifestly wormhole

form

ds2 =

(
dt −

2ω0u
q

dφ
)2

−
1

q2(u2 + u2
0)

du2

−(u2
+ u2

0)dφ
2
− dz2. (35)

A very similar solution describing a rotating wormhole, which is
a solution to the Einstein–Maxwell equations, was determined
in [23].

The TEGR wormhole solution is also given by (34) and (35)
with T = 2ω2

0 > 0 (22), which is a positive constant.
The metric component

gφφ = −

(q2 − 4ω2
0

q2
u2

+ u2
0

)
, (36)

is manifestly negative if q2−4ω2
0 = 2Λ(1+ωr )/(−1+2ωr −ωz) ≥

0 signaling the absence of closed timelike curves (CTCs) [36]. For
q2 − 4ω2

0 < 0, CTCs occur at large values of |u|.
Let us see under which conditions the constraints q2 > 0,

ω2
0 ≥ 0 and ρ0 > 0 are satisfied simultaneously. The gravitational

constant κ being positive, we obtain the following constraints on
the EoS parameters (ωr , ωφ, ωz) assuming they obey the general
inequalities (19). If Λ < 0 we obtain
1
3

< ωr ≤ 1 and
ωr − 1

2
< ωz < 2ωr − 1. (37)

f Λ > 0 we obtain

− 1 ≤ ωr ≤
1
3

and
ωr − 1

2
< ωz ≤ 1, or (38)

1
3

< ωr < 1 and 2ωr − 1 < ωz ≤ 1. (39)

f, however, we want to avoid the presence of CTCs, we have to
mpose the fourth constraint q2 − 4ω2

0 ≥ 0. This results in

Λ > 0, ω = −1 and − 1 < ω ≤ 1. (40)
r z s

4

Fig. 1. The embedding diagram of the wormhole solution (35) for δ = 4/5,
q = 3/5 and u0 = 1/10.

Fig. 2. The embedding diagram of the wormhole solution (35) showing the
upper sheet only for u0 = 1/10. (a) δ = 4/5 and q = 3/5 (upper panel), (b)

= 4/50 and q = 3/5 (intermediate panel), (c) δ = 4/50 and q = 3/50 (lower
anel).

his shows that, for a positive cosmological constant, it is always
ossible to have a rotating wormhole with a positive energy
ensity and no CTCs. The anisotropic fluid is isotropic in a plane
erpendicular to the axis of rotation with ωφ = ωr = −1.
To construct the embedding diagram of the metric (35) we

ntroduce the radial coordinate R defined by R2
= δu2

+ u2
0 with

δ ≡ (q2 − 4ω2
0)/q

2. For a constant time-slice and z = const., the
two-dimensional spatial metric takes the form

ds22 =
R2dR2

q2(R2 − u2
0)[R2 − (1 − δ)u2

0]
+ R2dφ2.

his is to be embedded in the three-dimensional Euclidean space

s23 = dR2
+ +R2dφ2

+ dZ2.

he embedded diagram is a surface of revolution, symmetric with
espect to the plane Z = 0, where Z ≡ Z(R) with

(R) = ±

∫ R

u0
√
1+δ

√
x2

q2(x2 − u2
0)[x2 − (1 − δ)u2

0]
− 1 dx.

lots of the surface of revolution as depicted in Figs. 1 and 2. In
ig. 1 we have shown the two sheets of the wormhole for some
et of the parameters (δ, q, u0) while in Fig. 2 only the upper
heet is depicted for different values of the parameters (δ, q, u ).
0
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. Physical and geometrical properties of the rotating worm-
ole solution

Since the wormhole solutions (34) and (35) are not asymp-
otically flat, they are appropriate as matched interiors. Another
eason why they are so is that the speed of rotation, Ω =

ω0u/q (33), increases linearly as one moves away from the axis
of rotation at u = 0. Consequently the linear speed of each fluid
particle increases unceasingly as one moves away from the axis
of rotation. Following the work done in [23] one can match these
wormholes to external rotating flat Minkowskian metrics in such
a way that the radii of the cylindrical junction surfaces are chosen
so that the interior wormhole region is exempt from CTCs.

Thus, the constraints (37)–(39), for Λ < 0 and Λ > 0, are
fairly enough to obtain physically acceptable wormhole solutions
that certainly do not violate the weak energy condition (ρ0 ≥ 0,
ρ0 + pr ≥ 0, ρ0 + pz ≥ 0) and the dominant energy condition
ρ0 ≥ 0, −ρ0 ≤ pr ≤ ρ0, −ρ0 ≤ pz ≤ ρ0). To satisfy the
equirements of the strong energy condition (ρ0 ≥ 0, ρ0+pr ≥ 0,
0+pz ≥ 0, ρ0+2pr +pz ≥ 0), the EoS parameters must obey the
onstraints (37) if Λ < 0 and the following constraints if Λ > 0:

r = −1 and ωz = −1, or (41)

− 1 < ωr < −
1
5

and − 2ωr − 1 ≤ ωz ≤ 1, or (42)

−
1
5

≤ ωr ≤
1
3

and
ωr − 1

2
< ωz ≤ 1, or (43)

1
3

< ωr < 1 and 2ωr − 1 < ωz ≤ 1. (44)

Considered as interiors all the matter should be distributed
nside cylindrical surfaces Σ+ and Σ− of finite radii u+ > u0 and
− < −u0. Referring to [32,37], the effective massm+ and angular
omentum j+ per unit z-coordinate length of matter enclosed by
+ are defined by (there are similar definitions for m− and j−
oncerning the matter distribution enclosed by Σ−):

+ = 2π
∫ u+

0
τt

µnµ

√
|g| du, (45)

j+ = −2π
∫ u+

0
τφ

µnµ

√
|g| du, (46)

here τν
µ is the total SET given in (13) and g is the determinant

f the metric. The vector nµ is the unit normal to the spacelike
urface of integration, which is the hypersurface t = const.
ielding nµ = δtµ/

√
g tt with g tt being the component tt of the

nverse metric. Using (35) along with g = −1/q2 we find

+ =
2πu0

q

(
ρ0 −

Λ

κ

) ∫ x+

0

√
x2 + 1
δx2 + 1

dx, (47)

+ =
4πu2

0ρ0ω0(1 + ωr )
q2

∫ x+

0
x

√
x2 + 1
δx2 + 1

dx, (48)

here pφ = pr = ωrρ0 has been used, x ≡ u/u0 and x+ ≡ u+/u0.
hese integrals are expressed in terms of the incomplete elliptic
ntegral of the second kind and the log function as given in the
Appendix. It is obvious that j+ has the sign of ω0 and is zero in the
static case (no rotation) and in the extreme case ωr = −1. The
cosmological constant being small, we expect that in physically
interesting situations to have ρ0 > |Λ|/κ and thus m+ > 0.

The constants of integration (ω0, u0/q) and ρ0 ∝ ω2
0 (30) could

be determined analytically in terms of (m+, j+, x+) if the expres-
sions of (m+, j+), as given in the Appendix, were inversible. This
is, however, possible for x+ ≪ 1 where (m+, j+) expand as (for
all δ):

m+ =
πu0(κρ0 − Λ)x+[6 + (1 − δ)x2

+
]

+ O(x5
+
),
3qκ
5

j+ =
πu2

0ρ0ω0(1 + ωr )x2+[4 + (1 − δ)x2
+
]

2q2
+ O(x6

+
).

n eliminating the ratio u0/q and using ρ0 = 2ω2
0/[κ(1 +

z)] (30), we arrive at

κm2
+
(1 + ωz)(1 + ωr )[4 + (1 − δ)x2

+
]ω3

0

= π j+[6 + (1 − δ)x2
+
]
2
[Λ(1 + ωz) − 2ω2

0]
2,

hich can be solved by radicals for ω0 in terms of (m+, j+, x+).
he roots of this quartic equation in ω0, which can be obtained
sing a computer algebra system, are sizeable and cannot be
eproduced in this work. Then, the ratio u0/q is obtained from
he above-given expansion of m+. Finally, using the expression of
(31) we can determine all the constants of integration in terms
f the physical quantities (m+, j+, x+, ωr , ωz, Λ, κ).
The curvature scalar, R, and the Kretschmann scalar, Rµναβ

µναβ , assume the following expressions:

= 2(ω2
0 − q2), (49)

µναβRµναβ = 4(q4 − 6ω2
0q

2
+ 11ω4

0), (50)

hich are finite constants.

. Cosmological rotating solutions with two axes of symmetry
t finite proper distance

If the constant q2 in (31) is negative we set Q 2
= −q2 in (31)

nd the solution yields

2α
= e2β =

c2sech2(cr)
Q 2 , Ω =

2cω0

Q 2 tanh(cr), (51)

here we have dropped an additive constant Ω0 in the expres-
sion of Ω . On setting u = c tanh(cr)/Q and u2

0 = c2/Q 2, we bring
he metric to the form

s2 =

[
dt −

2cω0 tanh(cr)
Q 2 dφ

]2
−

c2sech2(cr)
Q 2 dr2

−
c2sech2(cr)

Q 2 dφ2
− dz2, (52)

ds2 =

(
dt −

2ω0u
Q

dφ
)2

−
1

Q 2(u2
0 − u2)

du2

−(u2
0 − u2)dφ2

− dz2. (53)

ote that this solution shares with the wormhole solution (34)–
35) the same values of the physical quantities (ρ0, ω2

0), given
n (29) and (30). The corresponding TEGR solution is also given
y (52)–(53) and shares the same value of the torsion T = 2ω2

0
ith the wormhole solution (34)–(35).

The circular radius eβ
=

√
u2
0 − u2 vanishes at u = ±u0

ignaling the presence of two axes of symmetry. In the vicin-
ty of these two axes the solution (52)–(53) has CTCs where
φφ = −(u2

0 − u2
− 4ω2

0u
2/Q 2) becomes positive (the nonrotating

olution, ω0 = 0, has no CTCs). The integral
u0

−u0

1

Q
√
u2
0 − u2

du =
π

Q
,

being convergent, the two axes are at finite proper distance from
each other and there is no spatial infinity. The absence of spatial
infinity is also known for the nonrotating Melvin solution [36,38,
39], however, for the latter the proper distance of the two axes
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∞

0
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iverges (B is the magnetic field). Such nontrivial behaviors of
he intrinsic geometry are familiar with static and rotating, cylin-
rically symmetric and/or axially symmetric, metrics and more
xamples are provided in [36].

. Conclusion

As we mentioned in the Introduction, the determination of
otating and static solutions around an infinite axis is still at-
racting much attention. In this work, we presented a first set of
wo cosmological (energy density constant) rotating solutions in
R and TEGR gravity sourced by anisotropic fluids (isotropic in a
lane perpendicular to the axis of symmetry) and extended the
xisting list of solutions pertaining to GR. These solutions have
he property that their angular velocity is proportional to the
osmological constant.
We have shown that the EoS parameters obey a large set of

alues ensuring the satisfaction of all local energy conditions for
he rotating wormholes. Such solutions can straightforwardly be
atched to exterior rotating Minkowskian metrics.
The other cosmological rotating solution has two axes of sym-

etry at finite proper distance where one axis can be regularized
pon appropriately fixing the value of the additive constant of
ntegration in the expression of Ω (which we have dropped) at
he expense of rendering the time coordinate periodic.
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ppendix. Analytical expression for (m+, j+)

The analytical expressions of (m+, j+) depend on the sign of
, however, their series expansions about x+ = 0 do not, as this

is shown in the new paragraph following (48). For δ > 0 we have

m+ = −
2iπu0(κρ0 − Λ)

κq
√

δ
E
(
i ln(

√
δx+ +

√
1 + δx2+)

⏐⏐1
δ

)
,

j+ =
2πu2

0ρ0ω0(1 + ωr )
δ3/2q2

[ √
1 + δx2+

√
δ(1 + x2+) −

√
δ

+ (1 − δ) ln
(

1 +
√

δ√
1 + δx2+ +

√
δ(1 + x2+)

) ]
.

For δ = 0, we have

m+ =

πu0(κρ0 − Λ)[x+

√
1 + x2+ + ln(x+ +

√
1 + x2+)]

κq
,

+ =

4πu2
0ρ0ω0(1 + ωr )[(1 + x2

+
)
√
1 + x2+ − 1]

3q2
.

6

For δ < 0 we obtain

+ =
2πu0(κρ0 − Λ)

κq
√

−δ
E
(
−i ln(i

√
−δx+ +

√
1 + δx2+)

⏐⏐1
δ

)
,

+ =
2πu2

0ρ0ω0(1 + ωr )
δ3/2q2

[
i
√
1 + δx2+

√
−δ(1 + x2+) − i

√
δ

+ (1 − δ) ln
(

1 + i
√

−δ√
1 + δx2+ + i

√
−δ(1 + x2+)

)]
,

where 0 < x+ < 1/
√

−δ if δ < 0.
In all these expressions i2 = −1 and

E(z|m) ≡

∫ z

0

√
1 − m sin2 θ dθ,

is the incomplete elliptic integral of the second kind. Here z is
enerally a complex number input. Despite a complex input, the
utput of the above-given expressions of (m+, j+) is always real
or all δ (for δ < 0 the output is real provided 0 < x+ < 1/

√
−δ).
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