

Acta Cardiologica



ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tacd20

# Evaluation of the relationship between para-aortic adipose tissue and ascending aortic diameter using a new method

Adem Adar, Orhan Onalan, Fahri Cakan, Hakan Keles, Ertan Akbay, Sinan Akıncı, Ali Coner, Cevahir Haberal & Haldun Muderrisoglu

To cite this article: Adem Adar, Orhan Onalan, Fahri Cakan, Hakan Keles, Ertan Akbay, Sinan Akıncı, Ali Coner, Cevahir Haberal & Haldun Muderrisoglu (2022): Evaluation of the relationship between para-aortic adipose tissue and ascending aortic diameter using a new method, Acta Cardiologica, DOI: 10.1080/00015385.2022.2121537

To link to this article: https://doi.org/10.1080/00015385.2022.2121537



Published online: 03 Oct 2022.

| - | _  |
|---|----|
| r |    |
|   |    |
|   | 21 |
| ~ | _  |

Submit your article to this journal 🗹

Article views: 43



View related articles 🗹



View Crossmark data 🗹

#### ORIGINAL SCIENTIFIC PAPER



Check for updates

# Evaluation of the relationship between para-aortic adipose tissue and ascending aortic diameter using a new method

Adem Adar<sup>a</sup> (b), Orhan Onalan<sup>b,c</sup> (b), Fahri Cakan<sup>b,c</sup> (b), Hakan Keles<sup>d</sup> (b), Ertan Akbay<sup>a</sup> (b), Sinan Akıncı<sup>a</sup> (b), Ali Coner<sup>a</sup> (b), Cevahir Haberal<sup>d</sup> (b) and Haldun Muderrisoglu<sup>a</sup> (b)

<sup>a</sup>Department of Cardiology, Baskent University Faculty of Medicine, Alanya, Turkey; <sup>b</sup>Department of Cardiology, Karabuk University Faculty of Medicine, Karabuk, Turkey<sup>c</sup>Department of Radiology, Karabuk University Faculty of Medicine, Alanya, Turkey; <sup>d</sup>Department of Cardiovascular Surgery, Baskent University Faculty of Medicine, Alanya, Turkey

#### ABSTRACT

**Background:** Para-aortic adipose tissue (PAT) is the local adipose tissue that externally surrounds the aorta. It contributes significantly to aortic atherosclerosis and enlargement. Studies conducted with computed tomography and magnetic resonance have shown that individuals with aortic aneurysm had more PAT than healthy individuals. In this study, we measured PAT using transthoracic echocardiography (TTE). The aim of this study is to investigate the possible relationship of TTE measured PAT with ascending aortic width.

**Methods:** PAT was defined as the hypoechoic space in front of ascending aortic 2 cm above the sinotubular junction at the end of the systole. Patients were divided into 2 groups according to the presence of dilatation in the ascending aorta using Roman's classification (aortic size index, ASI). ASI of less than 21 was considered no aortic dilation and an ASI of 21 mm/m2 or greater was considered to have aortic dilation.

**Results:** A total of 321 unselected patients were divided into the ascending aortic dilatation (AAD) group (n = 96) and the normal ascending aorta diameter group (n = 225 patients). PAT was significantly higher in the AAD group compared with the non-ADD group (0.9 (0.48) vs. 0.7 (0.91) mm, p < 0.0001). Univariate and multivariate logistic regression analysis revealed that PAT (OR: 3.005, 95%CI (1.445–6.251)) were significantly associated with AAD.

**Conclusions:** This is the first study which evaluated PAT measured by TTE. We found a significant association between PAT measured by TTE and ascending aorta width.

#### **ARTICLE HISTORY**

Received 25 June 2022 Revised 5 August 2022 Accepted 31 August 2022

#### **KEYWORDS**

Para-aortic adipose tissue; local adipose tissue; ascending aortic dilatation; aortic size index; aortic aneurysm; transthoracic echocardiography

## Introduction

Ascending aortic aneurysm is characterised by a larger than normal ascending aorta and is associated with increased mortality [1]. Systemic factors, such as atherosclerosis triggered by inflammation, and local factors, such as deficiencies of structural proteins, e.g. elastin and collagen in the aortic wall play a role in the pathogenesis of ascending aortic dilatation (AAD) [1-4]. Paraaortic adipose tissue (PAT) is the local adipose tissue surrounding the aorta. In addition to protecting the aorta against trauma, it has been hypothesised that PAT contributes significantly to aortic atherosclerosis and enlargement via its secretion of bioactive molecules such as adiponectin and growth factors [5]. The fact that PAT had been found to be associated with aortic calcification and peripheral artery disease supports this hypothesis [6,7]. Perivascular adipose tissue has been found to be an important predictor of abdominal aortic aneurysm [8]. A study conducted using computed tomography (CT) demonstrated that the density of the perivascular adipose tissue around the aneurysm sac was higher in individuals with abdominal aortic aneurysm than in healthy individuals [9]. PAT has also been evaluated using magnetic resonance imaging (MRI) or CT in other studies. However, to our knowledge there are no studies in the literature examining measurement of para-aortic adipose tissue using transthoracic echocardiography (TTE), which is in fact an easier and more accessible method. Therefore, the aim of this study was to measure PAT using TTE and to investigate the relationship between the thickness of the PAT and the width of the ascending aorta.

#### Material and method

The study included all patients over the age of 18 who applied to the cardiology outpatient clinic of our

hospital and underwent TTE. Patients who had underwent previous cardiac surgery, e.g. coronary artery bypass surgery and heart valve replacement, severe aortic valve regurgitation and stenosis, patients with bicuspid and rheumatic aortic valve disease, Marfan syndrome, Ehlers-Danlos syndrome, familial thoracic aortic aneurysm syndrome, Turner syndrome, other connective tissue disorders, infectious diseases, restrictive and hypertrophic cardiomyopathy, renal failure requiring dialysis, malignancy or patients that were pregnant were excluded from this study (Figure 1). Roman's classification (aortic size index (ASI)), a body surface area (BSA)-adjusted classification, was used to diagnose AAD [10]. Accordingly, ASI was calculated using the following formula of ASI = Ascending aortic diameter (mm)/Body surface area (m<sup>2</sup>)' [11], and ASI values of  $\geq$  21 mm/m<sup>2</sup> were deemed to indicate AAD [11].]

Patients were categorised into two groups according to ASI. The AAD group consisted of patients with ASI of  $21 \text{ mm/m}^2$  or greater and the non-AAD group patients ASI lower than  $21 \text{ mm/m}^2$ . Gender, age, body mass index (BMI), body surface area, and histories of coronary artery disease and diabetes mellitus were recorded. BMI was calculated using the following formula: 'BMI = weight (kg)/height<sup>2</sup> (m). Body surface area (BSA) was calculated using the formula of BSA (m<sup>2</sup>) = ([Height (cm) × Weight (kg)]/3600)<sup>1/2r</sup>. This study was approved by the institutional ethics committee and conducted in accordance with the principles set out in the Declaration of Helsinki.

#### Measurement of Para-aortic adipose tissue

Transthoracic echocardiography (TTE) was carried out using a Philips Epig 7c S5-1 Probe system. Each patient underwent two-dimensional TTE as per the recommendations of the European Association of Echocardiography [12]. The parasternal long axis view was used to view the proximal AAD. The distance between leading edge to leading edge of the aortic lumen perpendicular to the long axis 2 cm above the sinotubular junction at the end of the diastole in views showing the largest aortic diameter was used to determine AAD[13]. Additionally, we defined PAT as the hypoechoic space in front of the ascending aorta 2 cm above the sinotubular junction at the end of the systole (Figure 2). Values were measured in three cardiac cycles and the mean of these measurements were taken into consideration. There was perfect interobserver harmony between the two operators who measure PAT. Intraclass correlation coefficient (ICC) of



Figure 1. Flow-chart of patient selection.

PAT measurement was calculated as 0.917 (95% Confidence Interval (CI), 0.724–0.977). A radiologist performed tissue analysis with computed tomography imaging whether the hypodense space in front of ascending aortic 2 cm above the sinotubular junction is adipose tissue. The mean attenuation (Hounsfield Units, HU) of adipose tissue within PAT was noted with adipose tissue thresholds set at -190 to -30 HU [13]. The mean Hounsfield Units (HU) of PAT was found to be -70.16 HU (Minimum -93 HU, Maximum -46HU) (Figure 3).

#### **Statistical analysis**

Data were analysed using the SPSS 23 (IBM Statistical Package for Social Sciences version 23) software package. Categorical variables were expressed using frequency distributions and numerical variables using descriptive statistics (mean ± standard deviation). The Kolmogorov-Smirnov test was used to determine whether the data conformed to the normal distribution. Subsequently, a parametric test was used to analyse normally distributed data and data that did not confirm to the normal distribution were analysed using a nonparametric test. The independent samples t-test and Mann–Whitney U test were used to check whether there was a difference between the measurements of the two independent groups. Additionally, multivariate logistic regression analyses were conducted to assess the relationship between PAT and AAD. In multivariate regression models, the effect size was adjusted for variables



Figure 2. Para-aortic adipose tissue measurement with transthoracic echocardiography.



Figure 3. Confirmation of para-aortic tissue as adipose tissue by computed tomography.

with a significance level  $\leq$  0.10 in the univariate analysis. Adjusted odds ratios (ORs) and their corresponding confidence intervals (CI) were given. 2-tailed probability (p) values of< 0.05 were considered statistically significant.ICC was used to determine the in-class reliability of PAT measurement (95% CI).

### Results

A total of 491 patients were screened within the scope of this study. Of these, 83 patients were excluded as a PAT image of sufficient quality could not be obtained using TTE. An additional 87 patients were excluded from the study based on one or more of the other exclusion criteria. Thus, the study included a total of 321 patients (Figure 1). Patients were categorised into two groups: the AAD group (n = 96) and the non-AAD group(n = 225). Baseline characteristics and echocardiographic and biochemical parameters are given in Tables 1 and 2. The average age of patients with AAD was greater than those without  $(64.7 \pm 11.7 \text{ vs.})$ 57.3  $\pm$  13.1 years, p < 0.001) and a higher percentage were female (69% vs. 54%, p = 0.019). BMI and BSA values of patients with AAD were lower than those of without AAD (p < 0.001) (Table patients 1). Additionally, PAT was significantly higher in the patients with AAD as compared to patients without AAD (0.9 [0.48] vs. 0.7 [0.91]cm, p < 0.0001). Biochemical analyses revealed that the estimated glomerular filtration rates(eGFR)of patients with AAD were lower than those of the patients without AAD (89[15.3]mL/min vs. 95 [20] mL/min, p < 0.0001).

Pearson correlation analysis revealed a weakly significant linear relationship in the positive direction between PAT and the echocardiography parameters of left ventricular end-diastolic width (r = 0.110; p < 0.05), left ventricular end-systolic width (r = 0.152; p < 0.01), and left atrial width (r = 0.143; p < 0.05). Additionally, a moderately significant linear relationship in the positive direction was found between PAT and aortic diastolic width (r = 0.360; p < 0.001), and waist circumference (r = 0.363; p < 0.001). Lastly, a weekly significant linear

relationship in the negative direction was found between PAT and the blood parameters of total cholesterol (r=-0.142; p < 0.05) and triglyceride (r=-0.118; p < 0.05).

Furthermore, univariate, and multivariate logistic regression analyses revealed that age (OR: 1.028, 95%CI [1.002–1.054]), BMI (OR: 0.885, 95%CI [0.827–0.947[), gender (OR:0.381, 95%CI [0.207–0.700]), left ventricular mass index (OR: 1.026, 95%CI

 Table 1. Baseline characteristics of the study groups with and without ascending aortic dilatation.

|                                      | Aortic D     |              |         |
|--------------------------------------|--------------|--------------|---------|
|                                      | No (N = 225) | Yes (N = 96) | p Value |
| Age (year)                           | 57.3 ± 13.1  | 64.7 ± 11.7  | < 0.000 |
| Weight (kg)                          | 80 (17)      | 67 (17)      | < 0.000 |
| Height (cm)                          | 165 (11)     | 159 (12)     | < 0.000 |
| Body surface area (m <sup>2</sup> )  | 1.9 (0.24)   | 1.7 (0.22)   | < 0.000 |
| Body mass index (kg/m <sup>2</sup> ) | 29 (6.1)     | 27.2 (6.6)   | < 0.000 |
| Obesity, (n, %)                      | 102 (45.3)   | 28 (29.2)    | 0.006   |
| Paraaortic adipose tissue, mm        | 0.7 (0.91)   | 0.91 (0.48)  | < 0.000 |
| Female gender (n, %)                 | 122 (54.2)   | 66 (68.8)    | 0.019   |
| Hypertension (n, %)                  | 148 (65.8)   | 66 (68.8)    | 0.698   |
| Diabetes mellitus (n, %)             | 66 (29.3)    | 28 (29.2)    | 1.000   |
| Coronary artery disease (n, %)       | 29 (12.9)    | 14 (14.6)    | 0.721   |
| Hyperlipidemia (n, %)                | 26 (11.6)    | 9 (9.4)      | 0.697   |
| Smoking (n, %)                       | 46 (20.4)    | 13 (13.5)    | 0.159   |
| RAS inhibitors (n, %)                | 112 (49.8)   | 51 (53.1)    | 0.627   |
| Statins (n, %)                       | 27 (12)      | 14 (14.6)    | 0.584   |
| Calcium channel blockers (n, %)      | 19 (8.4)     | 11 (11.5)    | 0.407   |
| Beta blockers (n, %)                 | 49 (21.8)    | 24 (25)      | 0.562   |
| Acetylsalicylic acid (n, %)          | 52 (23.1)    | 27 (28.1)    | 0.396   |
| Left ventricular Hypertrophy (n, %)  | 36 (16)      | 38 (39.6)    | 0.000   |

Continuous variables are normally distributed showed Mean±standard deviation; continuous variables are not normally distributed showed as median (interquartile range); categorical variables are presented as number (percentage).

| Table 2. | Laboratory | and | echocardiog | raphic | findings |
|----------|------------|-----|-------------|--------|----------|
|          |            |     |             |        |          |

[1.008–1.044]), and PAT (OR: 3.005, 95%CI [1.445–6.251]) were associated with AAD Tables 3 and 4. ROC curve analysis was performed to predict AAD (Table 5). PAT 8 mm had 66% sensitivity and 57% specificity [AUC = 0.642, p < 0.000, 95% CI (0.555–0.692)] to predict the presence of AAD.

# Discussion

Untreated and unmonitored aortic aneurysm may result in aortic dissection leading to mortality. The aetiology of aortic dilatation is multifactorial such as hypertension, infections, genetic factors, Marfan syndrome, bicuspid aortic valve, Ehler-danlos syndrome and idiopathic conditions [14]. In this context, PAT, as a paracrine organ, also may play an important role in the aetiology of aortic dilatation through the cytokines it secretes [15], which has been reported to result in more aortic function, width, and atherosclerosis [16,17]. PAT measurement can be used safely in the follow-up of aortic dilatation [18]. Various studies in the literature have discussed the measurement of PAT using CT and MRI. PAT measurement has not received the attention it deserves in clinical practice since measurements are predominately performed using CT and MRI, which are commonly requested for other indications, However, such methods require the use of special software and requires expensive equipment and time to perform. Conversely, TTE is available in almost every healthcare facility around the globe. We found that PAT measured using TTE is an important predictor of ascending aortic width.

|                                                         | Aortic D             |              |         |
|---------------------------------------------------------|----------------------|--------------|---------|
|                                                         | No ( <i>N</i> = 225) | Yes (N = 96) | p Value |
| Urea (mg/dl)                                            | 30 (14)              | 32 (16)      | 0.115   |
| Creatinine (mg/dL)                                      | 0.8 (0.3)            | 0.84 (0.3)   | 0.232   |
| Aspartate Aminotransferase (U/L)                        | 19 (8)               | 19 (7)       | 0.740   |
| Alanine Aminotransferase (U/L)                          | 17.5 (10)            | 16 (8)       | 0.112   |
| Glomerular filtration rate (mL/min/1.73m <sup>2</sup> ) | 95(20)               | 89 (15.3)    | < 0.000 |
| Total cholesterol (mg/dL)                               | 188 (50)             | 190 (47)     | 0.522   |
| Triglyceride (mg/dL)                                    | 135 (81)             | 132 (84)     | 0.821   |
| Low-density lipoprotein (mg/dL)                         | 110 (47)             | 114 (45)     | 0.465   |
| High-density lipoprotein (mg/dL)                        | 45 (15)              | 43 (11)      | 0.571   |
| Glucose (mg/dL)                                         | 103 (29)             | 106 (26)     | 0.294   |
| Left atrial diameter (mm)                               | 36 (1)               | 36 (1)       | 0.030   |
| Left ventricular end-diastolic diameter (mm)            | 46 (6)               | 47 (4)       | 0.630   |
| Left ventricular end-systolic diameter (mm)             | 28 (5)               | 28 (5)       | 0.481   |
| Interventricular septal thickness (mm)                  | 10 (0)               | 10 (1)       | 0.017   |
| Posterior wall thickness (mm)                           | 10 (0)               | 10 (0)       | 0.166   |
| E (cm/sn)                                               | 70 (10)              | 70 (10)      | 0.726   |
| A (cm/sn)                                               | 80 (15)              | 83 (10)      | 0.063   |
| Left ventricular ejection fraction (%)                  | 65 (7.6)             | 64 (7.2)     | 0.512   |
| Left ventricular mass index (gr/m <sup>2</sup> )        | 82 (20)              | 93.5 (22)    | < 0.000 |
| Left ventricular hypertrophy (n, %)                     | 36 (16)              | 38 (39.6)    | < 0.000 |
| Normal left ventricular geometry (n, %)                 | 68 (30.2)            | 16 (16.7)    | 0.012   |
| Concentric remodelling (n, %)                           | 121 (53.8)           | 42 (43.8)    | 0.113   |
| Concentric hypertrophy (n, %)                           | 13 (5.8)             | 17 (17.7)    | 0.001   |
| Eccentric hypertrophy (n, %)                            | 23 (10.2)            | 21 (21.9)    | 0.008   |

Continuous variables are presented as median (interquartile range).

|  | Table 3. | Univariate | analysis f | or ascending | aortic | dilatation. |
|--|----------|------------|------------|--------------|--------|-------------|
|--|----------|------------|------------|--------------|--------|-------------|

|                                                         | β      | p Value  |
|---------------------------------------------------------|--------|----------|
| Age (year)                                              | 0.046  | < 0.0001 |
| Body mass index (kg/m <sup>2</sup> )                    | -0.098 | < 0.0001 |
| Female gender (%)                                       | -0.619 | 0.016    |
| Obesity (%)                                             | -0.700 | 0.007    |
| Para aortic adipose tissue, mm                          | 1.020  | 0.001    |
| Hypertension (%)                                        | 0.135  | 0.605    |
| Diabetes mellitus (%)                                   | -0.008 | 0.976    |
| Hyperlipidemia (%)                                      | -0.233 | 0.567    |
| Smoking (%)                                             | -0.495 | 0.147    |
| Medications (%)                                         |        |          |
| Angiotensin converting enzyme inhibitor                 | 0.134  | 0.583    |
| Calcium channel blocker                                 | 0.339  | 0.397    |
| İnsulin                                                 | -0.397 | 0.449    |
| Oral antidiabetic                                       | -0.028 | 0.933    |
| Creatinine (mg/dL)                                      | 0.114  | 0.518    |
| Glomerular filtration rate (mL/min/1.73m <sup>2</sup> ) | -0.011 | 0.030    |
| Total cholesterol (mg/dL)                               | 0.000  | 0.973    |
| Triglyceride (mg/dL)                                    | 0.000  | 0.829    |
| Low density lipoprotein (mg/dL)                         | 0.001  | 0.820    |
| High density lipoprotein (mg/dL)                        | 0.007  | 0.564    |
| Glucose (mg/dL)                                         | 0.001  | 0.506    |
| Left atrial diameter (mm)                               | 0.081  | 0.025    |
| LV ejection fraction (%)                                | -0.007 | 0.714    |
| LV mass index (gr/m <sup>2</sup> )                      | 0.040  | <0.000   |
| E (cm/sn)                                               | 0.000  | 0.972    |
| A (cm/sn)                                               | 0.014  | 0.078    |
| Left ventricle hypertrophy (%)                          | 1.235  | <0.000   |
| LV geometry (%)                                         |        |          |
| Normal                                                  | -0.773 | 0.013    |
| Concentric remodelling                                  | -0.403 | 0.101    |
| Eccentric hypertrophy                                   | 0.900  | 0.007    |
| Concentric hypertrophy                                  | 1.255  | 0.001    |

SBP: indies systolic blood pressure; DBP: diastolic blood pressure; LV: left ventricle;  $\beta$ ; Regression coefficient.

Table 4. Multivariate analysis for ascending aortic dilatation.

|                             |        | 95% CI |       |       |  |  |
|-----------------------------|--------|--------|-------|-------|--|--|
|                             | β      | OR     | Lower | Upper |  |  |
| Age                         | 0.027  | 1.028  | 1.002 | 1.054 |  |  |
| A                           | 0.013  | 1.013  | 0.996 | 1.031 |  |  |
| BMI                         | -0.122 | 0.885  | 0.827 | 0.947 |  |  |
| Gender                      | -0.965 | 0.381  | 0.207 | 0.700 |  |  |
| Para aortic adipose tissue  | 1.100  | 3.005  | 1.445 | 6.251 |  |  |
| Left atrial diameter        | 0.033  | 1.034  | 0.931 | 1.148 |  |  |
| Left Ventricular Mass Index | 0.026  | 1.026  | 1.008 | 1.044 |  |  |
| Glomerular filtration rate  | -0.003 | 0.997  | 0.986 | 1.007 |  |  |

Cl: indicates confidence interval; OR: Odds ratio;  $\beta$ : Regression coefficient.

Table 5. ROC Curve parameters for ascending aortic dilatation.

| Risk factor | AUC (     | 95%)    | Cut off value | e p | value | Sensitivity | Specifi | city |
|-------------|-----------|---------|---------------|-----|-------|-------------|---------|------|
| PAT         | 0.64 (0.5 | 55-692) | 8 mm          | <   | 0.000 | 66          | 57      |      |
| PAT: Para   | aortic    | adipose | e tissue, A   | UC: | Area  | under       | curve,  | CI:  |

In the present study, an association was found between PAT thickness measured by TTE and coronary artery disease, hypertension, diabetes mellitus, and chronic kidney disease (Table 6). In accordance with the current study, it has been reported that there is a relationship between PAT volume measured by CT and coronary artery disease and related risk factors. These results support that there may be an association between pat thickness assessed by TTE and PAT volume assessed by CT [19,20]. PAT measured using TTE can be used as accessible parameter in the follow-up of aortic aneurysms. A follow-up study conducted in Japan using CT reported that para-aortic adipose tissue measured from the periphery of the abdominal aorta is associated with aortic dilatation and dilatation progression [21].

Although the mechanism of the relationship between PAT and aortic dilatation has not been fully elucidated, there is abundant data which indicate that PAT contributes to aortic remodelling through the growth factor, cytokines, interleukins, and adipokines it secretes due to its proximity to the aorta [9,22-25]. Increased production of inflammatory cytokines in the periaortic adipose tissue surrounding the aorta and significantly more inflammatory cell infiltration in the adipose tissue surrounding the atherosclerotic aorta compared to the normal aorta has been reported [26,27]. In the current study, we found PAT to be the strongest predictor of aortic width in multidirectional regression analysis. Similarly, the Framingham Heart Study, which involved the CT scans of 3000 patients, revealed a relationship between aortic enlargement and perivascular adipose tissue. Furthermore, a subgroup analysis conducted on 965 patients of the total 3000 patients, reported that this relationship also involved adipokines and resistin [16,28].

PAT measurements from the ascending aorta region were taken using TTE in the current study. In a study conducted with 1492 patients, Chun-Ho Yun *et al.* measured PAT using CT from the same region and found that the size of the PAT from this region was associated with subclinical atherosclerosis, systemic inflammation, metabolic syndrome, and many cardiovascular risk factors [29].

In line with relevant results in the literature [30,31], we found that age and left ventricular hypertrophy are important predictors of aortic enlargement. Additionally, low body mass index and female gender were found to be associated with increased aortic width. Consistent with our data, there are numerous studies reporting that aortic enlargement is more common in women than in men [32]. But there is a paradoxical effect of BMI on aortic width. Because we used aortic size index which was defined dividing ascending aortic diameter by BSA. Therefore, a false negative relationship was found between aortic dilatation and BMI. To correct this, the diameter of the ascending aorta was divided into length instead of the BSA. After normalised aortic diameter with height, a positive correlation was found between aortic diameter and BMI (p = 0.003). In accordance with our findings, there are accumulated evidence indicating a positive relationship between larger BMI and aortic enlargement [32,33]. Similarly, in a study conducted using CT, aortic dilatation and aortic enlargement velocity were

|--|

|                                                         | Para aortic a     |              |         |
|---------------------------------------------------------|-------------------|--------------|---------|
|                                                         | $\leq$ 8 mm (163) | > 8 mm (158) | p Value |
| Age (year)                                              | 55.3±13.1         | 63.9±11.7    | <0.000  |
| Weight (kg)                                             | 75 (19)           | 78.5 (17)    | 0.155   |
| Height (cm)                                             | 165 (12)          | 163.5 (15)   | 0.132   |
| Body surface area (m <sup>2</sup> )                     | 1.9 (0.28)        | 1.9 (0.26)   | 0.411   |
| Waist Circumference                                     | 100 (19)          | 110 (17)     | <0.000  |
| Glomerular filtration rate (mL/min/1.73m <sup>2</sup> ) | 96 (22)           | 89 (15)      | <0.000  |
| Total cholesterol (mg/dL)                               | 191 (54)          | 190 (48)     | 0.216   |
| Triglyceride (mg/dL)                                    | 134 (74)          | 133 (87)     | 0.540   |
| Low-density lipoprotein (mg/dL)                         | 110 (47)          | 113 (45)     | 0.960   |
| High-density lipoprotein (mg/dL)                        | 45 (15)           | 43 (14)      | 0.180   |
| Glucose (mg/dL)                                         | 102 (20)          | 107 (46)     | 0.003   |
| Left ventricular ejection fraction (%)                  | 65.6 (7.4)        | 64 (8.8)     | 0.019   |
| Left ventricular mass index (gr/m <sup>2</sup> )        | 84 (21)           | 89 (22)      | 0.022   |
| Female gender (n, %)                                    | 92 (56.4)         | 96 (60.8)    | 0.252   |
| Hypertension (n, %)                                     | 82 (50.3)         | 132 (83.5)   | <0.000  |
| Diabetes mellitus (n, %)                                | 33 (20.2)         | 61 (38.6)    | <0.000  |
| Coronary artery disease (n, %)                          | 8 (4.9)           | 35 (22.2)    | <0.000  |
| Chronic kidney disease (n, %)                           | 32 (19.6)         | 47 (29.7)    | 0.039   |
| Hyperlipidemia (n, %)                                   | 15 (9.2)          | 20 (12.7)    | 0.372   |

Continuous variables are normally distributed showed Mean±standard deviation; continuous variables are not normally distributed showed as median (interquartile range); categorical variables are presented as number (percentage). Bold values are statistically significant.

reported to be associated with age and body surface area [34]. Moreover, the 4-year and 16-year follow-up data of the Framingham Heart Study revealed that increased age and body surface area were closely associated with the development of aortic remodelling [35].

#### Limitations of the study

There are some limitations to this study, such as the study's cross-sectional methodology, recorded interobserver differences, and the fact that PAT measurement could not be performed in every patient is due to insufficient image quality. In addition, PAT was measured only from around the ascending aorta and as a length measurement. The relationship between PAT, measured by TTE, and PAT volume, measured by CT and MR, was not evaluated. Finally, our results did not demonstrate the effect of PAT on aortic remodelling or the adipokinin, growth factors, etc. secreted by PAT as a paracrine organ. We do not have follow-up results. Therefore, PAT may predict the presence of an aortic aneurysm. However, no assumptions can be made regarding the development of an aortic aneurysm. Therefore, further study is necessary to corroborate its results and studies using larger samples would be valuable.

# Conclusion

This study is the first measuring para-aortic adipose tissue from the ascending aorta using TTE. In addition, PAT measured by TTE was found to be the most important predictor of ascending aorta dilatation.

#### **Disclosure statement**

No potential conflict of interest was reported by the author(s).

# ORCID

Adem Adar b http://orcid.org/0000-0002-2404-6447 Orhan Onalan b http://orcid.org/0000-0001-9780-7051 Fahri Cakan b http://orcid.org/0000-0002-5427-3480 Hakan Keles b http://orcid.org/0000-0003-3699-5487 Ertan Akbay b http://orcid.org/0000-0002-9146-0621 Sinan Akıncı b http://orcid.org/0000-0001-5250-5404 Ali Coner b http://orcid.org/0000-0002-5711-8873 Cevahir Haberal b http://orcid.org/0000-0002-6496-5050 Haldun Muderrisoglu b http://orcid.org/0000-0002-9635-6313

#### References

- [1] Erbel R, Aboyans V, Boileau C, et al. 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the european society of cardiology (ESC. Eur Heart J. 2014;35:2873–2926.
- [2] Isselbacher EM. Thoracic and abdominal aortic aneurysms. Circulation. 2005;111(6):816–828.
- [3] Urabe G, Hoshina K, Shimanuki T, et al. Structural analysis of adventitial collagen to feature aging and aneurysm formation in human aorta. J Vasc Surg. 2016;63(5):1341–1350.
- [4] Peshkova IO, Schaefer G, Koltsova EK. Atherosclerosis and aortic aneurysm - is inflammation a common denominator? Febs J. 2016;283(9):1636–1652.
- [5] Yun CH, Lin TY, Wu YJ, et al. Pericardial and thoracic peri-aortic adipose tissues contribute to systemic

inflammation and calcified coronary atherosclerosis independent of body fat composition, anthropometric measures and traditional cardiovascular risks. Eur J Radiol. 2012;81(4):749–756.

- [6] Fox CS, Massaro JM, Schlett CL, et al. Periaortic fat deposition is associated with peripheral arterial disease: the framingham heart study. Circ: Cardiovascular Imaging. 2010;3(5):515–519.
- [7] Lehman SJ, Massaro JM, Schlett CL, et al. Peri-aortic fat, cardiovascular disease risk factors, and aortic calcification: the framingham heart study. Atherosclerosis. 2010;210(2):656–661.
- [8] Freiberg M, Arnold A, Newman A, et al. Abdominal aortic aneurysms, increasing infrarenal aortic diameter, and risk of total mortality and incident cardiovascular disease events: 10-year follow-up data from the cardiovascular health study. 2008;117(8):1010–1017.
- [9] Dias-Neto M, Meekel JP, van Schaik TG, et al. High density of periaortic adipose tissue in abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 2018;56(5): 663–671.
- [10] Roman MJ, Devereux RB, Kramer-Fox R, et al. Twodimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol. 1989; 64(8):507–512.
- [11] Davies RR, Gallo A, Coady MA, et al. Novel measurement of relative aortic size predicts rupture of thoracic aortic aneurysms. Ann Thorac Surg. 2006;81(1): 169–177.
- [12] Evangelista A, Flachskampf FA, Erbel R, et al.; Document Reviewers. Echocardiography in aortic diseases: EAE recommendations for clinical practice. Eur J Echocardiogr. 2010;11(8):645–658.
- [13] Lang RM, Bierig M, Devereux RB, et al.; European Association of Echocardiography, European Society of Cardiology. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7(2):79–108.
- [14] Leontyev S, Misfeld M, Mohr FW. Aneurysms of the ascending aorta and aortic arch. Chirurg. 2014;85(9): 758–766.
- [15] Turkmen K, Tonbul HZ, Erdur FM, et al. Peri-aortic fat tissue and malnutrition-inflammation-atherosclerosis/ calcification syndrome in end-stage renal disease patients. Int Urol Nephrol. 2013;45(3):857–867.
- [16] Thanassoulis G, Massaro JM, Corsini E, et al. Periaortic adipose tissue and aortic dimensions in the Framingham heart study. J Am Heart Assoc. 2012;1:e000885.
- [17] Watts SW, Flood ED, Garver H, et al. A new function for perivascular adipose tissue (PVAT): assistance of arterial stress relaxation. Sci Rep. 2020;10(1):1807.
- [18] Yun CH, Longenecker CT, Chang HR, et al. The association among peri-aortic root adipose tissue, metabolic derangements and burden of atherosclerosis in asymptomatic population. J Cardiovasc Comput Tomogr. 2016;10(1):44–51.
- [19] Turkmen K, Ozbek O, Kayrak M, et al. Peri-aortic fat tissue thickness in peritoneal dialysis patients. Perit Dial Int. 2013;33(3):316–324.
- [20] Efe D, Aygun F, Ulucan S, et al. Relationship of coronary artery disease with pericardial and periaortic adipose tissue and their volume detected by MSCT. Hellenic J Cardiol. 2015;56:44–54.

- [21] Yamaguchi M, Yonetsu T, Hoshino M, et al. Clinical significance of increased computed tomography attenuation of periaortic adipose tissue in patients With abdominal aortic aneurysms. Circ J. 2021;85(12): 2172–2180.
- [22] Li X, Ballantyne LL, Yu Y, et al. Perivascular adipose tissue-derived extracellular vesicle miR-221-3p mediates vascular remodeling. Faseb J. 2019;33(11): 12704–12722.
- [23] Sakaue T, Suzuki J, Hamaguchi M, et al. Perivascular adipose tissue angiotensin II type 1 receptor promotes vascular 1 nflammation and aneurysm formation. Hypertension. 2017;70(4):780–789.
- [24] Lee MH, Chen SJ, Tsao CM, et al. Perivascular adipose tissue inhibits endothelial function of rat aortas via caveolin-1. PLoS One. 2014;9(6):e99947.
- [25] Moe KT, Naylynn TM, Yin NO, et al. Tumor necrosis factor-alpha induces aortic intima-media thickening via perivascular adipose tissue inflammation. J Vasc Res. 2013;50(3):228–237.
- [26] Henrichot E, Juge-Aubry CE, Pernin A, et al. Production of chemokines by perivascular adipose tissue: a role in the pathogenesis of atherosclerosis? Arterioscler Thromb Vasc Biol. 2005;25(12):2594–2599.
- [27] Chatterjee TK, Stoll LL, Denning GM, et al. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res. 2009; 104(4):541–549.
- [28] Piacentini L, Saccu C, Bono E, et al. Gene-expression profiles of abdominal perivascular adipose tissue distinguish aortic occlusive from stenotic atherosclerotic lesions and denote different pathogenetic pathways. Sci Rep. 2020;10(1):6245.
- [29] Yun CH, Longenecker CT, Chang HR, et al. Quantification of peri-aortic root fat from non-contrast ECG-gated cardiac computed tomography. Data Brief. 2015;5:995–998.
- [30] Kauhanen SP, Saari P, Jaakkola P, et al. High prevalence of ascending aortic dilatation in a consecutive coronary CT angiography patient population. Eur Radiol. 2020;30(2):1079–1087.
- [31] Argan O, Avci E, Yildirim T, et al. Epicardial adipose tissue is a predictor of ascending aortic dilatation in hypertensive patients, but not paracardial adipose tissue. BMC Cardiovasc Disord. 2020;20(1):142.
- [32] Lanne T, Sandgren T, Sonesson B. A dynamic view on the diameter of abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 1998;15(4):308–312.
- [33] Golledge J, Clancy P, Jamrozik K, et al. Obesity, adipokines, and abdominal aortic aneurysm: Health in men study. Circulation. 2007;116(20): 2275–2279.
- [34] Chang HW, Kim SH, Hakim AR, et al. Diameter and growth rate of the thoracic aorta-analysis based on serial computed tomography scans. J Thorac Dis. 2020;12(8):4002–4013.
- [35] Lam CS, Xanthakis V, Sullivan LM, et al. Aortic root remodeling over the adult life course: longitudinal data from the Framingham heart study. Circulation. 2010;122(9):884–890.