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ABSTRACT 

İpek Peşkircioğlu Gökçe  

AFDX Network Simulation and Performance Analysis  

Baskent University Institute of Science and Technology 

The Department of Defense Technologies and Systems 

2022 

 

AFDX (Avionics Full Duplex Switched Ethernet) also known as ARINC 664 Part 7 is a 

leading ethernet-based avionics data network used for safety-critical applications having 

real-time requirements with dedicated bandwidth utilizations. In order to construct a proper 

AFDX architecture, network configuration aspects such as Bandwidth Allocation Gap, 

Virtual Link assignment and network topology should be defined by considering 

performance metrics including line utilization, average and worst-case timings, switch 

queueing latencies and buffer occupancies in order to satisfy real-time requirements. This 

thesis is intended to present an AFDX Simulation model that evaluates mentioned aspects 

of the network before setting-up the actual system. To this end, first the existing 

OMNeT++ AFDX Model is improved to make a more realistic and easily configurable 

simulation. Additionally, in order to make the simulation modifiable for those who are not 

familiar with the OMNeT++ environment and get readable results, a new network 

configuration and analysis tool, named as ANCAT is proposed. AFDX model and ANCAT 

are verified with multiple custom-designed experiments and comparison to analytical 

queueing models. Finally, some realistic network scenarios that both evaluate AFDX 

performance and demonstrate the capability of the developed OMNeT++ model is 

represented. 

 

Keywords: AFDX, Avionics Network, Network Simulation, OMNeT++, Performance 

Analysis  

Co-Advisor: Prof. Dr. Ece GÜRAN SCHMIDT (Coadvisor), Middle East Technical 

University 

Advisor: Assist. Prof. Dr. Murat ÜÇÜNCÜ (Advisor), Baskent University 
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ÖZET 

İpek Peşkircioğlu Gökçe  

AFDX Ağ Simulasyonu ve Performans Analizi 

Başkent Universitesi Fen Bilimleri Enstitüsü 

Savunma Teknolojileri ve Sistemleri Anabilim Dalı 

2022 

 

ARINC 664 Part 7 olarak da bilinen AFDX, günümüzde emniyet açısından kritik, gerçek 

zamanlı gereksinimleri ve kendine ayrılmış bant genişliği ihtiyacı olan hava aracı 

sistemlerinde yaygın olarak kullanılan gerçek zamanlı bir ethernet protokolüdür. Gerçek 

zamanlı gereksinimleri karşılayabilecek ve en kötü durumlarda bile beklenildiği gibi 

çalışabilecek bir AFDX mimarisi kurabilmek için AFDX’e has bant genişliği yerleşim 

aralığı (BAG), sanal bağ atamaları ve ağ yağısı gibi ayarlar, uçtan uca gecikmeler, anahtar 

gecikmeleri ve doluluk oranları gibi performans kriterleri göz önünde bulunudurularak 

tasarım yapılmalıdır. Bu çalışmada, bir AFDX mimarisini fiziksel olarak kurup 

çalıştırmadan söz konusu kıstasları elde edebilmek ve inceleyebilmek için kullanılmak 

üzere bir AFDX simülasyonu hazırlanması amaçlanmıştır. Bu amaçla, daha önceden 

oluşturulmuş OMNeT++ AFDX modelindeki eksiklikler giderilmiş, model daha gerçekçi 

ve kolayca konfigüre edilebilir hale getirilmiştir. Ayrıca, daha önce OMNeT++ ile 

uğraşmamış kişiler için de simülasonu daha kolay konfigüre edilebilir hale getirebilmek ve 

okunabilir simülasyon çıktıları elde edebilmek için yeni bir ağ konfigürasyon ve analiz 

aracı (ANCAT) geliştirilmiştir. Son olarak AFDX modeli ve ANCAT aracını kullanarak 

teorik ve gerçekçi senaryolar içeren pek çok deney yapılmış, bu deney sonuçlarından yola 

çıkarak ürünler doğrulanmıştır.  

 

Anahtar Sözcükler: AFDX, Aviyonik Ağları, Ağ Simülasyonu, OMNeT++, Performans 

Analizi 

Eş Danışman: Prof. Dr. Ece GÜRAN SCHMIDT, ODTÜ 

Danışman: Dr. Öğr. Üyesi Murat ÜÇÜNCÜ, Başkent Üniversitesi 
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1. INTRODUCTION 

Avionic systems involve dozens of electronic devices fitted into satellites, aircrafts or 

spacecrafts. These devices can be display units, navigation systems, communications 

modules, flight or fire control computers among many other devices [1]. Diverse devices 

utilize a diverse type of data and interfaces with different priorities. When all these are 

considered, communication between sub-units may be quite a challenge. To simplify the 

development and integration of avionics software and hardware, avionics systems are 

migrating towards integrated modular avionics (IMA) [2]. In IMA systems, flexible and 

reprogrammable modules with higher speeds have started to replace traditional, 

application-specific and non-adaptive avionics standards with lower bandwidths like MIL-

STD-1553 [3]. Within this context, Avionics Full-Duplex Switched Ethernet (AFDX) 

protocol is standardized as ARINC (Aeronautical Radio, Inc) Specification 664 Part 7 in 

association with avionics manufacturers like Airbus, Boeing, Rockwell Collins, 

Honeywell, etc. [4]. Airbus A380/A350/A400M, Boeing 787 Dreamliner, ARJ21 and 

Superjet 100 can be counted among airplanes using AFDX [5]. 

The physical and Media Access Control (MAC) layers of AFDX are based on IEEE 

802.3 Ethernet standard and it speeds up to 100 Mbps rates. Network architecture is 

composed of interconnected switches (SW) and end-systems (ES) communicating through 

those switches. AFDX ensures the deterministic quality of services (QOS) with dedicated 

bandwidth by establishing a connection-oriented structure. At the ES level, QoS support is 

provided by output traffic regulation and priority-based switching. In addition, AFDX 

offers a strong fault-tolerant network capability by using redundant switches and network 

interfaces. 

In modern avionic networks, line replaceable units (LRU) are gathering more diverse 

data with larger amounts than before. Thus, the amount of real-time data that is circulating 

through the network is increased. End-to-end delay limits shouldn’t be exceeded in the 

devices used in distributed architectures to ensure that control loops run properly, 

especially if they are safety critical. Hence making a performance analysis before realizing 

the actual system is essential and may save lives [6].  

When designing a network, worst-case scenarios can be foreseen with mathematical 

modeling [7]. Nonetheless, this mathematical model may either remain incapable of giving 
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average results or may bring out exceedingly pessimistic outcomes. To avoid such cases, it 

is crucial to evaluate the design with simulation models as realistic as possible.  

NS2 [8], [9] and OPNET [10] simulators were used to simulate AFDX. However 

important details like message set or model parameters were not included formerly. If 

different real-time open-source network simulators are compared [11]–[13], it can be seen 

that the OMNeT++ framework is more advantageous in terms of timings, memory needs 

and visualization abilities compared to other popular network simulators like NS2/NS3. 

OMNeT++ [14] is used to create network simulations particularly. In [15], an AFDX 

Model is derived over TTEthernet layer and in [16] the results gathered from an AFDX 

model built over the INET Ethernet model [17] are compared with those gathered from 

TTEthernet hardware.  

Among other simulation modules, there exists an AFDX Model that is originated by 

OMNEST[18] and then opened to community by OMNeT++ [19]. This module includes 

redundancy management and queueing behavior for both switch and end-systems in 

addition to the basic AFDX MAC layer and AFDX switch implementation. 

The contributions of the thesis are as follows: 

1) Extension, verification and update of the AFDX model developed and 

published by OMNeT++ [19] which previously developed by OMNEST++ 

for commercial use [18]. 

• A realistic AFDX simulation model that is closely following ARINC 

664 p7 standard [4]. The model implements the link layer AFDX 

functionality together with redundancy features. 

• Automatized simulation configuration which takes simulation 

parameters from an input configuration file in a standard format such 

as Microsoft Excel. Automatized simulation output report generation 

which provides detailed measurements results and summaries 

containing average and maximum measurement values per VL and 

per Switch.  

• Custom tailored experiments with deterministic and computable 

results for the verification of the simulation correctness. Furthermore, 

Little's Law is checked for the queues in the switch. A detailed 
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breakdown of latency components of the ES and Switch model is 

presented and compared with the expected results. 

• Publishing the extended verified model to the community [20] 

2) Determining realistic AFDX message parameters based on avionics 

components specifications and the current application expectations. 

Construction of realistic message sets and network topologies. 

3) Extensive performance evaluation of AFDX under these realistic messages 

and topologies. Evaluation under selected fault scenarios. 

2. BACKGROUND 

2.1. AFDX Overview 

Since previous standards could no longer meet the requirements of modern-day state-

of-the-art air vehicles, AFDX was proposed and trademarked by AIRBUS [5]. It is based 

on IEEE802.3 Ethernet by physical and MAC layers and complies with UDP/IP in the 

transport layer [13]. It uses Ethernet frame definition and IEEE802.1d switching protocol 

but it is essentially different from commercial Ethernet which provides guaranteed 

bandwidth and bounded end-to-end latency.  

Key AFDX network components are end-systems, switches and virtual links (VL) as 

shown in Figure 2.1. Switches are connected to either an end-system or each other. End-

systems are inputs and outputs of the architecture and each end-system is connected to a 

switch by a certain switch port. The physical links between switches and end-systems are 

full duplex 100Mbps Ethernet lines. Switches are dual-redundant (Switch-A and Switch-B) 

hence each connection is repeated for A and B switches [21].  

The commercial Ethernet uses collision detection methods. Collided packets get 

dropped and retransmitted later which make the communication indeterministic and 

unreliable[1]. In AFDX, due to the Virtual Link (VL) structure and the fact that the link 

between elements is full duplex, there are no packet collisions [22]. 

The data packets are generated in each subsystem and they are forwarded into the 

network by source end-systems. The switch directs the packet to the intended destination 

end-system(s) when it received it and that completes an information interchange between 

multiple avionic subsystems [13]. 
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Figure 2.1 Example AFDX Network 

2.1.1. AFDX Frame 

AFDX frame format is  based on standard Ethernet, IEEE 802.3 Standard. Frame 

fields and lengths of each are given in Table 2.1. Thus, an AFDX message length (𝐿𝑖) and 

the total frame length (𝑆𝑖) which is composed of 𝐿𝑖 and 20B of PHY (Physical Layer 

Device ) overheads for a 𝑉𝐿𝑖 can take values between the ones shown in (2.1) and (2.2). 

𝐿𝑚𝑖𝑛
𝑖 = 64𝐵, 𝐿𝑚𝑎𝑥

𝑖 = 1518𝐵 
(2.1) 

𝑆𝑚𝑖𝑛
𝑖 = 84𝐵, 𝑆𝑚𝑎𝑥

𝑖 = 1538𝐵 
(2.2) 

 

The “Sequence Number” (SN) is incremented for each virtual link and used in 

redundancy management. In an AFDX network, one or many end-systems can be part of a 

host equipment [4]. This host equipment is identified with “Network ID” and “Equipment 

ID” fields defined in source MAC address which is shown in Table 2.2. Each end-system 

can contain one or many partitions which are identified by “Partition ID” (Table 2.4). 

Additionally, virtual links that are identified by “VL-ID” are stored in the destination MAC 

address which is shown in Table 2.3. 

Table 2.1 AFDX Frame Format 

PHY Overhead Ethernet Frame [64-1518] PHY Overhead 

Preamble SFD 

MAC Address 

Type 

Ethernet Payload 

FCS IFG 
Destination Source 

IP 

Structure  

UDP 

Structure 

AFDX Structure 

Payload SN 

7B 1B 6B 6B 2B 20B 8B 17B-1471B 1B 4B 12B 

  

Table 2.2 Source MAC Address Format 

Constant field Network ID Equipment ID Interface ID Constant 

0b0000 0010 0000 

    0000 0000 0000 
Const. 

Domain 

ID 

Side 

ID 

Location 

ID 

0b001: Network A  

0b010: Network B 
0b00000 

24-bits 4-bits 4-bits 3-bits 5-bits 3-bits 5-bits 
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Table 2.3 Destination MAC Address Format 

Constant field (24 bits) VL-ID (16 bits) 

0bXXXX XX11 XXXX XXXX XXXX XXXX 

XXXX XXXX 
user defined 

 

Table 2.4 IP Addressing Format 

Class A Private IP address User Defined ID Partition ID 

1-bit 7-bits 16-bits (Spare fields) 3-bits 5-bits 

 

2.1.2. Virtual Link (VL) and BAG Concepts 

A virtual link is a one-to-many static path between end-systems [23]. Therefore, only 

one partition can be the source of a VL. VLs are identified by VL-IDs. During the design 

phase of an AFDX network, VL-IDs and their dedicated bandwidths are allocated and 

cannot be changed in runtime [24]. Virtual link concept enables an end-system to have the 

ability of isolating different nodes logically from each other [25]. Thanks to this concept, 

bandwidth utilization of a VL by one partition won’t be affecting other VLs. [4]. VL owes 

this ability to two parameters. Bandwidth Allocation Gap (BAG) and maximum allowed 

frame size [26]. 

VLs can be characterized by dedicated Bandwidth Allocation Gap (BAG) values. 

BAG is the minimum time slot (in milliseconds) between successive packets. It can be 

valued as defined in (2.3). It is not only binding for all partitions sharing the same VL-ID 

but also it establishes a period for a VL itself [21]. 

𝐵𝐴𝐺 = 2𝑘  [𝑖𝑛 𝑚𝑠], 𝑘 ∈ 𝑍, 0 ≤ 𝑘 ≤ 7 [4] (2.3) 

 

 

Figure 2.2 Regulated and Unregulated Flow (BAG)  
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2.1.3. End-System 

An end-system is an interface between the avionics subsystem and AFDX the 

network. End-systems are inputs and outputs of the network and they act as receivers and 

transmitters for subsystems connected to them.  

 

Figure 2.3 Partitions in End-System 

 Different applications that are running in a subsystem with certain time interval and 

dedicated memory, can be named as partitions [24]. One or more partitions within the same 

subsystem can be connected to one end-system (Figure 2.3). They might either be using the 

same or different VL-IDs. If there are multiple partitions connected to the same end-

system, then multiplexing is needed to serialize frames coming from various sources i.e., 

partitions.  

In addition to the multiplexing, frames of each VL are exposed to a regulation 

according to BAG values that are assigned to them (VLs). As a result of solely this 

regulation, the time slot between two successive frames of each VL will take at least a 

BAG amount of time. The main intention behind this concept is to restrict instantaneous 

frame rates per VL basis.  

 These two behaviors come together and create the scheduler. Due to the scheduling, 

frames of each VL will be showing up in a bounded time interval which is called 

maximum admissible jitter. Traffic flow itself does not cause this jitter but scheduling does 

[4]. 
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Figure 2.4 End-System Scheduling 

Scheduled packets have one final stop before leaving the end-system: redundancy 

manager. Unless stated otherwise, each frame is sent across both A and B networks [4]. All 

packets are directed to the receiving end by passing through both networks. Once they are 

arrived, they are passed through an integrity checker and then finally redundant frames are 

eliminated within redundancy management [1]. 

 In the transmitting end, the sequence number in the AFDX frame (Table 2.1) is 

incremented by one and it is wrapped-around to 1 when reached to 255 [27]. On the other 

hand, at the receiving end, the SN is checked as if it satisfies the equation in (2.4) where 

PSN indicates the Previous Sequence Number.  

𝑃𝑆𝑁 + 1 ≤ 𝑆𝑁 ≤ 𝑃𝑆𝑁 + 2 [4] (2.4) 

 

To identify the redundant frames, skew between switch-A and switch-B is checked 

as it should not exceed a certain “skewMax” value which is defined in design phase. If the 

time difference between two frames having the same sequence number (which means one 

of them is redundant) is less than “skewMax” value, then the later one will be discarded. 

Otherwise, later frame will be considered as a new one and accepted. [28] 

2.1.3.1 Performance Metrics at the End-System 

2.1.3.1.1 Jitter 

In a transmitting end-system, frames appear at the output of the scheduler in a 

bounded time window. This window is called “Maximum Admissible Jitter” (𝐽𝑛
𝑚𝑎𝑥) and it 

is introduced by the traffic shaper i.e., scheduler. Jitter measurement starts at the beginning 

of the BAG interval and ends at the very first bit of the frame getting transmitted in that 

BAG slot. Maximum admissible jitter is actually the total jitter that can happen to the most 

unfortunate frame. Hence it is calculated from the perspective of the frame at the end of the 
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line. It is composed of fixed technological latency which can be maximum 40 𝜇𝑠, plus the 

amount of time that spent until all previous frames left the physical line i.e., sum of 

contention delays (𝑑𝑖) for each frame 𝑖. It is limited to 500𝜇𝑠 by the standard in [4]. In the 

light of these information, it can be calculated by equation (2.6) where 𝑉𝑛 denotes all the 

VL-IDs scheduled by 𝐸𝑆𝑛 and 𝐶 is the data rate of the physical line in bit per seconds (bps) 

[29]. 

𝑑𝑖 =  
(20 + 𝐿𝑖) × 8

𝐶
=  

𝑆𝑖 𝑖𝑛 𝑏𝑖𝑡𝑠

𝐶
 

(2.5) 

𝐽𝑛
𝑚𝑎𝑥 ≤ min (500𝜇𝑠, 40𝜇𝑠 +  

∑ (20 +  𝐿𝑖
𝑚𝑎𝑥) × 8𝑖∈𝑉𝑛

𝐶
) (2.6) 

2.1.3.1.2 Latency in Transmission 

Transmission latency is the overall time spent by a frame until it leaves the end-

system. Let 𝑡0 be the time when the last bit of a frame leaves its host partition and 𝑡1be the 

time when that last bit of the frame is transmitted on the physical line. In that case, 

transmission latency would be the time difference between 𝑡0 and 𝑡1.  

Transmission latency (𝐿𝑛
𝑇𝑥) at the 𝐸𝑆𝑛 is given in the equation (2.7) and it can be 

expressed as the sum of technological latency(𝑇𝐿𝑛
𝑇𝑥) and configuration latency (𝑇𝐶𝑛

𝑇𝑥) at 

the 𝐸𝑆𝑛.  

𝐿𝑛
𝑇𝑥 =  𝑇𝐿𝑛

𝑇𝑥 +  𝑇𝐶𝑛
𝑇𝑥 (2.7) 

Technological latency is the time required to accept, process and begin to transmit 

the frame at the host partition. It is measured when end-system is not performing any other 

task hence it is independent of the traffic load. It is represented as a fixed hardware specific 

delay plus the time taken to transmit a frame to the physical layer i.e., contention delay 

defined in (2.5) and it is bounded by the standard [4] as in the equation (2.8).  

𝑇𝐿𝑛
𝑇𝑥 ≤ 150𝜇𝑠 + 𝑑𝑛

𝑇𝑥 (2.5) (2.8) 

Configuration latency depends on the traffic and system configuration and it is 

basically arising due to the traffic shaping i.e., BAG. It depends on the maximum 

admissible jitter (2.6), the number of frames already in the queue and waiting to be sent 

and the BAG value of each. It can be expressed by the equation (2.9) for a 𝑉𝐿𝑖 at the 𝐸𝑆𝑛 

and assuming there are 𝑝 frames to be processed. 

𝑇𝐶𝑛,𝑖,𝑝
𝑇𝑥 = 𝑝 × 𝐵𝐴𝐺𝑖 + 𝐽𝑛

𝑚𝑎𝑥 (2.9) 
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2.1.3.1.3 Latency in Reception 

Reception latency is the overall time spent by a frame until it arrives at the target 

partition. Let 𝑡0 be the time when the last bit of the frame leaves the physical media to 

enter receiving end-system and 𝑡1be the time when the last bit of a frame enters at the 

target partition. In that case, reception latency would bet the time difference between 𝑡0 

and 𝑡1.  

Reception latency (𝐿𝑛
𝑅𝑥) at the 𝐸𝑆𝑛 is equal to technological latency (𝑇𝐿𝑛

𝑅𝑥). It is 

denoted as (2.10) and bounded in the standard [4] as given in equation (2.11). 

𝐿𝑛
𝑅𝑥 =  𝑇𝐿𝑛

𝑅𝑥 (2.10) 

𝑇𝐿𝑛
𝑅𝑥 ≤ 150𝜇𝑠 + 𝑑𝑛

𝑅𝑥 (2.5) (2.11) 

2.1.4. Switch 

AFDX nodes are usually combined in a star topology. AFDX switches can be in 

contact with up to twenty-four nodes [30]. These contacts might be either with an end-

system or another switch, but it is a one-to-one connection. Switches use 

configuration/routing tables to relate port IDs with VL-IDs and route relevant frames 

through interested destination ports [24]. An AFDX switch is responsible for traffic 

policing, frame filtering and switching. 

 

Figure 2.5 Switch – End-System Connections 

Frame filtering is used to eliminate invalid frames. It checks frames integrity which 

means the validity of FCS field in Table 2.1, frame size which should not exceed certain 

limits ([𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥] 𝑜𝑟 [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥]) and frame path which is required to be a valid, 
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permitted VL-ID. Traffic Policing is used to keep bandwidth bounded and the token-

bucket algorithm ensures that. The details about the token-bucket algorithm is discussed 

in chapter 2.1.4.1. After filtering and policing, frames are classified according to their 

priorities that can either be HIGH or LOW. Then they are forwarded to the related output 

ports according to the VL-port mappings stated in the configuration table. Finally, frames 

leave the switch if the line is not busy or stored in queues until line becomes available. 

Here, a queueing latency may step-in. This and other latencies are discussed in the next 

chapter. 

2.1.4.1 Token Bucket Algorithm and Switch Jitter 

AFDX Standard [4] proposes a token-bucket algorithm for traffic policing. In this 

algorithm, AFDX switch keeps an account 𝐴𝐶𝑖(𝑡) in bytes for each 𝑉𝐿𝑖 (2.12). The credit 

𝐴𝐶𝑖 is bounded by sigma (𝜎𝑖). In time 𝑡 some credit that is proportional to rho (𝜌𝑖 is 

earned (2.14) where 𝜌𝑖 is the allowed average data stream rate on 𝑉𝐿𝑖 for a 𝐵𝐴𝐺𝑖 window 

(2.13). With every message passing, some credit is consumed with a certain amount 

which depends on the traffic policing type; byte-based or frame-based. The Equation 

(2.15) shows the frame-based policing, Equation (2.16) shows the byte-based policing. In 

case there aren’t enough credits, the frame in subject will be dropped [31]. 

𝜎𝑖 =  𝑆𝑖
𝑚𝑎𝑥 × (1 +

𝐽𝑖
𝑠𝑤𝑖𝑡𝑐ℎ

𝐵𝐴𝐺𝑖
) (2.12) 

𝜌𝑖 =  
𝑆𝑖

𝑚𝑎𝑥

𝐵𝐴𝐺𝑖
 (2.13) 

𝐴𝐶𝑖 =  𝐴𝐶𝑖 +  𝜌𝑖 × 𝑡 (2.14) 

𝐴𝐶𝑖 =  𝐴𝐶𝑖 − 𝑆𝑖
𝑚𝑎𝑥  𝑖𝑓  𝐴𝐶𝑖  > 𝑆𝑖

𝑚𝑎𝑥 (2.15) 

𝐴𝐶𝑖 =  𝐴𝐶𝑖 − 𝑆𝑖  𝑖𝑓  𝐴𝐶𝑖  > 𝑆𝑖 
(2.16) 

The tricky part in token-bucket algorithm is the switching jitter (𝐽𝑖
𝑠𝑤𝑖𝑡𝑐ℎ ∀ 𝑉𝐿𝑖). It is 

described as the time window that a frame is guaranteed to be placed in and it can be 

related to the previous frames. When the time difference between successive frames is 

constant i.e., jitter is zero, the maximum credit value (𝐴𝐶𝑖) can raise up to 𝑆𝑖
𝑚𝑎𝑥 (Figure 

2.6). However, in a non-zero jitter case, the maximum credit will always be greater than 

𝑆𝑖
𝑚𝑎𝑥. This will enable the token-bucket algorithm to handle a moment when a frame 

comes early due to this jitter (Figure 2.7).  
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Figure 2.6 Traffic at Traffic Policing when Jitter = 0  

 

Figure 2.7 Traffic at Traffic Policing when Jitter ≠ 0  

2.1.4.2 Latencies in an AFDX Switch 

During the journey of a frame throughout the switch, it faces certain latencies such as 

queueing latency, technological latency, frame transmission time and inter-frame gap. 

Technological latency (𝑇𝑠𝑤) is due to transmission times in switch fabric, it is related with 

the hardware and bounded with 100 µ𝑠𝑒𝑐. AFDX switches have output buffers for each 

output port and zero input buffers [32]. When there are multiple frames directed to the 

same port, queueing latency (𝑇𝑄) emerges due to this loading. The time required to 

transmit the frame on the medium is the frame transmission time finally, the inter-frame 

gap (𝑇𝑚𝑖𝑛𝑔𝑎𝑝
) is the minimum slot that must remain between two successive frames. It is in 

seconds and evaluated as 12B at C bps.  
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2.1.5. End-To-End Delay 

End-to-end delay is a quite important metric when working with AFDX or any other 

avionics protocol. It consists of the sum of latencies in end-systems and switches and 

transmission times in between [33]. On the other hand, this delay defines the total amount 

of delay that a frame will face and it is used when setting up an avionics architecture. 

Hence it is crucial to know end-to-end delays before realizing an avionics network.  

2.1.6. Little’s Law  

Little’s law is a quite simple mathematical formula and yet its paper [34] is one of 

the most cited papers ever [35]. In this paper it is proven that, for a queueing system in the 

equilibrium, the average number of items (𝐿) must be equal to the average wait time (𝑊) in 

the queue times the average arrival rate into the queue (λ). The Little’s Law is given in 

equation (2.17). It can be applied to any queueing systems of all kinds such as people 

waiting for a coffee in a queue, products in a manufacturing line or messages queued in a 

network. The only assumption for this law is what goes in must come out. 

𝐿 =  𝑊 ∗ λ (2.17) 

 This law is considered to be important for this thesis because it will be used to 

evaluate some experimental results when verifying the model.  

2.1.7. Confidence Interval 

Confidence interval (CI) can be described as a range for estimates of a certain 

parameter that is unknown. It is computed to estimate the population mean based on the 

sample mean and a designated confidence level is specified when computing it such as 

95% or 99% [36].  

 When modeling a system in a simulation environment to have an opinion about the 

behavior in advance, it is crucial to collect enough data and obtain results that reflect the 

real application. It is not likely to get true mean (µ) since simulation cannot be run forever. 

However, it is possible to say that the sample mean 𝑦𝑛 is within %Δ band of the true mean 

µ with a confidence level of g% where n goes to infinity. Confidence g is calculated by 

equation (2.18 where 𝑆𝑛 is the standard deviation for n samples,  𝑡𝑔 is a constant that can 

be selected as 1.96 or 2.58 for designated confidence levels 95% or 99% respectively. The 

network configuration and analysis tool (ANCAT) proposed in this thesis in further 

chapters is able to calculate CI with both levels and uses it to justify its computations.  



13 

 

%Δ =  
𝑆𝑛 ×  𝑡𝑔

𝑦𝑛  ×  √𝑛
 (2.18) 

 

3. PREVIOUS WORK 

3.1. OMNeT++ and Other Network Simulation Tools 

OMNeT++ is a powerful discrete event simulation environment for modeling 

communications networks of numerous different domains. It is intended to be used for 

research purposes mostly hence under APL license it is free to use for non-profit users. 

Instead of providing major simulation components OMNeT++, provides basic tools to 

write a functioning simulation [37]. For many specific areas, OMNeT++ community 

developed frameworks/packages containing certain models of popular protocols. For 

example, the INET framework contains comprehensive models of the internet that are 

handling the protocol from physical to application layers and for both wired and wireless 

networks [17]. Whereas Mobility Framework includes implementation of some ad-hoc 

network models [38]. 

Providing a whole simulation ecosystem is not only a key feature of OMNeT++ but 

this is what distinguishes OMNeT++ from other network simulators such as NS [37]. In 

addition to that, OMNeT++ presents a hierarchical structure with a modular architecture 

and different user interface options. Most importantly it offers all these features with a 

lower complexity when compared to its peers [12]. 

To create simulations in OMNeT++, C++ and NED (NEtwork Description) 

languages are used. With *.ned files, the structure of the model is established. Each block 

in the network, connections between them and even the network itself are defined by so 

called simple and compound modules in a hierarchical order. In addition to that, 

configuration parameters can be defined and evaluated with default values in *.ned files. 

While *.ned files are providing a huge flexibility to OMNeT++ when defining the 

topology, in another network simulation tool OPNET, the models always use a fixed 

topology [39]. OMNeT++ provides class libraries in C++ and it is also used to define the 

functional behavior of the blocks when simulation is running. When OMNeT++ is 

compared to NS-2 and OPNET is terms of simulation libraries, NS-2 has less built-in 

functions and OPNET simulation library is in C instead of C++ which is more modular an 

modern which makes OMNeT++ more powerful than both in terms of libraries [39].  
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Furthermore, it is possible to interfere in the simulation behavior by using *.ini 

files. The *.ini files are not needed to be compiled and they can be used to re-evaluate 

the parameters that are defined in the *.ned file. Thus, it is possible to set up a simulation 

and compile it once, then change the configuration by just modifying the *.ini file. NS-

2 and NS-3 also rely on C++ for simulation behavior [11]. But in NS-2 oTcl scripts are 

used to control the simulation and specify other aspects such as topology. oTcl scripting 

was preferred to reduce recompilations and save time in the past but that design choice 

influences simulation performance negatively [40]. That is why the oTcl scripts left their 

places to python scripts in NS-3 [12].  

OMNeT++ provides a much more integrable, reusable and flexible architecture with 

less complexity when compared to the other open-source network simulation tools like NS-

2 and NS-3 [12], [13]. It is open-source and free for non-profit users instead of OPNET 

[37]. It is constantly getting updates, properly documented and has a big community that is 

growing and contributing. It has a very good and easier to follow graphical interface when 

compared to NS-2, NS-3 and OPNET [16]. Due to all these reasons, OMNeT++ is 

preferred over other network simulation tools. 

3.2. Other AFDX Simulation Models 

Over the years, AFDX has been simulated with different tools such as NS-2, 

OPNET, Net2Plan, MATLAB/Simulink, QNAP2 (Queueing Network Analysis Package) 

and OMNeT++ in a multitude of works. In these previous works, AFDX is modeled with 

different tools by mimicking essential behaviors with the blocks at hand. Some essential 

metrics are recorded and results are compared with either realistic or theoretical results in 

order to authenticate the simulations.  

The simulation in [41] is one of the oldest among all examples. In this work, QNAP2 

which is a modelling environment that facilitates building, solving and handling queueing 

problems [42], is used to model an AFDX network. To simulate the behavior of different 

AFDX blocks, specialized queues are used and simulation results are validated by 

comparing them with the results calculated with Network Calculus [43]. Although it is 

theoretically verified, the simulation is run with only one topology which has only one 

switch.  
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There are several models that are established with NS-2 such as [9] and [8]. In these 

works, atomic AFDX behaviors are modeled with built-in ethernet elements. In [9], a 

network with two switches and several end-systems is investigated in terms of end-to-end 

delay and jitter where similar experiments are diversified with data flows of various 

priorities under different scheduling strategies in [8]. 

One of the most popular network simulators, OPNET is used to simulate AFDX as 

well. AFDX is modeled by using built-in OPNET blocks in [10], [27] and [25]. A topology 

including eight switches and nine end-systems which has been examined before in another 

paper [10]. In a similar fashion, the network in the [27] is also selected from a previous 

work that was examining a real-life scenario. In both works, the simulation is verified by 

comparing results with mentioned previous works. On the other hand, in [25], the effect of 

redundancy is examined by comparing a non-redundant network with a dual redundant 

one.  

The work in [31] is unusual than the other works because real-time data is used to 

feed the simulation in that network. The main purpose of the proposed model is to verify 

some aircraft system functions without constructing an expensive AFDX network in 

hardware. For that purpose, an AFDX model is established in MATLAB/Simulink with 

modified built-in blocks and with the help of some additional physical tools, an AFDX 

network that is composed of real and simulated elements is constructed. Simulation is 

verified and benchmarked with three different scenarios. 

In another paper [44], AFDX performance is evaluated over a model created in an 

open-source tool called Net2Plan. Net2Plan is used to plan and optimize networks and 

besides obtaining actual values with simulation, it is able to calculate worst case end-to-

end latencies via Network calculus and trajectory approach [45]. In this paper, experiment 

is conducted for a complex network with eight switches and more than 70 LRUs. 

Finally, OMNeT++ is used several times to simulate AFDX before OMNeT++ 

model [19] is published. Both [16] and [13] have benefited from the ease of using 

OMNeT++ INET model [17]. Due to the fact that AFDX and TTEthernet have a lot in 

common, the TTEthernet library of INET is used to create an AFDX simulation in [16] and 

this model is verified by comparing the results with previous works in [46] and [47]. On 
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the other hand, in [13] the AFDX model that is already verified and presented in [16] is 

used and simulation results are investigated. 

3.3. OMNeT++ AFDX Simulations 

AFDX is modeled with an OMNeT++-like program before [19] and improved in 

another thesis for the sake of another work [48]. Before discussing the contributions and 

development carried out over this model in the scope of this thesis, the original model and 

previous works will be explained in this chapter. 

3.3.1. OMNEST Model 

The first AFDX model was built by OMNEST team for one of their clients [18]. 

OMNEST is the commercial version of OMNET++ and it is open source as well. Apart 

from licensing, support and some other small features, they are nearly identical and can be 

used as substitutes for each other. When building this model, the OMNEST team 

considered using the blocks/components that are already available such as INET [17] and 

queueinglib [49]. Since Ethernet needs of AFDX are pretty simple, using INET would 

bring out a lot of questions that they are not interested in answering. To avoid additional 

complexity and possible performance issues, Ethernet and other higher protocol layers 

such as IP, TCP and UDP are not implemented. On the other hand, queueinglib was 

highly beneficial and it is used to model different functionalities in AFDX model. These 

uses are investigated in the following paragraphs. 

 

Figure 3.1 Example AFDX Network 
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An example AFDX network setup is given in Figure 3.1. Two main components of 

an AFDX network i.e., end-system and switch, are modeled with compound modules. The 

end-system module is responsible for message creation, BAG regulation, queueing and 

multiplexing, redundancy management and integrity checking. Whereas the switch module 

is responsible for frame filtering, traffic policing, queueing (at the transmitting end only), 

priority classifying, scheduling and routing. The OMNEST team mentioned some future 

work in the project summary [18]. In short, even though there are some unimplemented 

features in this model, it is highly comprehensive and useful.  

In an OMNeT++ network, messages floating between blocks can either be in raw 

types such as cMessage or cPacket or complex types that are derived from them, such 

as Job. Both cMessage and cPacket contains variables that a network message 

expected to have such as, length, ID, creation time, priority, classification, type etc. where 

additionally cPacket messages consume time when transmitting through Ethernet lines.  

In this OMNEST AFDX Model, queueinglib is used as an auxiliary library. 

Today, queueinglib is under version control but the version that is used in OMNEST 

AFDX model was an intermediate release and thus, not published. In the queueinglib 

version used in this model, all blocks send and receive messages in type Job that is 

derived from the raw type cPacket. 

 

Figure 3.2 AFDX Message Format 

In OMNEST AFDX model, a message type called AFDXMessage (Figure 3.2) that 

is derived from Job of queueinglib is used. This message type contains AFDX 

specific fields such as source MAC address fields (network ID, Equipment ID, interface 

ID), destination MAC address fields (virtual link ID), UDP Structure fields (source and 
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destination port numbers), IP Structure fields (partition ID) and sequence number that are 

described in Table 2.1 

3.3.1.1 End-System 

 

Figure 3.3 End-System Compound Module 

End-system compound module is connected to the Ethernet line by two bidirectional 

ports, one is for network A and the other is for network B. It can be logically divided into 

two: receiving end and transmitting end (Figure 3.3). Transmitting end involves message 

creation, scheduling, redundancy management and transmitting MAC operations, where 

receiving end handles integrity and redundancy checking and receiving MAC operations.  

The performance metrics that are explained in 2.1.3.1 or in other words, delaying 

elements in an end-system, are modeled in this model as well, but not entirely. 

Configuration latency (2.9) and technological latency (2.8) that are forming the 

transmission latency (2.7) are only partially handled. In terms of configuration latency, the 

jitter that emerges due to the scheduling (2.6) is introduced by txQueue-MAC blocks 

(3.3.1.1.1.4). But since BAG regulation (3.3.1.1.1.2) is missing in this model, 

configuration latency is inadequate. In terms of technological latency, the constant part of 

the equation that denotes the load-free hardware-dependent technological delay is not 

handled. Finally, the contention/transmission delay that is caused by previously sent 
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frames is simulated by the transmission line itself (that mimics ethernet cable) with 

combination of txQueue-MAC blocks (3.3.1.1.1.4).  

Generally, the blocks in this end-system model are not VL-aware because this model 

doesn’t support multiple traffic sources. Hence, only one VL type is transmitted through an 

end-system in each run.  

3.3.1.1.1 Transmitting End 

3.3.1.1.1.1 Traffic Source 

trafficSource block is inherited from the Source block of the 

queueinglib library. A Source block is responsible for creating Jobs by the 

specified rate, with pre-defined inter-arrival times and until a certain time or number of 

events is reached. These specified values are configuration parameters of this block (Table 

3.1) and they must be specified either in *.ned or *.ini files. Note that these 

parameters are generic parameters for traffic specification. A trafficSource creates 

messages just like Source does but its output is AFDXMessage instead of Job. Thus in 

addition to the values listed in Table 3.1, it needs AFDX frame fields (Table 2.1) to be 

defined in *.ini or *.ned file in order to create the message. trafficSource 

doesn’t discriminate against VL-IDs. It creates and schedules new AFDXMessages with 

the values specified in configuration in a superficial order.  

Table 3.1 Traffic Source Configuration Parameters 

Parameters Definition 

interArrivalTime(s) Time difference between successive messages 

startTime(s) Time that indicates the creation of the first message 

stopTime(s) Time that indicates the creation of the last message 

jobCounter Maximum number of messages to be created 

 

Figure 3.4 shows the Source.ned file parameters section that contains 

parameter definitions with default values. Figure 3.5 shows the actual value assignments of 

those configuration parameters consisting of AFDXMessage fields (Figure 3.2) and Job 

fields i.e., jobPriority and jobKind.  
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Figure 3.4 Configuration Parameters in Source ned File 

 

Figure 3.5 Configuration Parameters and AFDX Message Fields in *.ini File 

3.3.1.1.1.2 Regulator Logic 

RegulatorLogic is a block that is designed specifically for the AFDX Model. It 

should be responsible for introducing BAG into frame sequences of each VL-ID 

separately. But it is not implemented.  

If this block would be implemented, the first part of the configuration latency (2.9) 

that arises from the BAG regulation, should be introduced by this block. Additionally, it 

might be needed to be VL-aware because BAG values are VL specific and shall be 

introduced on a per VL-basis.  

3.3.1.1.1.3 Redundancy Controller 

This block has two duties in terms of redundancy management. First duty is to 

increment the sequence number and returns to one when it reaches up to 255. Second duty 
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is to duplicate of each message to be able to send them to both networks A and B. 

Redundancy shall be enabled/disabled by the configuration[4]. Thus, this block has some 

configuration parameters (Table 3.2.) to satisfy that requirement. 

RedundancyController is not VL-aware and does not introduce any delay.  

Table 3.2 Redundancy Controller Configuration Parameters 

Parameters Definition 

copyToLinkA (bool) Enables network A 

copyToLinkB (bool) Enables network B 

 

3.3.1.1.1.4 Tx Queue and MAC 

txQueue is an object of type PassiveQueue from the queueinglib. When a 

PassiveQueue receives a message, it looks for an idle Server among its connections 

to direct the message. If one or many servers are available, it selects one and sends the 

received message. If there aren’t any selectable servers i.e., all servers are busy with 

transmitting previous messages, the  received message gets pushed to the queue. If a 

connected server makes a pull request before a new message reception, the pushed 

message gets popped and sent to the owner of the request.  

 MAC is inherited from the Server of the queueinglib library. Due to the 

inheritance, MAC can interact with PassiveQueue objects as a Server. In addition to 

that, it handles the interaction with the physical layer. When an “idle” server receives a 

message from the end-system input, it changes its  state from “idle” to “reserved”, it sends 

the message through the Ethernet output port to the physical line if the line is not busy, it 

waits for an additional IFG time, then changes its state to “idle” again but if the previous 

message transmission was not concluded yet, simulation stops with an error. Since a server 

changes its state to “reserved” from the beginning of a transmission until it is concluded 

successfully, this shouldn’t happen in the best practice. If the line is busy, messages are 

kept in the queue until it becomes available again and thus, a frame-

transmission/contention delay will be introduced. This delay is also explained in chapter 

2.1.3.1.2 as a part of the technological latency equation (2.8). 

These two blocks are working together to fulfil the multiplexing-part of the 

scheduling mission of an end-system. VL-IDs are not important for txQueue-MAC pair 

because at this point, all frames will be in tandem and must be treated equally. If the ability 
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of adding multiple traffic sources was implemented for the cases similar to the one shown 

in the Figure 2.4, incoming parallel frames would be queued by and sent over one by one, 

by the txQueue-MAC pair but that is also not implemented.  

3.3.1.1.2 Receiving End 

3.3.1.1.2.1 MAC 

The duties of the MAC block are much simpler in the receiving-end. If a message is 

received from the Ethernet input, it gets directed to the end-system by the related port 

directly. This block doesn’t introduce any delay and is not VL-aware. 

3.3.1.1.2.2 Integrity Checker 

In an AFDX end-system, integrity check shall be done by using the Equation (2.4). 

The integrityChecker in this simulation, examines the sequence number, compares 

the SN of the received frame with zero, (𝑃𝑆𝑁 + 1) and (𝑃𝑆𝑁 + 2) and decides whether it 

is appropriate or not. This block should be VL-aware but it is not. This may cause a 

mismatch when checking previous sequence numbers. This block doesn’t introduce any 

delay.  

3.3.1.1.2.3 Redundancy Checker 

This block is responsible for eliminating redundant frames. It has two input ports: 

one from network A and one from network B. Sequence numbers of successive frames 

must be increasing all the time. So, if two successive frames have the same sequence 

numbers, one of them must be the redundant copy and thus it is dropped. This is how the 

redundancyChecker eliminates redundant frames. In addition to that, there is a time 

control with “skewMax” constant. If sequence number is not incremented as expected but 

the time difference between the current and the last frames is larger than the “skewMax”, 

then this frame is not treated as a redundant frame and sent over. This block should be VL-

aware but it is not. This may cause a mismatch when checking the time difference between 

successive frames. This block doesn’t introduce any delay. 
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3.3.1.2 Switch 

 

Figure 3.6 Switch Compound Module – Open Form 

The Switch module is composed of two main components (Figure 3.6): 

SwitchPort and SwitchFabric. There is one SwitchPort block for each actual 

port where there can be up to noOfPorts amounts of ports but a typical AFDX switch is 

expected to have 24 ports. To explain the switch internal structure better, Figure 3.7 is 

added.  

In the switch module of OMNEST AFDX model, the only behavior that VL-

awareness is necessary is traffic policing but it is not implemented. Thus, none of the 

blocks in this module is VL-aware. txQueue-MAC blocks are expected to insert queueing 

delay. But other latencies mentioned in chapter 2.1.4.1 are not modeled in this version such 

as hardware latency and inter-frame gap.  
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Figure 3.7 Switch Compound Module – Open Form 

3.3.1.2.1 Switch Port 

 

Figure 3.8 Switch Port Compound Module – Open Form 

SwitchPort compound module is connected to the Ethernet line and 

SwitchFabric by bidirectional ports (Figure 3.7). Switch port handles the interactions 

with the physical layer, performs frame filtering and traffic policing (Figure 3.8). 

3.3.1.2.1.1 TxQueue and mac 

These two blocks are the same as the ones mentioned in the end-system (3.3.1.1.1).  
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3.3.1.2.1.2 Frame Filter 

This block is expected to check frames’ according to the chapter 2.1.4 to avoid 

invalid frames to consume credit in later blocks. But it is not implemented in the OMNEST 

AFDX Model. Hence this block transparently directs the received frames.  

3.3.1.2.1.3 Traffic Policy 

This block is expected to apply the token bucket algorithm according to chapter 2.1.4 

before directing the frames. But it is not implemented in the OMNEST AFDX Model. 

Hence this block transparently directs the received frames.  

3.3.1.2.2 Switch Fabric 

 

Figure 3.9 Switch Fabric Compound Module – Open Form 

SwitchFabric compound module has noOfPort amount of input and output 

ports which are connected to each SwitchPort block. This block is responsible for 

priority-based frame classification, scheduling and VL-routing. 

3.3.1.2.2.1 Priority Classifier 

priorityClassifier is a Classifier from the queueinglib. It 

evaluates incoming messages by considering the assigned “priority” values and directs 

them to the appropriate output.  

3.3.1.2.2.2 Queues and Scheduler 

scheduler is a Server from the queueinglib where lowQueue and 

highQueue are PassiveQueues. This server-passive queue pair has the same behavior 

and responsibility as the ones in the End-System (3.3.1.1.1.4) and Switch Port (3.3.1.2.1.1) 
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3.3.1.2.2.3 Router 

This block is a VLRouter. It is expected to read the VL-table and route messages 

by considering it to the appropriate ports. But it is partially implemented. It doesn’t read a 

configuration table but there is a tiny algorithm that mimics a configuration table and it 

routes the messages by considering it. 

3.3.2. Improvements Over OMNEST Model 

OMNEST AFDX model provides a good insight but it has inadequacies. Within the 

design and evaluation of SQDSR, a new real-time ethernet protocol, this AFDX model is 

converted into a more realistic one and used for a comparative performance analysis [48]. 

The improvements made within the scope of the mentioned thesis will be summarized in 

this chapter.  

3.3.2.1 Technological Latencies 

Technological latencies are not modeled in the original model although they are quite 

important when calculating end-system and switch latencies and they contribute to the 

determinism of the network [4]. In [48], three queueinglib delay blocks are added to 

simulate technological latency in transmitting end-system (2.1.3.1.2), receiving end-system 

(2.1.3.1.3) and switch (2.1.4.1). Actual delay values are configuration parameters and can 

be modified by *.ini and/or *.ned files.  

3.3.2.2 Multiple Traffic Source Capability 

In a real AFDX network it is very likely for an end-system to have multiple traffic 

sources. In fact, a multiplexing behavior is incorporated into the nature of AFDX for such 

a case. Although it was possible to add multiple sources in the previous model, it requires 

change in the code and thus wasn’t a configuration parameter. With the changes in [48], 

the trafficSource object in the end-system compound module is transformed into an 

array with a configurable size. Thus, both single and multiple traffic sources became 

available and configurable by the *.ini/*.ned file but this contribution comes with a 

necessity of VL awareness for the blocks that need to distinguish VL-IDs. Due to multiple 

sources, messages with different VL-IDs can be generated in the same end-system and in 

some cases such as the time difference between the last frame received matters, each 

message of different VL-ID must be handled separately. The blocks that are affected by 

this change are RegulatorLogic, redundancyChecker, 

RedundancyController and TrafficPolicy.  
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3.3.2.3 BAG Regulation 

Although one of the main features of AFDX is BAG regulation as mentioned in 

chapter 2.1.2, it is not implemented in the original model. In [48], the 

handleMessage(..) function that is called whenever a message is received by the 

RegulatorLogic block is modified and as a result this block gained ability to control 

the flow by considering BAG values stated in the *.ini/*.ned file. When this 

modification is mixed with the one in chapter 3.3.2.2, a VL-awareness need arises. 

Because to control the flow, this block keeps the transmission time of previous frames of 

each VL and won’t let new ones to go before at least a BAG time interval is passed.  

3.3.2.4 Traffic Policing 

AFDX switches, control the bandwidth and shape the traffic with a token bucket 

algorithm hence traffic policing is very important. But traffic policing functionality is 

missing in the very first version of AFDX model. In the thesis mentioned [48], the token 

bucket algorithm is implemented. For that sake, the handleMessage(..) function is 

modified. In the new model, each time a new message is received, message reception time 

is saved, the time difference between the previous message reception is calculated, already 

possessed, obtained and spent credits are calculated and a decision is made whether to drop 

the frame or let it go. Due to the fact that having multiple sources is available now 

(Chapter 3.3.2.2) all these values are kept in per-VL variables.  

3.3.2.5 VL Router 

Routing packets according to a routing/VL table was the expected behavior and this 

was listed as a “to do” in the OMNEST website [18]. As a part of the work in [48], routing 

tables that used to match VLIDs with switch port numbers are added for each switch to the 

model and VLRouter modified accordingly. With this change, it is possible to specify the 

message paths without changing the code manually. An example VL-table can be seen in 

Figure 3.10. 
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Figure 3.10 Routing Table Example 

3.3.2.6 Other Small Changes 

Aside from the ones listed below, there are some other small changes. For example, a 

new parameter called frameHeaderLength is added. In the old model, the variable 

packetLength was used to set the length of a message. With this new parameter, 

summation of both is used to set the message length. This modification enables to set 

payload length apart from the header length. Additionally, BAG value is added among 

message parameters and can be set via *.ini/*.ned file. Moreover, as a result of the 

change mentioned in Chapter 3.3.2.2, redundancyChecker and 

RedundancyController classes became VL-aware. Because they both need to keep 

track of sequence numbers and since there are multiple sources, keeping previous sequence 

numbers in a single variable is not enough. In the scope of this change, the variables that 

are used to keep previous sequence numbers are changed into arrays.  

For the sake of the work in [48], a new class called NetworkStatistics is 

added. It is used to keep necessary measurements and it is called in several places 

alongside the project such as PassiveQueue, Sink and Source classes in the 

queueinglib.  
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4. AFDX SIMULATION MODEL 

One of the main contributions of this thesis is to develop a better, more realistic, 

more easily configurable and up to date OMNeT++ AFDX simulation model. The latest 

AFDX simulation model at hand is developed in [48]. However, since the main concern of 

that thesis wasn’t AFDX and due to the limited time, there were some deficiencies in the 

represented mode. In addition to that, OMNeT++ and its libraries such as queueinglib 

have faced major updates over time. Therefore, some obligatory and reformative 

modifications are made to the model at hand. 

4.1. New Network Statistics Class 

OMNeT++ environment provides users with some functions to keep records of 

interested metrics. Such as the record(double value) function from an internal 

library coutvector. With this function, it is possible to record all of the values that a 

certain variable takes during the simulation with respect to simulation time. After 

simulation is finished, it is possible to plot recorded values within the IDE or export in 

*.csv format. 

Changes in the scope of [48], bring to AFDX model a new singleton pattern[50] class 

called NetworkStatistics. This class has some specific functions such as 

CollectStatisticsLatency(..) or CountGeneratedPackets(..) which 

calculates certain statistics by collecting certain values. Although those functions are useful 

for that work, they are quite application specific.  

For the interests of this thesis, NetworkStatistics is renewed. The purpose of 

the modifications in this class is to make record keeping much more generic. Simply, there 

are two main functions: one is to create a new unique record keeper 

(createRecord(recordType, key)) and the other is to add a new value to the 

record vector in it (record(recordType, key, value2Record)). These 

functions must be called with an enum that defines the record type and a unique key. 

Record types are defined by considering the main metrics to be recorded and given in 

Figure 4.1. Values with the same unique key and record type will be collected in the same 

record vector. These two functions use types and functions of the built-in library 

coutvector whose example usage is demonstrated in Figure 4.2. 
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Figure 4.1 Record Types in NetworkStatistics Class 

 

Figure 4.2 Call Examples for NetworkStatistics Functions 

4.2. New Queueing Library 

On April 13th, 2022, OMNeT++ 6.0 became available [51]. The queueinglib 

used in the AFDX Model was so old that it wasn’t even possible to build the code in the 

newly released version. Partially due to that difficulty and also due to the fact that a much 

never version of queueinglib was released with the update 6.0 [52], the 

queueinglib used in the AFDX model is replaced with the new one.  

In the first AFDX model (3.3.1) queueinglib was included in the project under a 

subfolder inside the project itself, not handled separately. This the case for the work in [48] 

as well. However, it was an external library that is handled and updated by another party. 

Thus, in the latest model, queueinglib is added to the workspace as a separate library 

project and referenced in the AFDX project. By separating two projects, AFDX project 

becomes more resistant to changes in the queueinglib.  
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In previous AFDX models, queueinglib was seen as a part of the project and 

some changes are made in this external library. For example, application specific record 

calls are added manually. Since a logical separation is intended in the new model, those 

changes in the queueinglib are removed. Instead, a recommended method is used. In 

the samples library provided by OMNeT++, there is a project called 

queueinglib_ext[53].In this sample project, how to create new classes by 

extending queueinglib is explained. With this method, it is not only possible to use the 

functionality of the current functions, but also extend that functionality. For the interests of 

this thesis, it is needed to extend Source and Sink classes to add 

NetworkStatistics function calls. Hence Source_ext and Sink_ext are 

created. There is one exception to this method. There are so many moments needed to be 

recorded in the PassiveQueue class of the queueinglib. That’s why, instead of 

extending it, PassiveQueue is copied from the queueinglib and modified. This can 

be fixed in the future.  

As described in chapter 3.3.1, in the old queueinglib version that is used in the 

old AFDX model, Jobs that are derived from raw type cPacket were floating through 

blocks. But unfortunately, in the latest version the parent class is changed from cPacket 

to cMessage (Figure 4.3). cPacket was preferable because it consumes time 

according to the message length when transmitting through Ethernet line unlike 

cMessage. To solve this problem quickly, Job is changed back to the way it was and 

derived from cPacket. This is the only change that is made over the external 

queueinglib library. Although it is intended to keep the original queueinglib 

untouched, this change was inevitable with current knowledge. This problem could be 

solved in the future. 
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Figure 4.3 Old (Top) and Latest (Bottom) Job Classes 

4.3. Changes In integrity Checker 

The expected behavior from an AFDX integrity checker is to control PSN according 

to the equation (2.4). Although in the AFDX model that is used in [48], Integrity 

Checker checks only whether the SN is smaller than 255 or bigger than zero, it is fixed 

in the scope of this thesis and PSN check is added. 

4.4. Changes In Traffic Policy 

In the previous version of the AFDX model, for the sake of the work in [48], some 

specific VL-IDs were specially handled in this block. That code blocks are removed. 

Additionally, rho and sigma values that are explained in chapter 2.1.4.1 were calculated 

over and over at each term which is unnecessary and inefficient. Thus, rho and sigma are 

added as configuration parameters and their calculations are retained to the user in the 

newest version. Finally, when the token bucket algorithm results in a credit shortage, the 

previous version of the simulation was stopped with an error. It is modified to take record 

instead of stopping.  

4.5. A New Connection Type: Cable 

When creating a simulation with OMNeT++, it is possible to connect blocks by using 

regular channel or DatarateChannel. The difference is that simulation time progresses 



33 

 

when cPackets are transmitted through DatarateChannel. In other words, 

DatarateChannel can be considered as a realistic connection where the regular one is 

a more symbolic connection with infinite connection speed. Almost all the connections 

within the end-system and the ones within the switch are regular. On the other hand, the 

ones that model real, physical connections such as end-system – switch connections are 

DatarateChannels. 

The built-in type DatarateChannel has several parameters such as delay (in 

sec) that symbolizes the propagation delay and data rate (in bps) which is the bus speed. 

Propagation delay is calculated with cable length and wave propagation speed (2𝑒8 m/s). It 

is not very convenient to expect a propagation speed from the user. Thus, in this new 

connection type that extends DatarateChannel (Figure 4.4), cable length is 

included as a parameter and propagation delay is calculated internally. A similar approach 

was also followed in INET type EtherLink [54]. 

 

Figure 4.4 New Connection Type Cable 

4.6. Changes In Message Types and Source Structure 

By considering the industry needs, a major modification is made. In old versions, 

there was a trafficSource and it was creating AFDXMessages. But in order to be 

able to run a more realistic scenario, trafficSource is divided into a 

messageSource and an AFDXMarshall and instead of the regular channel these two 

blocks are connected with the new connection type Cable that is described in chapter 4.5 

. The old and new structures are demonstrated in Figure 4.5. 



34 

 

 

Figure 4.5 Old (Top) and Latest (Bottom) Source Structures  

As a result of these changes, messageSource became a more generic message 

source that extends queueinglib type Source. It sends a message of type called 

SubsystemMessage which does not have any AFDX specific fields and its length is set 

only by considering payload length. On the other hand, AFDXMessage contains all the 

AFDX specific fields and its length is set by considering payload length plus other AFDX 

related overheads. For a better understanding, two message fields are shown in Figure 4.6.  
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Figure 4.6 Subsystem (Top) and AFDX (Bottom) Message 

After a SubsystemMessage is created and sent from messageSource, 

AFDXMarshall converts SubsystemMessage into a AFDXMessage and fills it by 

using configuration parameters set from *.ini/*.ned file. By these changes, 

messageSource and cable elements together can mimic a real partition, for instance a 

sensor sending data from RS485 in any data rate such as 115200 bps.  

In addition to these changes, rho, sigma and three other simtime_t parameters are 

added. Rho and sigma are added due to the changes in TrafficPolicy and 

simtime_t parameters are added for record purposes. 

4.7. A New Type: ConnDef and New Network Definition 

Aside from some inadequacies, a major motive behind these improvements is to 

make this simulation more configurable and make it useful for those who are not familiar 

with the OMNeT++environment. In this regard, many hard coded parameters converted to 

configuration parameters and hence almost every characteristic of a network became 
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configurable. But here is one characteristic that is really hard to alter without changing the 

code itself, network topology. Network topology is defined with connections between end-

systems and switches. In an AFDX model, this is defined by the connections section 

of the network *.ned file. In short, to modify the topology, *.ned file of the network 

must be configured. Although OMNeT++ is a really flexible environment and it allows 

certain parameters of *.ned file to be configured via *.ini file, it is not as easy to alter 

connections through in the same way. This chapter explains the key enhancement that 

enables network topology to be configurable.  

A new type called ConnDef is added which is an acronym for “Connection 

Definition”. This type is used to define a connection between blocks therefore it contains 

parameters to define each end of the connection. There can only be two ends for a 

connection and the blocks at each end can either be a switch or end-system. As a bonus, 

cable length of the connection is also added among other fields. ConnDef is demonstrated 

in Figure 4.7. 

 

Figure 4.7 A New Type: ConnDef 

In order to make network topology configurable, the *.ned file that defines the 

AFDX network is modified accordingly. Two new configuration parameters are added for 

the number of switches and number end-systems. End-systems and Switches are converted 

into arrays of variable sizes. For each end-system – Switch connection, a ConnDef block 

is added, which is also an array with size of [number of switches + number of end-systems 

- 1]. When defining the connections, parameters of ConnDef are used which is the actual 

tricky part. Finally, all the configuration parameters mentioned and fields of ConnDefs 

are filled from *.ini file. By this way, network topology became configurable by *.ini 

file only. The resulting network is named as “Auto Network” and described with 

AutoNetwork.ned file. It can be reviewed from the GitHub repository [20]. 
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Not to forget, to make the simulation run properly, routing tables shall also be filled 

by considering the topology. Although it is easier than changing the code and recompiling 

it every time, there are still some works to do for the user such as creating an appropriate 

*.ini file and routing tables. To ease this procedure as well, a new network configuration 

tool named as ANCAT is proposed in this thesis. ANCAT will be explained in upcoming 

chapters is proposed. 

4.7.1. Other Small Changes 

Major improvements are listed above. Here, remaining smaller changes are 

summarized. 

1. The per-VL queue inside the RegulatorLogic was unlimited. By considering 

the industry needs, this queue became upper-bounded.  

2. After the latest update, unconnected ends started to give compile-time errors. 

There was a loose end in the connections of priorityClassifier in the 

SwitchFabric. The Classifier block of the queueinglib has multiple 

ports such as inputs (in[]) for entering packets, outputs (out[]) for classified 

output packets and a rest output for the packets there are not able to be 

classified. priorityClassifier’s inputs were connected to each 

SwitchPort and outputs were connected to lowQueue and highQueue. 

Which remains the port rest unconnected. To solve the issue, 

allowunconnected keyword is added to the connections section of 

SwitchFabric.ned.  

3. VLRouter.cc class is used to contain a code section that drops certain kinds of 

messages with a certain possibility. This was added for a specific application 

about the work in [48] and it is removed since there is not a generic approach. 

Addition to that, code is slightly optimized and the routing table name became a 

configuration parameter.  

4. redundancyChecker is modified by considering code readability.  

5. Some redundant parameters and code blocks are removed all over the project and 

comments are added.  

6. Deprecated functions are either removed or modified.  

7. To keep record of a pre-defined set of metrics, NetworkStatistics function 

calls are added all over the project. Such as, MAC (For ES scheduling time and 
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switch entry/exit moments), PassiveQueue (For switch queueing metrics), 

Source_ext (For creation times), RedundancyController and 

RegulatorLogic (For BAG latency)  

 

5. PROPOSED NETWORK CONFIGURATION AND ANALYSIS 

TOOL FOR AFDX (ANCAT) 

In this thesis, a new network configuration and analysis tool for AFDX is proposed. 

A strong motivation of this thesis is to present an easily configurable simulation. The 

modifications made in the AFDX simulation model makes it easier to configure the 

simulation by using *.ini file. But changing *.ini file still requires some OMNeT++ 

experience. Reviewing simulation results also requires familiarity to OMNeT++ 

environment similar to the input configuration.  

To save the user from that burden, a python-based tool ANCAT is proposed. It 

simply takes simulation configuration in a generic format such as *.xlsx, runs the 

simulation from the command shell and creates a report by processing simulation results. 

All users need to do is to prepare an “input.xlsx” file and run the batch file after specifying 

some important paths such as the location of the AFDX Simulation or OMNeT++ files.  

 ANCAT is composed of one batch file named “ANCAT_run.bat” and three python 

scripts that are called “PreProcessor.py”, “SimProcessor.py” and “PostProcessor.py” 

(Figure 5.1).  

 

Figure 5.1 ANCAT components 

The batch file named as ANCAT_run.bat is responsible for calling python scripts by 

specifying required options/paths. PreProcessor reads the input file then creates *.ini file 
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and routing table(s). Outputs of PreProcessor are created under the AFDX simulation 

folders. SimProcessor runs the simulation via command line interface and recording files 

(*.vci, *.vec) are created as a result. Finally, PostProcessor creates a report by using 

recording files. This process is demonstrated with a block diagram in Figure 5.2. 

 

 

Figure 5.2 ANCAT Logical Block Diagram  

5.1. PreProcessor and Input File 

The AutoNetwork.ini file is the backbone of the simulation. PreProcessor creates the 

*.ini file and the routing table(s) and put them under the specified folder which is 

expected to be the “simulations” folder in the AFDX Simulation (Figure 5.3). Number of 

routing tables depends on the number of switches in the network configuration and its 

format is demonstrated in Figure 3.10.  
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Figure 5.3 AFDX Model “simulations” Folder 

 Preprocessor fills the *.ini file partially with the information provided in the input 

configuration file, partially with some constant data. For example, some lines are added to 

enable/disable certain records or indicate the network name. In addition, there are some 

variables that don’t affect the simulation behavior but needed to be specified. Lines for 

those variables are also created by the Preprocessor itself. The constant lines of both types 

that are created for an example *.ini files are demonstrated in Figure 5.4 and Figure 5.5. 

 

Figure 5.4 An Example Ini File – General Network and Record Settings Section 

 

Figure 5.5 An Example Ini File – Simulation Constants 
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For the other lines, the input *.xlsx file that is composed of four pages is used. 

The detail of each page is summarized below: 

1. Instructions: Includes summarized explanations about each page of the input file 

and an example table demonstrating page 4 (Message Set). 

2. Topology: The information contained in this page are used to define the lines 

about the connections between end-systems and switches in the *.ini file. Each 

end of the connections in the network shall be defined with cable lengths here. In 

addition to that, each end is supposed to be named according to their types such 

as “ES<n>” for end-systems and “SW<n>” for switches where “n” indicates the 

index and cable length shall be stated with a unit such as “m”. An example 

topology page can be seen in Figure 5.6 and resulting *.ini file section is 

demonstrated in Figure 5.7. 

 

Figure 5.6 ANCAT Input File – Topology Page  

  

Figure 5.7 An Example Ini File – Connection Definitions Section 

3. Settings: This page contains general settings and constants such as, technological 

delays, ethernet speed, skew max and the size of the per-VL queue in 

RegulatorLogic. Figure 5.8 shows a setting page of an example input file 

and Figure 5.9 demonstrates the resulting *.ini file lines.  
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Figure 5.8 ANCAT Input File – Settings Page  

 

Figure 5.9 An Example Ini File – AFDX General Settings Section 

4. Message Set: This is the most crowded page and contains an entry for each 

intended message source. By using the values stated in this page, the newly 

created SubsystemMessages and AFDXMessages are filled with. Hence this 

page includes detailed AFDX message information such as VL-ID, Partition ID, 

BAG, payload length, rho and sigma. In addition to those, some message source 

specific information is provided here. Simulation metrics such as start and stop 

times and cable length between messageSource and AFDXMarshall can 

be given as examples. Moreover, the information about source and destination 

end systems (Source ES and Destination ES) are combined with the ones in the 

Topology page. With this data, graphs are generated and the shortest paths 

between end-systems are obtained by using the Dijkstra Algorithm [55] to create 

VL-Routing tables. An example Message Set page is demonstrated in Figure 

5.10. The resulting *.ini file lines are more than one page long. A small 

portion of them are shown in Figure 5.11. 
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Figure 5.10 ANCAT Input File – Message Set Page 

 

Figure 5.11 An Example Ini File –AFDX Message Settings Section (Cropped) 

5.2. Python Script Options and Batch File 

The three python scripts require some paths or file names to be given as inputs. 

These paths and file names are used in the scripts to get the input files or to put the outputs 

in. Detailed information about these options is reachable to the user by “-h” command line 

option which is demonstrated in Figure 5.12, Figure 5.13 and Figure 5.14. As can be seen 

in the figures, PreProcessor needs input configuration file location and output file location 

to be specified. SimProcessor requires OMNeT++ installation and AFDX Simulation 

folders. Finally, PostProcessor needs the location of recording files, location and name for 

the output report. In addition to the listed options, it is possible to affect the behavior of the 
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script with specified flags which is not mandatory. Detailed information about these flags 

is demonstrated in Figure 5.14. 

 

Figure 5.12 PreProcessor Help (“-h”) Printout 

 

Figure 5.13 SimProcessor Help (“-h”) Printout 
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Figure 5.14 PostProcessor Help “-h” Printout 

These needed paths must be provided by the user but to make the process easier, 

place holders are used in the batch file. The first six lines of the batch file are added to get 

the required location of certain files that depend on the user settings and assign them to 

relevant place holders. After that, the batch file runs the python scripts with place holders. 

An example batch file content is shown in Figure 5.15. 

 
Figure 5.15 Example Batch File 

5.3.  Output 

After simulation is completed, data that is recorded during the session are saved in 

record files in *.vec and *.vci formats and put under the folder “results” automatically 

(Figure 5.16). Finally, ANCAT takes these record files, processes them and creates a 

report.  
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Figure 5.16 AFDX Model “results” Folder 

There are three types of records with respect to key values that they are grouped 

under, per-VL, per-Switch and combined. The keys for per-VL records are VL-IDs and the 

keys for the per-Switch records are switch indexes. But the combined ones are a little more 

complicated. There are some records that are needed to be grouped under more than one 

characteristic. For example, token-bucket credits being recorded only per-VL doesn’t tell 

much. Because this record will show combinations of credit values in all switches i.e., 

without separating each switch. Let’s say, there is a message from a certain VL-ID and it 

passes through more than one switches. Thus, token-bucket credit records will be taken 

each time this message enters a switch and these records will be combined together since 

this record doesn’t distinguish switches. Finally, the resulting record will be showing credit 

management of different switches in the same batch which is meaningless. Therefore, "the 

key for credit records is defined as a combination of VL-ID and Switch index. Another 

example is the end-to-end latency. There is one per-VL end-to-end latency record. But this 

record groups only the end-to-end latencies with respect to the VL-IDs. If one VL is 

directed to multiple destination end-systems, this record will be showing a combination of 

end-to-end latencies recorded in different destinations. Thus, another record is added to get 

end-to-end latencies of messages arriving at each destination end-system per VL-ID and to 

do that, the key is defined as a combination of VL-ID and destination end-system index.  

The information that is contained in the recording files can listed as below: 

Per-VL Records: 

- End-to-End Latency 
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- ES BAG Latency 

- ES Scheduling Latency 

- ES Total Latency 

- Switch Queueing Time  

- Dropped Frames in Queue 

- Dropped Frames Count at TrafficPolicy 

Per-Switch Records: 

- Switch Queueing Time  

- Switch Queueing Length  

Combined records: 

- Token-Bucket Credit (Per-VL + Per-Switch) 

- End-to-End Latency (Per-VL + Per-Receiver ES) 

- Switch Queueing Time ( Per-VL + Per-Switch) 

- Switch Queueing Time ( Per-SW + Per-Port) 

- Switch Queueing Time ( Per-SW + Per-Port + Per-VL) 

- Switch Queue Length ( Per-VL + Per-Switch) 

Output results report is composed of three main parts. “Overall Statistics”, “Per-

Switch Statistics” and “Per-VL Statistics”. Each statistics is explained in detail below. 

1. Overall Statistics: This part summarizes all results. The first page shows some 

general quantities such as “Overall Frame Count”, “Overall Simulation Time”, 

“Overall Dropped Frame Count” and “Overall Dropped Frame Percentage”. 

Aside from these, it gives maximum and mean values and confidence intervals 

(Chapter 2.1.7) of all the metrics that are recorded. The remaining pages of this 

section show overall metrics. For example, where per-VL metrics are plotted for 

all VL-IDs together per-switch metrics are plotted for all switches together.  

2. Per Switch Statistics: This part demonstrates records per-switch and some of the 

combined records separately for each switch 

3. Per VL Statistics: This part demonstrates records per-VL and some of the 

combined records separately for each VL-ID. 
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6. AFDX MODEL VERIFICATION TESTS 

Presented AFDX model is verified based on the experiment results and their 

theoretical results computed-on-paper to see if they comply with them or not. In each 

experiment, a network topology is designed and one or more scenarios are defined with 

message characteristics (BAG, period, message length, sigma, rho, etc.). To evaluate the 

simulation, certain aspects (time, packet count, etc.) are recorded at some points marked in 

Figure 6.1. The experiments are executed with the contributions of ANCAT. The metrics 

and plots that are mentioned in the following chapters are extracted from the records and 

interpreted by the tool itself.  

 

Figure 6.1 Record Points 

6.1. Experiment 1: Regulator BAG Enforcement 

 

Figure 6.2 Experiment 1 – Topology 

This experiment’s objective is to demonstrate the BAG regulation behavior of the 

model. There are two end-systems in this network. ES0 is sending messages while ES1 is 
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receiving them. Three scenarios will be held in this experiment and the main distinction 

among them is the relations between inter-arrival times and BAG values. The values that 

are given in Table 6.1 are simulation constants and Table 6.2 presents scenario specific 

parameters.  

Table 6.1 Experiment 1 – Simulation Constants 

Definition Value 

Start time of the simulation 0 s 

Stop time of the simulation 1 s 

End-system technological latency  32 us  

Switch technological latency 4 us 

 

Table 6.2 Experiment 1 – Scenario Characteristics 

Scenario # Of VLs Inter-arrival time (msec) BAG (msec) 

1 

1 

1 0.5 

2 0.5 1 

3 1±𝑟𝑎𝑛𝑑1(0,0.2) 1 

 

To assess the results, two aspects will be investigated. One is the time difference 

between end-system output (t1 in Figure 6.1) and message creation time (t0 in Figure 6.1) 

which is the total end-system latency. The other is the frequencies of specified ranges i.e., 

histograms for inter-arrival time values that are measured at message creation (t0 in Figure 

6.1) and after BAG regulation (t2 in Figure 6.1). Since there is only one VL in this 

experiment, messages will not be facing any jitter. Only delaying element will be the BAG 

regulation.  

To interpret the simulation results, latencies and inter-arrival times will be reviewed 

for each scenario. In terms of end-system latency, the difference “t1 – t0” i.e., total end-

system latency will be investigated and for the inter-arrival times, measured time 

differences at MessageSource (Δt0) and RegulatorLogic (Δt2) will either be 

represented textually or with tables.  

 
1 rand: random. It depicts a random number generator function that creates random numbers between 

0 and 0.2.  



50 

 

6.1.1. Scenario 1 

In this scenario, message creation period is bigger than the BAG. Therefore, it is 

expected to see that messages are leaving the end-system in the period that they are 

created. Regulator will not be introducing any additional delay. Thus, messages will not be 

facing BAG latency and total end-system latency will be equal to end-system technological 

latency.  

In fact, simulation results are conforming these expectations. At the end of the 

simulation, one thousand packets are created and then reached to the sink. When the 

difference between successive measurements of t0 and t2 values are calculated separately, 

they appeared to be equal as expected. Moreover, measured end-system latency values are 

equal to the technological latency as expected. Results can be seen in Table 6.3. 

Table 6.3 Time Difference Measurements  

 
Time differences (Δt, msec) Frame 

Count Expected Measured 

Creation (Δt0) 1 1 1000 

After BAG Regulation (Δt2) 1 1 1000 

Overall End-System Latency (t1 – t0) 32 (= tech. latency) 32 1000 

 

6.1.2. Scenario 2 

In this scenario, the message creation period is smaller than the BAG, one half of it 

to be exact (Period = BAG/2). Even though this approach does not comply with the best 

practice, it is used to assess the behavior of the simulation model in a data burst situation. 

It is expected to see that for every two messages created in each BAG slot, only one 

message will be sent. This will result in an overload and this experiment will last twice of 

the expected duration i.e., two seconds. 

At the end of this simulation, 2000 packets are created and then reached to the sink. 

Even though the difference between successive measurements of t0(at source) is 0.5 msec, 

the difference between successive t2(after BAG regulation) measurements is 1 msec, i.e., 

BAG, as expected. This difference is due to the BAG regulation; every one out of two 

messages are delayed until BAG in the RegulatorLogic block.  
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Table 6.4 Time Difference Measurements  

 
Time differences (Δt, msec) 

Frame Count 
Expected Measured 

Creation (Δt0) 0.5 msec 0.5 msec 2000 

After BAG Regulation (Δt2) 1 msec 1 msec 2000 

 

Figure 6.3 shows the total end-system latency and Figure 6.4 provides a closer look. 

Since the messages are created in a higher pace than the BAG, after the first message, each 

one must wait for the BAG regulator to allow them to go. While the first message is 

delayed by 32 µs (as technological latency), the succeeding messages are delayed more 

and more, cumulatively. This behavior can be seen in the Figure 6.3, the latest frame is 

facing with a latency of one second. As opposed to the Scenario 1; the simulation is 

concluded at t = 2s instead of t = 1s. 

 
Figure 6.3 Scenario 2 - Total End-System Latency – Close Up 

 
Figure 6.4 Scenario 2 - Total End-System Latency 

6.1.3. Scenario 3 

In this scenario, inter-arrival times of each message are varying around the BAG 

with a uniform random distribution. Accordingly, inter-arrival time will be both bigger and 

smaller than the BAG occasionally during the simulation. This may result in momentary 

overloads but the simulation is expected to be balanced and does not take additional time.  
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Figure 6.5 clearly indicates that messages are created in the expected paces. Whereas 

in the Figure 6.6, all frames are regulated according to the BAG and the smallest time 

difference between successive frames becomes 1 msec as expected. Remaining two tiny 

bins in Figure 6.6 show the frames with inter-arrival times higher than BAG.  

 

Figure 6.5 Scenario 3 – Inter-arrival Time Histogram at Creation 

 

Figure 6.6 Scenario 3 – Inter-Arrival Time Histogram After BAG Regulation 

Since there are frames faster than BAG, this topology presents a behavior similar to 

the one in Scenario 2 in the moments where inter-arrival times are smaller than the BAG. 

This attitude shows up in Figure 6.7 with increasing values of latency. On the other hand, 

the frames with inter-arrival times bigger than or equal to the BAG, behave in a fashion 

similar to the ones in Scenario 1 and drain-out the overloaded frames. That is why, 

simulation is still finished at about one second unlike Scenario 2 and Figure 6.7 has a lot of 

ups and downs.  
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Figure 6.7 Scenario 3 – Total End-System Latency  

6.2. Experiment 2: End-System Jitter 

 

Figure 6.8 Experiment 2 – Topology 

The purpose of this experiment is to examine the end-system jitter that is explained 

in chapter 2.1.3.1.1. The topology is given in Figure 6.8 and the simulation constants in 

Table 6.1 are binding for this experiment as well. As for scenario characteristics, Table 6.5 

is added. In the table, the value given under the transmission time can also be viewed as 

contention delay which is calculated by using Equation (2.5) where C is taken 100 Mbps.  

Table 6.5 Experiment 2 – Scenario Characteristics 

# of VLs Inter-arrival time (msec) BAG (msec) S (bytes) Transmission Time (µs) 

4 1 1 1250 100 

 

In this experiment, there are messages of four different VLs that are leaving their 

source at the same time. Since inter-arrival time is equal to the BAG and they have 

different VL-IDs, each batch of messages will pass through the regulator block without 

getting queued. As a result, messages of four VLs will arrive at the queue of the “MAC 

block at the same time. The MAC block which is responsible for handing over the messages 

to the physical line, must wait before the previous message is completely transmitted. 
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Thus, even though messages from four VLs arrive at the MAC’s queue simultaneously, they 

will wait for each other and jitter with an amount of transmission time will be introduced.  

For jitter measurement, the time difference between the message creation (t0 in 

Figure 6.1) and end-system output (t1 in Figure 6.1) are recorded when they are about to 

leave the end-system. The total end-system latency plot is given in Figure 6.9 and the 

actual values are listed in Table 6.6 for a more readable demonstration.  

 

Figure 6.9 Experiment 2 – Total End-System Latencies 

Table 6.6 Experiment 2 – Total End-System Latencies 

VL-ID ES Latency 

1 0.000032 

2 0.000132 

3 0.000232 

4 0.000332 

 

As can be seen in Figure 6.9 and Table 6.6 while the first message is facing with a 

technological latency only, the other are delayed as technological latency plus total 

transmission time of the all previous messages as denoted in the equation (2.6). 

6.3. Experiment 3: Account Management 

The purpose of this experiment is to monitor the behavior of the TrafficPolicy block, 

i.e., the token-bucket algorithm by playing with the switch jitter. As described in chapter 

2.1.4.1, the token-bucket algorithm is used to control the bandwidth. If two successive 

frames of the same VL are intended to be sent too close to each other, the second one 

couldn’t gain enough credit and get dropped as in the equation (2.14). Normally, the time 

difference between two messages of the same VL is controlled in the end-system with 

BAG. However, sometimes due to additional delays caused by multiple end-systems, VLs 
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or switches, two messages might get closer than they should. In that case, it is expected to 

switch to police that traffic. 

 

Figure 6.10 Demonstration – Network Topology 

To demonstrate this issue, let us assume that there are three end-systems in a 

network, one is transmitter (ES0), and the other two are receivers (ES1 and ES2). There are 

‘n’ VLs leaving the ES0 and while one of them is addressed to ES1, the other ‘n-1’ ones 

are addressed to ES2. Network and VLs are denoted in Figure 6.10. For the sake of the 

demonstration, inter-arrival time (ti) for VL1 is selected as 1 msec and 3 msec for all the 

other VLs. 



56 

 

 

Figure 6.11 Demonstration – Message Traffic at Switch Input 

In every three msecs, ‘n-1’ messages of other VL-IDs in addition to the one message 

of VL1 (frame B) will be entering the switch and causing a delay to VL1. The next 

message after this turn will be a message of VL1 (frame C) and the time difference 

between two VL1 messages will be shorter than BAG due to the contention. By 

considering the amount of credit, frame B will be dropped or not. This expected behavior 

is visualized in Figure 6.11.  

 

Figure 6.12 Experiment 3 – Topology 
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Table 6.7 Experiment 3 – Scenario Characteristics 

# of VLs 
Inter-Arrival 

Time (msec) 

Transmission 

Time (µs) 
BAG (msec) 

S 

(bits) 

Rho 

(Mbps) 
Sigma (bits) 

1 1 
100 1 10000 10 

15000, 20000 

6 3 15000 

 

In this experiment, the previously explained demonstration will be run by the AFDX 

simulation with 7 VLs (n = 7), the characteristics of which are given in Table 6.7 and the 

topology given in Figure 6.12. If the scenario given in Figure 6.11 is considered together 

with these characteristics, the transmission of successive frames from each VL is expected 

to take 700 usec in total which coincides with the time interval [t2-t1]. The BAG value is 

also marked in the Figure 6.11 with time interval [t3-t1] and it is equal to 1000 usec. 

Therefore, the time difference between two successive VL1 frames, i.e., [t3-t2], must be 

300 usec. The derivations are given with equation (6.1).  

Total transmission time = 𝑡2 − 𝑡1 =  7 ∗ 100 = 700 usec 
 

𝐵𝐴𝐺 = 𝑡3 − 𝑡1 = 1 𝑚𝑠𝑒𝑐 = 1000 𝑢𝑠𝑒𝑐  

𝑡3 − 𝑡2 = 1000 − 700 =  300 usec (6.1) 

Token-bucket algorithm is computed with these timings for the frames that are 

denoted as A, B, C and D and for two different sigma values that are given Table 6.7. The 

expected results for sigma = 15000 and sigma = 20000 are given in Table 6.8 and 

respectively. The moment that packet drop is expected to happen is marked with red in 

Table 6.8. In a regular token-bucket computation, token value cannot be negative and in 

case of obtained token is less than the token that is needed to be spent, the frame is 

dropped. But for simplicity, packet drop is represented with a negative remaining credit.  

Table 6.8 Experiment 3 – Credits when Sigma = 15000 bits 

Tokens (bits) 
Frame A 

 (t = 1 msec) 

Frame B 

(t = 0.3 msec) 

Frame C 

(t = 1.7 msec) 

Frame D 

(t = 1 msec) 

Initial 15000 5000 8000 10000 

Obtain-ed 10000 3000 17000 10000 

Total 15000 8000 15000 15000 

Remaining 5000 -2000 5000 5000 
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Table 6.9 Experiment 3 – Credits when Sigma = 20000 bits 

Tokens (bits) 
Frame A 

 (t = 1 msec) 

Frame B 

(t = 0.3 msec) 

Frame C 

(t = 1.7 msec) 

Frame D 

(t = 1 msec) 

Initial 20000 10000 3000 10000 

Obtained 10000 3000 17000 10000 

Total 20000 13000 20000 20000 

Remaining 10000 3000 10000 10000 

 

After the simulation is executed with the mentioned characteristics, results are 

processed and following figures are obtained (Figure 6.13 and Figure 6.14). There might 

be insignificant differences between computations and simulation outputs because small 

time differences like IFG are not considered in the theoretical derivations for simplicity. 

But even so, simulation results are fully satisfying the expectations. The frame drop 

moments are shown with negative spikes in the simulation results and as expected they are 

only seen in the (sigma = 15000) scenario. Graphs are very close to the theoretical traffic 

graph (Figure 6.11) and the values are almost the same as the computations (Table 6.8). 

 

Figure 6.13 Experiment 3 – Change in Credit for Sigma = 15000 bits 

 

Figure 6.14 Experiment 3 – Change in Credit for Sigma = 20000 bits 
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6.4. Experiment 4: Switch Latency and Queue Management 

 

Figure 6.15 Experiment 4 – Topology 

The purpose of this experiment is to investigate the behavior of the AFDX switch by 

using Little’s Law (2.1.6). The topology is given in Figure 6.15 and the simulation 

constants in Table 6.1 are binding for this experiment as well. As for scenario 

characteristics, Table 6.10 is added. To be able to apply the Little’s Law, packet drops 

must be hindered. Since the purpose of this experiment is to investigate the queueing 

behavior not traffic policing, sigma is intentionally set to a value that is bigger than 

necessary to prevent any packet drops. 

Table 6.10 Experiment 4 – Scenario Characteristics 

# of VLs Inter-arrival time (msec) BAG (msec) S (bytes) Sigma 

4 
1±𝑟𝑎𝑛𝑑(0,0.2) 1 1250 5*S 

4 

Three metrics are needed to apply Little’s Law. First one is the average number of 

items in a queue (𝐿). This can also be expressed as the average queue length of the switch 

and measured in the txQueue block by counting entering/exiting frames which is marked 

in the Figure 6.16 with “𝐿” in red. The second parameter is the average queueing time (𝑊) 

which can also be expressed as the time difference for a frame between entry and exit 

moments in and out of the queue. In this experiment, the time difference between entry and 

exit points are calculated and recorded at the txQueue block when frames are leaving the 

queue. The measurement points are marked with labels “tin” and “tout” in Figure 6.16. The 

third and final parameter is the average frame rate (λ). Since this simulation setup is 

specifically designed to assess the switch behavior and there are no packet drops, all 

frames follow the same path through the switch until the Sink block. Hence average 
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frame rate is calculated with the total number of frames arriving at the Sink divided by 

the total simulation time which is the time of the latest frame entering to the Sink.  

In the current setup, since there are 8 different VLs with 1msec of BAG, it is 

expected to see an average frame rate of 8 frames/msec. Hence average queue length per 

average queueing time shall give approximately 8 frames/msec to satisfy the equation 

(2.17).  

 

Figure 6.16 Experiment 4 – Measurement Points 

 The simulation results given in Table 6.11 presents the essential metrics for Little’s 

Law. With total frame count and total simulation time, the average frame rate (λ) is 

evaluated as 7945.32 frame/second or 7.94 frame/msec which is approximately equal to 8 

frame/msec as anticipated. Moreover, the calculations given in (6.2) clearly show that the 

modeled AFDX switch satisfies Little’s Law as expected. The results also proves that the 

measurements recorded at the switch are valid and accurate.  

Table 6.11 Experiment 4 – Simulation Results 

Total Frame Count 8019 

Total Simulation Time 1.0092 sec 

Average Queue Length (𝐿) 0.3035 frames 

Average Queueing Time (𝑊) 38.202 usec 

 

0.3035 =
?

38.202𝑒−6 ∗  
8019

1.0092 
 

  

= 0.3035 ∎ (6.2) 
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6.5. Experiment 5: Skew Max Control 

The purpose of this experiment is to show the behavior of AFDX Model when a 

redundant frame is delayed more than skewMax. The expected behavior is explained in 

chapter 2.1.3. In this experiment the topology (Figure 6.15) and characteristics (Table 

6.10) used in Experiment 4 (Chapter 6.4) will be used. Additionally, skewMax is selected 

as 10msec. 

To be able to demonstrate that case, a test block is added to the end-system module 

between integrityCheckers and redundancyChecker that is called 

skewMaxTester. This block has two inputs and two outputs. It manipulates the traffic 

of frames with a certain VL-ID but for all other frames, it is transparent. It directs frames 

received from integrityCheckerA to redundancyChecker’s inA port and 

integrityCheckerB to redundancyChecker’s inB port. Connections and 

placement can be seen in Figure 6.17. 

 

Figure 6.17 Experiment 5 – Skew Max Tester Block in End-System  

If the received frame’s VL-ID is equal to one, skewMaxTester will operate. It 

will delete certain messages in order to widen the time difference between successive 

frames. After more than 10 msec passes, it will resend the latest frame and it is expected 

from redundancyChecker to accept this frame one more time. Because messages 

received after a time difference more than skewMax should not be considered as a 

redundant frame even though they are the same.  
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Figure 6.18 Experiment 5 – Simulation Logs 

The simulation logs listed in Figure 6.18 can be investigated under three main 

sectors. First sector is in green and the third sector is in red. Second sector is in orange and 

composed of three parts which are marked with 2.1, 2.2 and 2.3 respectively. 
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 First sector shows the regular flow. skewMaxTester forwards two frames with 

SN-49 directly to redundancyChecker where they are either accepted or deleted. 

This sequence is repeated for all the frames other than the ones in between SN-50 and SN-

65.  

Second sector shows the sequence that is added to trigger skewMax behavior. In the 

part marked with 2.1, the first frame of SN-50 is forwarded which is coming from 

network-A and the one from network-B is deleted. In the part marked with 2.2, the 

following 14 frames from both network-A and network-B are also deleted and finally, in 

the part marked with 2.3 the latest frames’ sequence numbers are changed from 65 to 50. It 

can be seen that redundancyChecker accepted its last frame at t = 0.054 (s) and after 

all the deletes, the next frame will be sent in t = 0.067 (s). Thus, a time difference of more 

than 10 msec is being created.  

In the final sector in red, redundancyChecker receives the frame with SN-50 

one more time after 13 msec from network-B and it accepts after the skewMax control and 

it got back to the regular flow. 

7. MODEL PERFORMANCE EVALUATION IN REALISTIC 

CONDITIONS 

7.1. Flight Management System Experiment 

Integrated modular avionics (IMA) is investigated over a realistic AFDX case study 

in [56]. A flight management system (FMS) is presented and certain metrics are procured 

both theoretically and by modelling. After that, the same network is modeled and studied 

via OPNET in [27].  

In the scope of this experiment, a network is created, run and documented with the 

help of ANCAT by using topology and characteristics used in [27] and [56]. The network 

created in OMNeT++ is demonstrated in Figure 7.1. ES0 block represents a module 

containing Keyboard Unit (KU) and Multi-Function Display (MFD) subsystems inside as 

well as ES1. ES2 and ES3 are Flight Manager (FM) modules. ES4 and ES5 modules 

contain Air Data Inertial Reference Units (ADIRU) which are gathering data from ES6 and 

ES7 namely Remote Data Centers (RDC). Not to mention, RDCs are connected with 

appropriate sensors. Finally, ES8 is Navigation Database (NDB) and it sends 

latitude/longitude data when requested. 
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Figure 7.1 Flight Management System Network 

Network characteristics that are given in Table 7.1 are gathered from the referenced 

works. In [56] data length is denoted with S however length of the smallest message in the 

mentioned thesis is 512 bits/64 bytes which is the smallest possible value of L (L and S 

concepts are explained in chapter 2.1.1). Since S is 20 more than L, this is not possible. 

Therefore, data lengths are taken as L instead of S. Moreover, length of one of the 

messages in [56] is 700 bits, which doesn’t seem sensible because 700 bits of length means 

87.5 bytes. To solve that problem, the latency calculations in [27] are investigated and it is 

discovered that in those calculations, message length of that particular message was taken 

as 800 instead of 700.  

After the topology and characteristics extracted from the papers, ANCAT input excel 

is prepared and simulation is executed. In the paper [27], end-to-end latencies for three 

selected VL’s and for two different types of switches were presented. The difference 

between switches is denoted by switch technological latency. For SW-type1 it is given as 

140 usec where for SW-type2 16 usec. In Table 7.2 the results obtained from OMNeT++ 

AFDX model are compared to the ones obtained from OPNET in [27]. As expected, results 

are corroborative on behalf of AFDX OMNeT++ Model. 
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Table 7.1 Flight Management System Characteristics 

VL-ID 
Source 

ES 

Destination 

ES 
S (byte) 

BAG 

(msec) 

Period 

(msec) 

Rho 

(Mbps) 

Sigma 

(bits) 

0x1 ES0 ES2, ES3 95 32 50 0.02375 761.1875 

0x2 ES1 ES2, ES3 95 32 50 0.02375 761.1875 

0x3 ES2 ES0 [145-645] 8 60 0.645 5192.25 

0x4 ES2 ES8 145 16 60 0.0725 1163.625 

0x5 ES3 ES1 [145-645] 8 60 0.645 5192.25 

0x6 ES3 ES8 145 16 60 0.0725 1163.625 

0x7 ES8 ES2 520 64 100 0.065 4163.25 

0x8 ES8 ES3 520 64 100 0.065 4163.25 

0x9 ES6 ES4 84 32 60 0.021 673.05 

0xA ES7 ES5 84 32 60 0.021 673.05 

0xB ES4 ES2, ES3 120 32 60 0.03 961.5 

0xC ES5 ES2, ES3 120 32 60 0.03 961.5 

 

Table 7.2 Flight Management System Comparison of Results 

VL-ID 

End-to-End Latency (usec) 

SW-type1 SW-type2 

Safwat et al.[27] Proposed Model Safwat et al.[27] Proposed Model 

0x7 477 442 194 194 

0x9 154 151 33 27 

0xB 492 454 92 82 

 

7.2. Commercial Avionics Architecture Experiment 

A real network architecture and message set that is supplied from a commercial 

avionics company is investigated in [48]. In the scope of that thesis, mentioned architecture 

is implemented with both AFDX and the proposed protocol SQSDR (Shared Queue based 

Dynamic Slot Reservation). Implementations are conducted over OMNeT++ simulations. 

While SQSDR is modeled with INET framework [17], for AFDX, an improved version of 

the existing AFDX OMNEST model (Chapter 3.3.1) is used. The AFDX model that is used 

in [48] and improvements over OMNEST model for that sake are explained in Chapter 

3.3.2. After the simulations are conducted, resulting end-to-end latencies and queue 

metrics are compared to assess the behavior of SQSDR compared to AFDX. 
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In this chapter, the same network is implemented with the same configurations 

mentioned in [48] to verify the behavior of the proposed AFDX model. Moreover, after 

reviewing the simulation results, network configuration is revised to improve outcomes.  

The proposed network contains many avionic subsystems such as sensors, actuators, 

controllers and data loggers. It has 23 end-systems and 2 switches and it is modeled in 

Figure 7.2. First 10 end-systems are connected to Switch-0 and the remaining 13 are 

connected to Switch-1. Technological latencies of switch and end-systems are taken as 50 

usec. Simulation is executed for 10 secs and the time that messages are started to be sent 

are specified randomly (rand(0, 5ms)). The connection assignments are determined by 

considering the physical placements of end-systems in the actual architecture. Similarly, all 

message characteristics that are listed in Table 7.3 are inherited from the real-world set-up.  

 

Figure 7.2 Proposed Network in [48]  
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Table 7.3 Message Characteristics of [48] 

Periodic 

(P) or 

Sporadic 

(S) 

VLID 
Source 

ES 
Destination ES BAG Period 

Payload 

Length 

P 0x1000 ES0 ES14, ES19 4ms 5ms 100 

P 0x1100 ES1 ES14, ES19 4ms 5ms 200 

P 0x1200 ES2 ES14, ES19 4ms 5ms 100 

P 0x1300 ES3 ES14, ES19 4ms 5ms 200 

P 0x1400 ES4 ES14, ES19 4ms 5ms 200 

P 0x1500 ES5 ES14, ES19 4ms 5ms 200 

P 0x1600 ES6 ES14, ES19 4ms 5ms 100 

P 0x1700 ES7 ES14, ES19 4ms 5ms 100 

P 0x1800 ES8 ES14, ES19 4ms 5ms 100 

P 0x1900 ES9 ES19 1ms 5ms 1471 

P 0x1900 ES9 ES19 1ms 5ms 1471 

P 0x1900 ES9 ES19 1ms 5ms 1471 

P 0x1900 ES9 ES19 1ms 5ms 587 

P 0x2000 ES10 ES14, ES19, ES22 1ms 1ms 250 

P 0x2100 ES11 ES14, ES19, ES22 1ms 1ms 750 

P 0x2200 ES12 ES14, ES19, ES22 32ms 50ms 750 

P 0x2300 ES13 ES14, ES19, ES22 32ms 50ms 750 

S 0x2400 ES14 ES19 4ms rand(0s, 2*5ms) 100 

P 0x2500 ES15 ES14, ES19, ES22 4ms 5ms 200 

P 0x2600 ES16 ES14, ES19, ES22 4ms 5ms 200 

P 0x2700 ES17 ES14, ES19, ES22 4ms 5ms 100 

P 0x2800 ES18 ES14, ES19, ES22 64ms 100ms 1000 

S 0x2A00 ES20 ES19 1ms rand(0s, 3*2*4.21ms) 1316 

S 0x2A01 ES20 ES19 1ms rand(0s, 3*2*4.21ms) 1316 

S 0x2A02 ES20 ES19 1ms rand(0s, 3*2*4.21ms) 1316 

S 0x2B00 ES21 ES19 1ms rand(0s, 3*2*4.21ms) 1316 

S 0x2B01 ES21 ES19 1ms rand(0s, 3*2*4.21ms) 1316 

S 0x2B02 ES21 ES19 1ms rand(0s, 3*2*4.21ms) 1316 

P 0x2C00 ES22 ES14, ES15, ES19 4ms 5ms 200 

P 0x2C01 ES22 ES14, ES16, ES19 4ms 5ms 200 

P 0x2C02 ES22 ES14, ES17, ES19 4ms 5ms 100 

P 0x2C03 ES22 ES14, ES19, ES0 4ms 5ms 100 

P 0x2C04 ES22 ES14, ES19, ES1 4ms 5ms 200 
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Periodic 

(P) or 

Sporadic 

(S) 

VLID 
Source 

ES 
Destination ES BAG Period 

Payload 

Length 

P 0x2C05 ES22 ES14, ES19, ES2 4ms 5ms 100 

P 0x2C06 ES22 ES14, ES19, ES3 4ms 5ms 200 

P 0x2C07 ES22 ES14, ES19, ES4 4ms 5ms 200 

P 0x2C08 ES22 ES14, ES19, ES5 4ms 5ms 200 

P 0x2C09 ES22 ES14, ES19, ES6 4ms 5ms 100 

P 0x2C0A ES22 ES14, ES19, ES7 4ms 5ms 100 

P 0x2C0B ES22 ES14, ES19, ES8 4ms 5ms 100 

P 0x2C0C ES22 ES14, ES18, ES19 64ms 100ms 1000 

 

To verify the proposed AFDX model, the simulation is executed with the given 

topology (Figure 7.2) and message characteristics (Table 7.3). The results are compared 

with the ones presented in [48]. As can be seen in Table 7.4, results are consistent.  

Table 7.4 End-to-End Latencies for Sporadic and Periodic Messages 

 
End-to-End Latencies 

Atik[48] Model Proposed Model 

Sporadic 
Mean 1.21 msec 1.426 msec 

Max 24.118 msec 21.133 msec 

Periodic 
Mean 0.335 msec 0.309 msec 

Max 3.72 msec 2.634 msec 

 

In this network, there are both periodic and sporadic messages. Sporadic messages 

are implemented with random inter-arrival times in the previous configuration as can be 

seen in Table 7.3. But when looked closely, it can be noticed that the range of the random 

function starts with ‘0s’, which means messages can be generated at a rate faster than 

BAG. This is not only contradicting with the nature of sporadic messages, but also 

damaging the AFDX performance. A similar case is demonstrated in Scenario 3 of 

Experiment 1 (Chapter 6.1.3). It is explained in that chapter that messages with a period 

faster than BAG will overload the system. Hence the time that elapses for messages to 

leave the end-system will be increased due to BAG regulation. In other words, this is a 

design mistake. Besides, having an end-to-end latency around 20 msecs when BAG is 1 or 

4 msec shows the seriousness of the problem. Although the network is quite loaded, it can 

be seen in the simulation results that, the queueing times in the switch for sporadic 
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messages are much lower than the elapsed time in the end-system (Table 7.5) which shows 

that end-system latency is the one having a major share in the end-to-end latency instead of 

the switch latency. Therefore, it is fair to say that the end-to-end latency that these 

messages are facing are caused by the faulty design. In addition to that, sporadic messages 

shall not come faster than their period. Thus, they are generated with inter-arrival times 

varying between the specified period and a bigger value.  

Table 7.5 ES and Switch-1 Latencies for Sporadic Messages (Old Configuration) 

VL-ID 
ES Latency (msec) SW Latency (msec) 

Mean Max Mean Max 

0x2A00 0.707 5.93 0.069 0.478 

0x2A01 0.659 5.586 0.069 0.449 

0x2A02 0.807 8.525 0.067 0.443 

0x2B00 0.742 5.993 0.067 0.443 

0x2B01 0.829 7.613 0.068 0.459 

0x2B02 0.774 7.661 0.069 0.43 

0x2400 2.923 21.008 0.095 0.526 

To make the architecture better, inter-arrival times are renewed by considering the 

sporadic messages and relationship between BAGs and inter-arrival times as demonstrated 

in Table 7.6. Moreover, small adjustments are done in message set. After this modification, 

end-to-end latencies in sporadic messages that are given with Table 7.8 became much 

smaller. Moreover, even though the queueing latencies in the switch did not get affected 

significantly from this improvement, the total end-system latencies decreased around 10 

times (Table 7.9). For clarity, the network with these improved characteristics is denoted as 

“New Configuration” and the original characteristics that are used in Atik’s model [48] is 

denoted as “Old Configuration”. 

Table 7.6 Modified Message Characteristics (New Configuration) 

VL-ID 
BAG 

(msec) 

Inter-arrival Times 

Old (msec) New (msec) 

0x2400 4 rand(0, 2*5) rand(5, 10) 

0x2A00, 0x2A01, 0x2A02, 

0x2B00, 0x2B01, 0x2B02  
1 rand(0, 3*2*4.21) rand(1.263, 5) 
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Table 7.7 Modified Message Destination Nodes (New Configuration) 

VLID Source ES Destination ES 

0x1000 – 0x1008 ES0 – ES8  ES14, ES19, ES22 

0x1900 ES9 ES19, ES14  

Table 7.8 Comparison of End-to-End Latencies 

 End-to-End Latencies in Proposed Model 

Old Configuration New Configuration 

Sporadic 
Mean 1.426 msec 0.419 msec 

Max 21.133 msec 1.444 msec 

Periodic 
Mean 0.309 msec 0.414 msec 

Max 2.634 msec 3.298 msec 

 

Table 7.9 ES and Switch-1 Latencies for Sporadic Messages (New Configuration) 

VL-ID 
ES Latency (msec) SW Latency (msec) 

Mean Max Mean Max 

0x2A00 0.054 0.267 0.033 0.368 

0x2A01 0.054 0.197 0.027 0.28 

0x2A02 0.054 0.235 0.027 0.339 

0x2B00 0.054 0.229 0.026 0.284 

0x2B01 0.054 0.244 0.026 0.291 

0x2B02 0.054 0.16 0.026 0.34 

0x2400 0.05 0.05 0.027 0.3 

In terms of switch characteristics, when the message paths are reviewed, one switch 

port which is connected to the ES19 attracts the attention. It represents a data logger that is 

designed to get all messages from all VLs which results in a highly loaded traffic and 

hence queueing in the switch. To get an idea about the busyness in that switch port, 

checking the actual bandwidth usage and maximum usable bandwidth for each message 

that is directed to that port (i.e., all messages) can be useful which are calculated as S (bits) 

per period and L (bits) per BAG respectively. For each switch port, total values are 

calculated by summing up individual values for each message that is using the port. Most 

loaded ports are listed for both new and old configurations in Table 7.10 and Table 7.11. 

The small difference between two configurations is resulted from newly added destination 

nodes. As can be seen in the tables, for both configurations maximum usable bandwidth 

exceeds the bandwidth that the bus can provide which is 100 Mbps. Thus, this network can 
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be considered as highly loaded, which should be considered in the design phase. However, 

the concern in this thesis is not investigation the original design but reviewing its 

performance. That’s why, the actual bandwidths are checked which are also showing a 

highly loaded (almost 80%) network. 

Table 7.10 Bandwidth Requirements of Most Loaded VLs (Old Configuration) 

VL-ID Ports 
Actual BW Usage 

(Mbps) 

Max Usable BW 

(Mbps) 

All SW1-ES19 79.09 129.02 

All except sporadic SW1-ES14 17.83 20.16 

0x2500-0x2800 SW1-ES22 10.54 11.01 

0x1000-0x1900, 

0x2C03-0x2C0B 
SW1-ES19 14.52 49.75 

 

Table 7.11 Bandwidth Requirements of Most Loaded VLs (New Configuration) 

VL-ID Ports 
Actual BW Usage 

(Mbps) 

Max Usable 

BW (Mbps) 

All SW1-ES19 79.09 128.9 

All except sporadic SW1-ES14 26.26 73.37 

0x2500-0x2800 SW1-ES22 13.58 14.82 

0x1000-0x1900, 

0x2C03-0x2C0B 
SW1-ES14 14.52 49.75 

When queueing times are investigated, it can be seen that they are insignificant when 

compared to the periods. Queueing latency plots for the mentioned end-systems are given 

in Figure 7.3, Figure 7.4, Figure 7.5 and Figure 7.6 and a summary containing maximum 

and average values are given in Table 7.12. 

Table 7.12 SW Queueing Latencies for Highly Loaded Ports (New Configuration) 

VL-ID Ports 
Queueing Time (msec) 

Max Mean 

All SW1-ES19 0.388 0.034 

All except sporadic SW1-ES14 0.146 0.012 

0x2500-0x2800 SW1-ES22 0.022 0.004 

0x1000-0x1900, 

0x2C03-0x2C0B 
SW0-SW1 0.041 0.005 
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Figure 7.3 Queueing Time for SW0-ES14 

 

Figure 7.4 Queueing Time for SW0-ES19 

 

Figure 7.5 Queueing Time for SW0-ES22 
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Figure 7.6 Queueing Time for SW0-SW1 

Furthermore, to construct this network (Figure 7.2) in OMNeT++, a long *.ini file 

composed of almost 400 lines, is required. But with the help of the proposed network 

configuration and analysis tool ANCAT (Chapter 5), it is much simpler to build this 

network. Instead of dealing with an *.ini file, filling certain columns of a standard 

*.xlsx file saves a lot of time especially when repeating the tests with different 

characteristics.  

Results show that, presented AFDX Model is consistent with the previous work, 

which is a real-life avionics application. In addition to that, with an improvement in the 

network configuration, simulation results are changed in the positive direction. With the 

proposed AFDX Model and ANCAT, it takes seconds to try different configurations and 

obtain detailed results.  

7.3. Custom Network Experiment 

In both realistic experiments, new network configuration and analysis tool ANCAT 

is used with the improved OMNeT++ AFDX Model to configure, run and analyze the 

network and obtained results are compared with previous works. However, in this chapter, 

a new network is established by combining topology of Flight Management System 

(Chapter 7.1) and message structure of Commercial Avionics Architecture (Chapter 7.2). 

By doing so, the network in Flight Management System became more loaded similar the 

one in the Commercial Avionics Architecture. The intention in creating such a network is 

to investigate a complicated, realistic AFDX network and to show capabilities of ANCAT 

while doing so. 
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In the original FMS (Flight Management System) network, there were two user 

interface end-systems containing keyboard and monitor, two flight managers (FM), two 

remote data center (RDC), two inertial reference units (ADIRU) and one navigation 

database. In this network, when some end-systems are sending periodic data to each other, 

some end-systems are working in a command-response fashion. According to the 

sequence, RDCs sends the data that is gathered from sensors to the ADIRUs and ADIRUs 

direct those data to the FM after making additional calculations. On the other hand, when a 

user request estimated arrival of time and distance to the target from the user interface, the 

responsible end-systems sends a request to the FM which results in another request from 

FM to the navigation database. Finally, FM calculates the requested information by 

combining the navigational data with sensor data that are already gathered periodically and 

sends to the end-system that is responsible of user interface, again periodically.  

In custom network, five new end-systems are added to the existing FMS network. 

These are, two cameras, one data logger and two actuators. Cameras are sending sporadic 

video data that is split into three VLs each in order to not exceed the dedicated bandwidth 

of a VL. Actuators are expecting some time-critical data from FMs. Lastly, the data logger 

listens all messages from all VLs except from the cameras. In addition to the new end-

systems, to be able to compute required time-critical data for the actuators, 4 new fast VLs 

that are transmitting data from RDCs to FMs are added. Moreover, again to be able to 

compute the data that will be sent to the actuators in time, BAG and period of the VLs 

between RDCs to ADIRUs are decreased. Finally, the end-system technological latency 

wasn’t included in the original FMS network, thus it is set to 40 us where the original 

switch technological latency that is equal to140 us is kept. The custom network that is 

created by modifying the flight management system that is given in Figure 7.1. 
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Figure 7.7 Custom Network  
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Table 7.13 Message Characteristics of Custom Network 

Periodic 

(P) or 

Sporadic 

(S) 

VLID 
Source 

ES 

Destination 

ES 

BAG 

(msec) 
Period (msec) 

Payload 

Length 

S 0x1 ES0 ES2, ES9 32 rand (50,100)  28 

S 0x2 ES0 ES3, ES9 32 rand (50,100)  28 

S 0x3 ES1 ES3, ES9 32 rand (50,100)  28 

S 0x4 ES1 ES2, ES9 32 rand (50,100)  28 

S 0x5 ES2 ES8, ES9 16 rand (60,100)  78 

S 0x6 ES3 ES8, ES9 16 rand (60,100)  78 

S 0x7 ES8 ES2, ES9 64 rand (100,150)  453 

S 0x8 ES8 ES3, ES9 64 rand (100,150) 453 

P 0x9 ES6 ES4, ES9 4 4 17 

P 0xA ES7 ES5, ES9 4 4 17 

S 0x10 ES6 ES2, ES9 1 rand (1,5)  1471 

S 0x11 ES6 ES3, ES9 1 rand (1,5)  1471 

S 0x12 ES7 ES2, ES9 1 rand (1,5)  1471 

S 0x13 ES7 ES3, ES9 1 rand (1,5)  1471 

P 0x14 ES4 ES2, ES9 32 40 53 

P 0x15 ES4 ES3, ES9 32 40 53 

P 0x16 ES5 ES3, ES9 32 40 53 

P 0x17 ES5 ES2, ES9 32 40 53 

P 0x18 ES2 ES0, ES9 8 40 rand(683, 1183) 

P 0x19 ES3 ES1, ES9 8 40 rand(683, 1183) 

S 0x20 ES10 ES0 1 rand(1.632, 5)  1316 

S 0x21 ES10 ES0 1 rand(1.632, 5)  1316 

S 0x22 ES10 ES0 1 rand(1.632, 5)  1316 

S 0x30 ES11 ES1 1 rand(1.632, 5)  1316 

S 0x31 ES11 ES1 1 rand(1.632, 5)  1316 

S 0x32 ES11 ES1 1 rand(1.632, 5)  1316 

P 0xB ES2 ES12, ES9 2 2 1471 

P 0xC ES3 ES13, ES9 2 2 1471 

P 0xD ES2 ES13, ES9 2 2 1471 

P 0xE ES3 ES12, ES9 2 2 1471 
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Table 7.14 Per-Port Bandwidth Requirements of Switches 

Switch 
VL-IDs 

Actual BW 

Usage (Mbps) 

Max Usable BW 

(Mbps) ID Port 

0 

0 0x18, 0x20, 0x21, 0x22 26.53 34.44 

1 0x19, 0x30, 0x31, 0x32 26.53 34.44 

2 0x5, 0x6 0.038 0.145 

3 

0x1, 0x2, 0x3, 0x4, 0x7, 0x8, 

0x9, 0x10, 0x11, 0x12, 0x13, 

0x14, 0x15, 0x16, 0x17, 0x18, 

0x19, 0xB, 0xC, 0xD, 0xE 

74.90 77.01 

4 
0x1, 0x4, 0x7, 0x10, 0x12, 0x14, 

0x17, 0xE 
30.88 30.93 

5 
0x2, 0x8, 0x11, 0x13, 0x15, 

0x16, 0xD 
30.84 30.87 

1 

0 
0x1, 0x4, 0x7, 0x10, 0x12, 0x14, 

0x17 
24.73 24.78 

1 0xB, 0xE 12.30 12.30 

2 0x5, 0x18, 0xD 6.421 7.474 

2 

0 
0x2, 0x3, 0x8, 0x11, 0x13, 0x15, 

0x16 
24.73 24.78 

1 0xC, 0xD 12.30 12.30 

2 0x6, 0x19, 0xE 6.421 7.474 

3 
0 0x9 0.168 0.168 

1 0x9, 0x10, 0x11, 0x14, 0x15 24.82 24.84 

4 
0 0xA 0.168 0.168 

1 0xA, 0x12, 0x13, 0x16, 0x17 24.82 24.83 

 

In the, Table 7.13 source and destination end-systems of each VL are given with 

BAG and period values. Judging by this table and the scenario, the busiest destination end-

system is expected to be ES9 which is the logger. Additionally, Table 7.14 contains 

bandwidth requirements that is binding for each port of each switch. Port-2 of SW0, which 

is also the one that logger is connected, it requires the maximum bandwidth due to its 

overload. 

When simulation is executed with these inputs and final records are interpreted by 

ANCAT, obtained results are as follows: 

No packet drops occur in the switch. As can be seen in the  
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1. Table 7.14, all bandwidth requirements are withing the acceptable range (smaller 

than100Mbps). 

2.  Within all five switches, SW0 is the busiest one since it is handling majority of 

the VLs. As can be seen in the Table 7.15, queueing latency of SW0 is 

significantly high than other switches. 

Table 7.15 Switch Queuing Latencies 

Switch 
Queueing Latency (msec) 

Mean Min Max 

0 0.052 0 0.848 

1 0.001 0 0.33 

2 0.001 0 0.384 

3 0.003 0 0.136 

4 0.003 0 0.136 

 

Table 7.16 Queueing Latencies for All Switches Per Port 

Switch 
VL-IDs 

Queueing Latency (msec) 

ID Port Mean Min Max 

0 

0 0x18, 0x20, 0x21, 0x22 0 0 0.146 

1 0x19, 0x30, 0x31, 0x32 0 0 0.145 

8 0x5, 0x6 0 0 0.122 

9 

0x1, 0x2, 0x3, 0x4, 0x7, 0x8, 0x9, 0x10, 

0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 

0x17, 0x18, 0x19, 0xB, 0xC, 0xD, 0xE 

0.106 0 0.848 

14 
0x1, 0x4, 0x7, 0x10, 0x12, 0x14, 0x17, 

0xE 
0.006 0 0.238 

16 0x2, 0x8, 0x11, 0x13, 0x15, 0x16, 0xD 0.007 0 0.271 

1 

2 0x1, 0x4, 0x7, 0x10, 0x12, 0x14, 0x17 0.002 0 0.33 

12 0xB, 0xE 0 0 0 

14 0x5, 0x18, 0xD 0.001 0 0.111 

2 

3 0x2, 0x3, 0x8, 0x11, 0x13, 0x15, 0x16 0.003 0 0.384 

13 0xC, 0xD 0 0 0 

16 0x6, 0x19, 0xE 0.001 0 0.111 

3 
4 0x9 0 0 0 

15 0x9, 0x10, 0x11, 0x14, 0x15 0.004 0 0.136 

4 
5 0xA 0 0 0 

17 0xA, 0x12, 0x13, 0x16, 0x17 0.004 0 0.136 
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3. Maximum end-to-end latency in the system is 1.6 msec which is in 0.3% of the 

true mean with %95 confidence. Maximum, minimum and mean values for each 

VL are given in Table 7.17. 

Table 7.17 End-to-end Latencies for All VLs 

VL-ID Mean (msec) Min (msec) Max (msec) 

0x1 0.348 0.233 0.711 

0x2 0.367 0.233 0.801 

0x3 0.356 0.233 0.728 

0x4 0.353 0.233 0.764 

0x5 0.486 0.392 1.209 

0x6 0.482 0.392 1.3 

0x7 0.438 0.301 0.737 

0x8 0.441 0.301 0.943 

0x9 0.334 0.232 1.343 

0xA 0.897 0.726 1.319 

0x10 0.895 0.726 1.576 

0x11 0.893 0.726 1.402 

0x12 0.897 0.726 1.466 

0x13 0.511 0.395 0.873 

0x14 0.487 0.386 0.919 

0x15 0.507 0.397 0.89 

0x16 0.493 0.386 0.847 

0x17 1.067 0.845 1.681 

0x18 0.864 0.722 1.215 

0x19 0.444 0.439 0.593 

0x20 0.443 0.439 0.551 

0x21 0.443 0.439 0.658 

0x22 0.444 0.439 0.657 

0x30 0.443 0.439 0.712 

0x31 0.444 0.439 0.63 

0x32 0.331 0.232 1.136 

0xB 0.662 0.464 1.068 

0xC 0.803 0.586 1.805 

0xD 1.119 0.971 1.589 

0xE 0.866 0.726 1.192 
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8. CONCLUSION AND FUTURE WORK 

Due to deficiencies of previous avionics communication protocols a deterministic, 

dual-redundant, full-duplex, high speed ethernet protocol that provides guaranteed 

bandwidth, is presented and standardized as ARINC664 p7 or namely AFDX. AFDX 

keeps the end-to-end latency under control with the help of Bandwidth Allocation Gap 

(BAG) regulation and token-bucket algorithm and thus bring determinism to the system. 

The avionic systems using AFDX are mostly safety-critical systems with very strict timing 

requirements and hard real-time control loops. Thus, these systems must be investigated 

thoroughly in terms of latencies, utilization rates etc. to avoid unexpected setbacks later on. 

To make a performance analysis, the actual system can be used but it would not be 

possible to produce different scenarios with real subsystems. Mathematical computations 

can be used to foresee worst-case scenarios but they may remain incapable of giving 

average results. When these two options are eliminated, using a network simulation seems 

like the most realistic and comprehensive approach. For all these mentioned reasons, a 

fully functional AFDX model running in the environment is proposed in this thesis.  

In order to execute an AFDX simulation, a network simulation tool is necessary. 

When selecting a network simulation tool, different papers that are comparing certain tools 

are reviewed. These papers are comparing simulation tools such as NS2, NS3, OPNET, 

OMNeT++, MATLAB/SIMULINK and so much more by taking price, community, 

language, complexity, testability, integrability, flexibility, CPU and memory usages and 

some other similar aspects into consideration. Although each tool has its own benefits, 

OMNeT++ comes forward in multiple reviews. The advantages of using OMNeT++ is that 

It is free for non-commercial purposes, easy to develop models, supports object-oriented 

programming, has an active community, has built-in libraries/example projects and open 

source. By considering all these aspects, OMNeT++ is preferred. 

To develop the mentioned AFDX model, an existing one is used as a base. By fixing 

missing aspects and running numerous test scenarios, the model becomes fully AFDX 

compliant. The contribution of this thesis is not just producing a good simulation tool but 

also making it easy to configure without the need of re-compiling the code. Therefore, 

every feature and configuration parameter that may be needed to be changed by the user 

become accessible from one *.ini file. This includes parameters like cable length, BAG, 
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period, message length, data rate of message source etc. but also aspects like network 

topology.  

In addition to the ready-to-use, realistic and easy to configure AFDX model, a 

network configuration and analysis tool named ANCAT is proposed. For those who are not 

familiar with OMNeT++ or for those who does not want to deal with the process of 

changing the *.ini file, running the simulation and reviewing the results in the 

OMNeT++ environment, ANCAT is a game changer. It expects an excel file in a certain 

format containing information about the network topology, general system settings and 

message VL configurations. It creates an *.ini file and VL-routing table(s) accordingly. 

After that, it runs the simulation with generated files. Finally, it creates a report by 

analyzing the simulation output files (*.vci, *.vec). In order to complete its missions, 

ANCAT only needs a configuration excel and certain file paths such as OMNeT++ setup 

folder or AFDX simulation folder. 

By using AFDX simulation model and ANCAT, many experiments are conducted. 

Some of them are artificial experiment with easily predictable results such as, BAG 

regulation assessment, jitter measurement, account and queue management and latencies in 

the switch, skew max control. For those experiments, the expectations and outcomes are 

explained and compared clearly. In addition to that, realistic experiments are executed. For 

those, some realistic topologies and message sets are gathered from other thesis and papers 

then they are executed with the proposed AFDX model. After that, obtained simulation 

results are compared with the original works. Both artificial and realistic experiments 

fulfill the expectations. Thus proposed AFDX model and ANCAT are verified. 

To expend this thesis, followings can be done: 

- All queues in the simulation model are FIFO (First In, First Out) queues. Thus, 

scheduling in the end-system and switch port are FIFO scheduling. In fact, 

different type of scheduling algorithms are provided in the queueinglib. Option to 

select different scheduling algorithms can be provided to the user. [8] 

- Frame Filtering functionality of an AFDX end-system was not implemented in 

the legacy project and not handled in the scope of this work. The test scenarios 

are executed with valid frame sequences hence not having frame filtering doesn’t 
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affect realistic features of this simulation. But it can be added to filter-out invalid 

frames.  

- Ethernet layers other than MAC are not handled in the presented simulation 

because the only concern was AFDX protocol itself. But it can be useful for 

community so it should be added in the future. In addition to that merging the 

proposed AFDX simulation with INET framework, can make adding other layers 

much easier and can also provide more to the community. 

- ANCAT is not covering faulty scenarios and does not handle the errors occurred 

during the simulation run. It can check the excel file if all inputs are written 

correctly and report the errors thrown from the OMNeT++. 

- ANCAT is not capable of identifying design errors. It can be edited to detect 

some design errors and prompt warning.  

- ANCAT can be modified to take inputs from user interface instead of an xlsx file.  

-  Simulation results can be verified further. Setting up a real AFDX network and 

comparing its outcomes with simulation results would justify this simulation for 

sure. 
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