

BAŞKENT UNIVERSITY

INSTITUTE OF SCIENCE AND ENGINEERING

DEPARTMENT OF DEFENSE TECHNOLOGIES AND SYSTEMS

MASTER OF SCIENCE IN DEFENSE ELECTRONICS AND

SOFTWARE

AFDX (AVIONICS FULL-DUPLEX SWITCHED ETHERNET)

NETWORK SIMULATION AND PERFORMANCE ANALYSIS

BY

İPEK PEŞKİRCİOĞLU GÖKÇE

MASTER OF SCIENCE THESIS

ANKARA – 2022

BAŞKENT UNIVERSITY

INSTITUTE OF SCIENCE AND ENGINEERING

DEPARTMENT OF DEFENSE TECHNOLOGIES AND SYSTEMS

MASTER OF SCIENCE IN DEFENSE ELECTRONICS AND

SOFTWARE

AFDX (AVIONICS FULL-DUPLEX SWITCHED ETHERNET)

NETWORK SIMULATION AND PERFORMANCE ANALYSIS

BY

İPEK PEŞKİRCİOĞLU GÖKÇE

MASTER OF SCIENCE THESIS

ADVISOR

ASSIST. PROF. DR. MURAT ÜÇÜNCÜ

CO-ADVISOR

PROF. DR. Ece GÜRAN SCHMIDT

ANKARA - 2022

BAŞKENT UNIVERSITY

INSTITUTE OF SCIENCE AND ENGINEERING

This study, which is prepared by İpek Peşkircioğlu Gökçe for the Defense Electronics and

Software program, has been approved in partial fulfillment of the requirements for the

degree of MASTER OF SCIENCE in the Defense Technologies and Systems Department

by the following committee.

Date of Thesis Defense: …/…/2022

Thesis Title: AFDX (Avionics Full Duplex Switched Ethernet) Network Simulation and

Performance Analysis

Examining Committee Members Signature

Prof. Dr. Klaus Werner Schmidt, Middle East Technical University……………...

Assist. Prof. Dr. Tülin ERÇELEBİ AYYILDIZ, Baskent University……………...

Assist. Prof. Dr. Murat ÜÇÜNCÜ, Baskent University……………...

APPROVAL

Prof. Dr. Ömer Faruk ELALDI

Director, Institute of Science and Engineering

Date: …. /…. /2022

.......................

BAŞKENT ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS TEZ ÇALIŞMASI ORJİNALLİK RAPORU

Tarih: …/…./2022

Öğrencinin Adı, Soyadı : İpek Peşkircioğlu Gökçe

Öğrencinin Numaras : 22110116

Anabilim Dalı : Savunma Teknolojileri ve Sistemleri Anabilim Dalı

Programı : Savunma Elektroniği ve Yazılımı Tezli Yüksek Lisans

Programı

Danışmanın Adı, Soyadı : Dr. Öğr. Üyesi Murat ÜÇÜNCÜ

Tez Başlığı : AFDX Network Simulation and Performance Analysis

Yukarıda başlığı belirtilen Yüksek Lisans tez çalışmamın; Giriş, Ana Bölümler ve Sonuç

Bölümünden oluşan toplam ... sayfalık kısmına ilişkin, .../.../2022 tarihinde tez danışmanım

tarafından Turnitin adlı intihal tespit programından aşağıda belirtilen filtrelemeler

uygulanarak alınmış olan orijinallik raporuna göre, tezimin benzerlik oranı %...dir.

Uygulanan filtrelemeler:

1.Kaynakça hariç

2.Alıntılar hariç

3.Beş (5) kelimeden daha az örtüşme içeren metin kısımları hariç

“Başkent Üniversitesi Enstitüleri Tez Çalışması Orijinallik Raporu Alınması ve

Kullanılması Usul ve Esaslarını” inceledim ve bu uygulama esaslarında belirtilen azami

benzerlik oranlarına tez çalışmamın herhangi bir intihal içermediğini; aksinin tespit

edileceği muhtemel durumda doğabilecek her türlü hukuki sorumluluğu kabul ettiğimi ve

yukarıda vermiş olduğum bilgilerin doğru olduğunu beyan ederim.

Öğrenci İmzası: ONAY

İpek Peşkircioğlu Gökçe Tarih: …/…/2022

…………………. Öğrenci Danışmanı

 Dr. Öğr. Üyesi Murat ÜÇÜNCÜ

 ………………….

i

ACKNOWLEDGEMENTS

I would first like to thank my advisor, Assist. Prof. Dr. Murat ÜÇÜNCÜ who supports me,

gives me feedback and guides me through the process.

I would like to thank my co-advisor Prof. Dr. Ece Schmidt for her assistance and dedicated

involvement in every step throughout the process. This thesis would have never been

accomplished.

I would also like to thank my beloved family for supporting me throughout this thesis and

my whole education life.

Finally, I must express my gratitude to my husband for providing me with continuous

encouragement and unfailing support both morally and technically throughout this

process.

İpek PEŞKİRCİOĞLU GÖKÇE Ankara-2022

ii

ABSTRACT

İpek Peşkircioğlu Gökçe

AFDX Network Simulation and Performance Analysis

Baskent University Institute of Science and Technology

The Department of Defense Technologies and Systems

2022

AFDX (Avionics Full Duplex Switched Ethernet) also known as ARINC 664 Part 7 is a

leading ethernet-based avionics data network used for safety-critical applications having

real-time requirements with dedicated bandwidth utilizations. In order to construct a proper

AFDX architecture, network configuration aspects such as Bandwidth Allocation Gap,

Virtual Link assignment and network topology should be defined by considering

performance metrics including line utilization, average and worst-case timings, switch

queueing latencies and buffer occupancies in order to satisfy real-time requirements. This

thesis is intended to present an AFDX Simulation model that evaluates mentioned aspects

of the network before setting-up the actual system. To this end, first the existing

OMNeT++ AFDX Model is improved to make a more realistic and easily configurable

simulation. Additionally, in order to make the simulation modifiable for those who are not

familiar with the OMNeT++ environment and get readable results, a new network

configuration and analysis tool, named as ANCAT is proposed. AFDX model and ANCAT

are verified with multiple custom-designed experiments and comparison to analytical

queueing models. Finally, some realistic network scenarios that both evaluate AFDX

performance and demonstrate the capability of the developed OMNeT++ model is

represented.

Keywords: AFDX, Avionics Network, Network Simulation, OMNeT++, Performance

Analysis

Co-Advisor: Prof. Dr. Ece GÜRAN SCHMIDT (Coadvisor), Middle East Technical

University

Advisor: Assist. Prof. Dr. Murat ÜÇÜNCÜ (Advisor), Baskent University

iii

ÖZET

İpek Peşkircioğlu Gökçe

AFDX Ağ Simulasyonu ve Performans Analizi

Başkent Universitesi Fen Bilimleri Enstitüsü

Savunma Teknolojileri ve Sistemleri Anabilim Dalı

2022

ARINC 664 Part 7 olarak da bilinen AFDX, günümüzde emniyet açısından kritik, gerçek

zamanlı gereksinimleri ve kendine ayrılmış bant genişliği ihtiyacı olan hava aracı

sistemlerinde yaygın olarak kullanılan gerçek zamanlı bir ethernet protokolüdür. Gerçek

zamanlı gereksinimleri karşılayabilecek ve en kötü durumlarda bile beklenildiği gibi

çalışabilecek bir AFDX mimarisi kurabilmek için AFDX’e has bant genişliği yerleşim

aralığı (BAG), sanal bağ atamaları ve ağ yağısı gibi ayarlar, uçtan uca gecikmeler, anahtar

gecikmeleri ve doluluk oranları gibi performans kriterleri göz önünde bulunudurularak

tasarım yapılmalıdır. Bu çalışmada, bir AFDX mimarisini fiziksel olarak kurup

çalıştırmadan söz konusu kıstasları elde edebilmek ve inceleyebilmek için kullanılmak

üzere bir AFDX simülasyonu hazırlanması amaçlanmıştır. Bu amaçla, daha önceden

oluşturulmuş OMNeT++ AFDX modelindeki eksiklikler giderilmiş, model daha gerçekçi

ve kolayca konfigüre edilebilir hale getirilmiştir. Ayrıca, daha önce OMNeT++ ile

uğraşmamış kişiler için de simülasonu daha kolay konfigüre edilebilir hale getirebilmek ve

okunabilir simülasyon çıktıları elde edebilmek için yeni bir ağ konfigürasyon ve analiz

aracı (ANCAT) geliştirilmiştir. Son olarak AFDX modeli ve ANCAT aracını kullanarak

teorik ve gerçekçi senaryolar içeren pek çok deney yapılmış, bu deney sonuçlarından yola

çıkarak ürünler doğrulanmıştır.

Anahtar Sözcükler: AFDX, Aviyonik Ağları, Ağ Simülasyonu, OMNeT++, Performans

Analizi

Eş Danışman: Prof. Dr. Ece GÜRAN SCHMIDT, ODTÜ

Danışman: Dr. Öğr. Üyesi Murat ÜÇÜNCÜ, Başkent Üniversitesi

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... i

ABSTRACT ... ii

ÖZET ... iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES .. vi

LIST OF TABLES .. viii

1. INTRODUCTION ... 1

2. BACKGROUND .. 3

2.1. AFDX Overview ... 3

2.1.1. AFDX Frame .. 4

2.1.2. Virtual Link (VL) and BAG Concepts .. 5

2.1.3. End-System .. 6

2.1.4. Switch ... 9

2.1.5. End-To-End Delay ... 12

2.1.6. Little’s Law .. 12

2.1.7. Confidence Interval ... 12

3. PREVIOUS WORK .. 13

3.1. OMNeT++ and Other Network Simulation Tools 13

3.2. Other AFDX Simulation Models .. 14

3.3. OMNeT++ AFDX Simulations ... 16

3.3.1. OMNEST Model .. 16

3.3.2. Improvements Over OMNEST Model .. 26

4. AFDX SIMULATION MODEL ... 29

4.1. New Network Statistics Class .. 29

4.2. New Queueing Library .. 30

4.3. Changes In integrity Checker ... 32

v

4.4. Changes In Traffic Policy .. 32

4.5. A New Connection Type: Cable ... 32

4.6. Changes In Message Types and Source Structure 33

4.7. A New Type: ConnDef and New Network Definition 35

4.7.1. Other Small Changes .. 37

5. PROPOSED NETWORK CONFIGURATION AND ANALYSIS TOOL FOR

AFDX (ANCAT) .. 38

5.1. PreProcessor and Input File ... 39

5.2. Python Script Options and Batch File ... 43

5.3. Output ... 45

6. AFDX MODEL VERIFICATION TESTS ... 48

6.1. Experiment 1: Regulator BAG Enforcement .. 48

6.1.1. Scenario 1 ... 50

6.1.2. Scenario 2 ... 50

6.1.3. Scenario 3 ... 51

6.2. Experiment 2: End-System Jitter ... 53

6.3. Experiment 3: Account Management .. 54

6.4. Experiment 4: Switch Latency and Queue Management 59

6.5. Experiment 5: Skew Max Control .. 61

7. MODEL PERFORMANCE EVALUATION IN REALISTIC CONDITIONS .. 63

7.1. Flight Management System Experiment ... 63

7.2. Commercial Avionics Architecture Experiment 65

7.3. Custom Network Experiment ... 73

8. CONCLUSION AND FUTURE WORK ... 80

REFERENCES .. 83

vi

LIST OF FIGURES

Figure 2.1 Example AFDX Network ... 4

Figure 2.2 Regulated and Unregulated Flow (BAG) ... 5

Figure 2.3 Partitions in End-System .. 6

Figure 2.4 End-System Scheduling .. 7

Figure 2.5 Switch – End-System Connections ... 9

Figure 2.6 Traffic at Traffic Policing when Jitter = 0 .. 11

Figure 2.7 Traffic at Traffic Policing when Jitter ≠ 0 .. 11

Figure 3.1 Example AFDX Network ... 16

Figure 3.2 AFDX Message Format .. 17

Figure 3.3 End-System Compound Module .. 18

Figure 3.4 Configuration Parameters in Source ned File ... 20

Figure 3.5 Configuration Parameters and AFDX Message Fields in *.ini File 20

Figure 3.6 Switch Compound Module – Open Form ... 23

Figure 3.7 Switch Compound Module – Open Form ... 24

Figure 3.8 Switch Port Compound Module – Open Form ... 24

Figure 3.9 Switch Fabric Compound Module – Open Form 25

Figure 3.10 Routing Table Example .. 28

Figure 4.1 Record Types in NetworkStatistics Class 30

Figure 4.2 Call Examples for NetworkStatistics Functions 30

Figure 4.3 Old (Top) and Latest (Bottom) Job Classes ... 32

Figure 4.4 New Connection Type Cable .. 33

Figure 4.5 Old (Top) and Latest (Bottom) Source Structures 34

Figure 4.6 Subsystem (Top) and AFDX (Bottom) Message 35

Figure 4.7 A New Type: ConnDef ... 36

Figure 5.1 ANCAT components .. 38

Figure 5.2 ANCAT Logical Block Diagram .. 39

Figure 5.3 AFDX Model “simulations” Folder ... 40

Figure 5.4 An Example Ini File – General Network and Record Settings Section 40

Figure 5.5 An Example Ini File – Simulation Constants ... 40

Figure 5.6 ANCAT Input File – Topology Page ... 41

Figure 5.7 An Example Ini File – Connection Definitions Section 41

Figure 5.8 ANCAT Input File – Settings Page .. 42

vii

Figure 5.9 An Example Ini File – AFDX General Settings Section 42

Figure 5.10 ANCAT Input File – Message Set Page ... 43

Figure 5.11 An Example Ini File –AFDX Message Settings Section (Cropped) 43

Figure 5.12 PreProcessor Help (“-h”) Printout .. 44

Figure 5.13 SimProcessor Help (“-h”) Printout ... 44

Figure 5.14 PostProcessor Help “-h” Printout ... 45

Figure 5.15 Example Batch File... 45

Figure 5.16 AFDX Model “results” Folder ... 46

Figure 6.1 Record Points .. 48

Figure 6.2 Experiment 1 – Topology ... 48

Figure 6.3 Scenario 2 - Total End-System Latency – Close Up 51

Figure 6.4 Scenario 2 - Total End-System Latency ... 51

Figure 6.5 Scenario 3 – Inter-arrival Time Histogram at Creation 52

Figure 6.6 Scenario 3 – Inter-Arrival Time Histogram After BAG Regulation 52

Figure 6.7 Scenario 3 – Total End-System Latency .. 53

Figure 6.8 Experiment 2 – Topology ... 53

Figure 6.9 Experiment 2 – Total End-System Latencies ... 54

Figure 6.10 Demonstration – Network Topology .. 55

Figure 6.11 Demonstration – Message Traffic at Switch Input 56

Figure 6.12 Experiment 3 – Topology ... 56

Figure 6.13 Experiment 3 – Change in Credit for Sigma = 15000 bits 58

Figure 6.14 Experiment 3 – Change in Credit for Sigma = 20000 bits 58

Figure 6.15 Experiment 4 – Topology ... 59

Figure 6.16 Experiment 4 – Measurement Points .. 60

Figure 6.17 Experiment 5 – Skew Max Tester Block in End-System 61

Figure 6.18 Experiment 5 – Simulation Logs .. 62

Figure 7.1 Flight Management System Network ... 64

Figure 7.2 Proposed Network in [48] ... 66

Figure 7.3 Queueing Time for SW0-ES14 ... 72

Figure 7.4 Queueing Time for SW0-ES19 ... 72

Figure 7.5 Queueing Time for SW0-ES22 ... 72

Figure 7.6 Queueing Time for SW0-SW1 ... 73

Figure 7.7 Custom Network ... 75

viii

LIST OF TABLES

Table 2.1 AFDX Frame Format ... 4

Table 2.2 Source MAC Address Format .. 4

Table 2.3 Destination MAC Address Format .. 5

Table 2.4 IP Addressing Format .. 5

Table 3.1 Traffic Source Configuration Parameters .. 19

Table 3.2 Redundancy Controller Configuration Parameters 21

Table 6.1 Experiment 1 – Simulation Constants .. 49

Table 6.2 Experiment 1 – Scenario Characteristics ... 49

Table 6.3 Time Difference Measurements ... 50

Table 6.4 Time Difference Measurements ... 51

Table 6.5 Experiment 2 – Scenario Characteristics ... 53

Table 6.6 Experiment 2 – Total End-System Latencies ... 54

Table 6.7 Experiment 3 – Scenario Characteristics ... 57

Table 6.8 Experiment 3 – Credits when Sigma = 15000 bits 57

Table 6.9 Experiment 3 – Credits when Sigma = 20000 bits 58

Table 6.10 Experiment 4 – Scenario Characteristics ... 59

Table 6.11 Experiment 4 – Simulation Results .. 60

Table 7.1 Flight Management System Characteristics ... 65

Table 7.2 Flight Management System Comparison of Results 65

Table 7.3 Message Characteristics of [48] ... 67

Table 7.4 End-to-End Latencies for Sporadic and Periodic Messages 68

Table 7.5 ES and Switch-1 Latencies for Sporadic Messages (Old Configuration) .. 69

Table 7.6 Modified Message Characteristics (New Configuration) 69

Table 7.7 Modified Message Destination Nodes (New Configuration) 70

Table 7.8 Comparison of End-to-End Latencies .. 70

Table 7.9 ES and Switch-1 Latencies for Sporadic Messages (New Configuration) 70

Table 7.10 Bandwidth Requirements of Most Loaded VLs (Old Configuration) 71

Table 7.11 Bandwidth Requirements of Most Loaded VLs (New Configuration) 71

Table 7.12 SW Queueing Latencies for Highly Loaded Ports (New Configuration) 71

Table 7.13 Message Characteristics of Custom Network .. 76

Table 7.14 Per-Port Bandwidth Requirements of Switches 77

Table 7.15 Switch Queuing Latencies ... 78

ix

Table 7.16 Queueing Latencies for All Switches Per Port... 78

Table 7.17 End-to-end Latencies for All VLs .. 79

x

SYMBOLS AND ABBREVIATIONS

ADIRU Air Data Inertial Reference Unit

AFDX Avionics Full Duplex Switched Ethernet

ARINC Aeronautical Radio, Incorporated

ANCAT AFDX Network Configuration and Analysis Tool

B Byte

BAG Bandwidth Allocation GAP

CI Confidence Interval

COTS Commercial Off-The-Shelf

ES End-system

FCS Frame Check Sequence

FIFO First in, First out

FM Flight Manager

FMS Flight Management System

ID Identification

IFG Inter-Frame Gap

IEEE Institute of Electrical and Electronics Engineers

IMA Integrated Modular Avionics

KU Keyboard Unit

LRU Line Replaceable Unit

MAC Media Access Control

MFD Multi-Function Display

msec milliseconds

OMNET++ Objective Modular Network Testbed in C++

OMNEST An extended version of OMNET++–

PHY Physical Layer Device

PSN Previous Sequence Number

QOS Quality of Service

RDC Remote Data Center

Rx Receive

SFD Start Frame Delimiter

SN Sequence Number

SQDSR Shared Queue based Dynamic Slot Reservation

SW Switch

TTEthernet Time-Triggered Ethernet

Tx Transmit

UDP User Datagram Protocol

VL Virtual Link

VL-ID Virtual Link Identification

1

1. INTRODUCTION

Avionic systems involve dozens of electronic devices fitted into satellites, aircrafts or

spacecrafts. These devices can be display units, navigation systems, communications

modules, flight or fire control computers among many other devices [1]. Diverse devices

utilize a diverse type of data and interfaces with different priorities. When all these are

considered, communication between sub-units may be quite a challenge. To simplify the

development and integration of avionics software and hardware, avionics systems are

migrating towards integrated modular avionics (IMA) [2]. In IMA systems, flexible and

reprogrammable modules with higher speeds have started to replace traditional,

application-specific and non-adaptive avionics standards with lower bandwidths like MIL-

STD-1553 [3]. Within this context, Avionics Full-Duplex Switched Ethernet (AFDX)

protocol is standardized as ARINC (Aeronautical Radio, Inc) Specification 664 Part 7 in

association with avionics manufacturers like Airbus, Boeing, Rockwell Collins,

Honeywell, etc. [4]. Airbus A380/A350/A400M, Boeing 787 Dreamliner, ARJ21 and

Superjet 100 can be counted among airplanes using AFDX [5].

The physical and Media Access Control (MAC) layers of AFDX are based on IEEE

802.3 Ethernet standard and it speeds up to 100 Mbps rates. Network architecture is

composed of interconnected switches (SW) and end-systems (ES) communicating through

those switches. AFDX ensures the deterministic quality of services (QOS) with dedicated

bandwidth by establishing a connection-oriented structure. At the ES level, QoS support is

provided by output traffic regulation and priority-based switching. In addition, AFDX

offers a strong fault-tolerant network capability by using redundant switches and network

interfaces.

In modern avionic networks, line replaceable units (LRU) are gathering more diverse

data with larger amounts than before. Thus, the amount of real-time data that is circulating

through the network is increased. End-to-end delay limits shouldn’t be exceeded in the

devices used in distributed architectures to ensure that control loops run properly,

especially if they are safety critical. Hence making a performance analysis before realizing

the actual system is essential and may save lives [6].

When designing a network, worst-case scenarios can be foreseen with mathematical

modeling [7]. Nonetheless, this mathematical model may either remain incapable of giving

2

average results or may bring out exceedingly pessimistic outcomes. To avoid such cases, it

is crucial to evaluate the design with simulation models as realistic as possible.

NS2 [8], [9] and OPNET [10] simulators were used to simulate AFDX. However

important details like message set or model parameters were not included formerly. If

different real-time open-source network simulators are compared [11]–[13], it can be seen

that the OMNeT++ framework is more advantageous in terms of timings, memory needs

and visualization abilities compared to other popular network simulators like NS2/NS3.

OMNeT++ [14] is used to create network simulations particularly. In [15], an AFDX

Model is derived over TTEthernet layer and in [16] the results gathered from an AFDX

model built over the INET Ethernet model [17] are compared with those gathered from

TTEthernet hardware.

Among other simulation modules, there exists an AFDX Model that is originated by

OMNEST[18] and then opened to community by OMNeT++ [19]. This module includes

redundancy management and queueing behavior for both switch and end-systems in

addition to the basic AFDX MAC layer and AFDX switch implementation.

The contributions of the thesis are as follows:

1) Extension, verification and update of the AFDX model developed and

published by OMNeT++ [19] which previously developed by OMNEST++

for commercial use [18].

• A realistic AFDX simulation model that is closely following ARINC

664 p7 standard [4]. The model implements the link layer AFDX

functionality together with redundancy features.

• Automatized simulation configuration which takes simulation

parameters from an input configuration file in a standard format such

as Microsoft Excel. Automatized simulation output report generation

which provides detailed measurements results and summaries

containing average and maximum measurement values per VL and

per Switch.

• Custom tailored experiments with deterministic and computable

results for the verification of the simulation correctness. Furthermore,

Little's Law is checked for the queues in the switch. A detailed

3

breakdown of latency components of the ES and Switch model is

presented and compared with the expected results.

• Publishing the extended verified model to the community [20]

2) Determining realistic AFDX message parameters based on avionics

components specifications and the current application expectations.

Construction of realistic message sets and network topologies.

3) Extensive performance evaluation of AFDX under these realistic messages

and topologies. Evaluation under selected fault scenarios.

2. BACKGROUND

2.1. AFDX Overview

Since previous standards could no longer meet the requirements of modern-day state-

of-the-art air vehicles, AFDX was proposed and trademarked by AIRBUS [5]. It is based

on IEEE802.3 Ethernet by physical and MAC layers and complies with UDP/IP in the

transport layer [13]. It uses Ethernet frame definition and IEEE802.1d switching protocol

but it is essentially different from commercial Ethernet which provides guaranteed

bandwidth and bounded end-to-end latency.

Key AFDX network components are end-systems, switches and virtual links (VL) as

shown in Figure 2.1. Switches are connected to either an end-system or each other. End-

systems are inputs and outputs of the architecture and each end-system is connected to a

switch by a certain switch port. The physical links between switches and end-systems are

full duplex 100Mbps Ethernet lines. Switches are dual-redundant (Switch-A and Switch-B)

hence each connection is repeated for A and B switches [21].

The commercial Ethernet uses collision detection methods. Collided packets get

dropped and retransmitted later which make the communication indeterministic and

unreliable[1]. In AFDX, due to the Virtual Link (VL) structure and the fact that the link

between elements is full duplex, there are no packet collisions [22].

The data packets are generated in each subsystem and they are forwarded into the

network by source end-systems. The switch directs the packet to the intended destination

end-system(s) when it received it and that completes an information interchange between

multiple avionic subsystems [13].

4

Figure 2.1 Example AFDX Network

2.1.1. AFDX Frame

AFDX frame format is based on standard Ethernet, IEEE 802.3 Standard. Frame

fields and lengths of each are given in Table 2.1. Thus, an AFDX message length (𝐿𝑖) and

the total frame length (𝑆𝑖) which is composed of 𝐿𝑖 and 20B of PHY (Physical Layer

Device) overheads for a 𝑉𝐿𝑖 can take values between the ones shown in (2.1) and (2.2).

𝐿𝑚𝑖𝑛
𝑖 = 64𝐵, 𝐿𝑚𝑎𝑥

𝑖 = 1518𝐵
(2.1)

𝑆𝑚𝑖𝑛
𝑖 = 84𝐵, 𝑆𝑚𝑎𝑥

𝑖 = 1538𝐵
(2.2)

The “Sequence Number” (SN) is incremented for each virtual link and used in

redundancy management. In an AFDX network, one or many end-systems can be part of a

host equipment [4]. This host equipment is identified with “Network ID” and “Equipment

ID” fields defined in source MAC address which is shown in Table 2.2. Each end-system

can contain one or many partitions which are identified by “Partition ID” (Table 2.4).

Additionally, virtual links that are identified by “VL-ID” are stored in the destination MAC

address which is shown in Table 2.3.

Table 2.1 AFDX Frame Format

PHY Overhead Ethernet Frame [64-1518] PHY Overhead

Preamble SFD

MAC Address

Type

Ethernet Payload

FCS IFG
Destination Source

IP

Structure

UDP

Structure

AFDX Structure

Payload SN

7B 1B 6B 6B 2B 20B 8B 17B-1471B 1B 4B 12B

Table 2.2 Source MAC Address Format

Constant field Network ID Equipment ID Interface ID Constant

0b0000 0010 0000

 0000 0000 0000
Const.

Domain

ID

Side

ID

Location

ID

0b001: Network A

0b010: Network B
0b00000

24-bits 4-bits 4-bits 3-bits 5-bits 3-bits 5-bits

5

Table 2.3 Destination MAC Address Format

Constant field (24 bits) VL-ID (16 bits)

0bXXXX XX11 XXXX XXXX XXXX XXXX

XXXX XXXX
user defined

Table 2.4 IP Addressing Format

Class A Private IP address User Defined ID Partition ID

1-bit 7-bits 16-bits (Spare fields) 3-bits 5-bits

2.1.2. Virtual Link (VL) and BAG Concepts

A virtual link is a one-to-many static path between end-systems [23]. Therefore, only

one partition can be the source of a VL. VLs are identified by VL-IDs. During the design

phase of an AFDX network, VL-IDs and their dedicated bandwidths are allocated and

cannot be changed in runtime [24]. Virtual link concept enables an end-system to have the

ability of isolating different nodes logically from each other [25]. Thanks to this concept,

bandwidth utilization of a VL by one partition won’t be affecting other VLs. [4]. VL owes

this ability to two parameters. Bandwidth Allocation Gap (BAG) and maximum allowed

frame size [26].

VLs can be characterized by dedicated Bandwidth Allocation Gap (BAG) values.

BAG is the minimum time slot (in milliseconds) between successive packets. It can be

valued as defined in (2.3). It is not only binding for all partitions sharing the same VL-ID

but also it establishes a period for a VL itself [21].

𝐵𝐴𝐺 = 2𝑘 [𝑖𝑛 𝑚𝑠], 𝑘 ∈ 𝑍, 0 ≤ 𝑘 ≤ 7 [4] (2.3)

Figure 2.2 Regulated and Unregulated Flow (BAG)

6

2.1.3. End-System

An end-system is an interface between the avionics subsystem and AFDX the

network. End-systems are inputs and outputs of the network and they act as receivers and

transmitters for subsystems connected to them.

Figure 2.3 Partitions in End-System

 Different applications that are running in a subsystem with certain time interval and

dedicated memory, can be named as partitions [24]. One or more partitions within the same

subsystem can be connected to one end-system (Figure 2.3). They might either be using the

same or different VL-IDs. If there are multiple partitions connected to the same end-

system, then multiplexing is needed to serialize frames coming from various sources i.e.,

partitions.

In addition to the multiplexing, frames of each VL are exposed to a regulation

according to BAG values that are assigned to them (VLs). As a result of solely this

regulation, the time slot between two successive frames of each VL will take at least a

BAG amount of time. The main intention behind this concept is to restrict instantaneous

frame rates per VL basis.

 These two behaviors come together and create the scheduler. Due to the scheduling,

frames of each VL will be showing up in a bounded time interval which is called

maximum admissible jitter. Traffic flow itself does not cause this jitter but scheduling does

[4].

7

Figure 2.4 End-System Scheduling

Scheduled packets have one final stop before leaving the end-system: redundancy

manager. Unless stated otherwise, each frame is sent across both A and B networks [4]. All

packets are directed to the receiving end by passing through both networks. Once they are

arrived, they are passed through an integrity checker and then finally redundant frames are

eliminated within redundancy management [1].

 In the transmitting end, the sequence number in the AFDX frame (Table 2.1) is

incremented by one and it is wrapped-around to 1 when reached to 255 [27]. On the other

hand, at the receiving end, the SN is checked as if it satisfies the equation in (2.4) where

PSN indicates the Previous Sequence Number.

𝑃𝑆𝑁 + 1 ≤ 𝑆𝑁 ≤ 𝑃𝑆𝑁 + 2 [4] (2.4)

To identify the redundant frames, skew between switch-A and switch-B is checked

as it should not exceed a certain “skewMax” value which is defined in design phase. If the

time difference between two frames having the same sequence number (which means one

of them is redundant) is less than “skewMax” value, then the later one will be discarded.

Otherwise, later frame will be considered as a new one and accepted. [28]

2.1.3.1 Performance Metrics at the End-System

2.1.3.1.1 Jitter

In a transmitting end-system, frames appear at the output of the scheduler in a

bounded time window. This window is called “Maximum Admissible Jitter” (𝐽𝑛
𝑚𝑎𝑥) and it

is introduced by the traffic shaper i.e., scheduler. Jitter measurement starts at the beginning

of the BAG interval and ends at the very first bit of the frame getting transmitted in that

BAG slot. Maximum admissible jitter is actually the total jitter that can happen to the most

unfortunate frame. Hence it is calculated from the perspective of the frame at the end of the

8

line. It is composed of fixed technological latency which can be maximum 40 𝜇𝑠, plus the

amount of time that spent until all previous frames left the physical line i.e., sum of

contention delays (𝑑𝑖) for each frame 𝑖. It is limited to 500𝜇𝑠 by the standard in [4]. In the

light of these information, it can be calculated by equation (2.6) where 𝑉𝑛 denotes all the

VL-IDs scheduled by 𝐸𝑆𝑛 and 𝐶 is the data rate of the physical line in bit per seconds (bps)

[29].

𝑑𝑖 =
(20 + 𝐿𝑖) × 8

𝐶
=

𝑆𝑖 𝑖𝑛 𝑏𝑖𝑡𝑠

𝐶

(2.5)

𝐽𝑛
𝑚𝑎𝑥 ≤ min (500𝜇𝑠, 40𝜇𝑠 +

∑ (20 + 𝐿𝑖
𝑚𝑎𝑥) × 8𝑖∈𝑉𝑛

𝐶
) (2.6)

2.1.3.1.2 Latency in Transmission

Transmission latency is the overall time spent by a frame until it leaves the end-

system. Let 𝑡0 be the time when the last bit of a frame leaves its host partition and 𝑡1be the

time when that last bit of the frame is transmitted on the physical line. In that case,

transmission latency would be the time difference between 𝑡0 and 𝑡1.

Transmission latency (𝐿𝑛
𝑇𝑥) at the 𝐸𝑆𝑛 is given in the equation (2.7) and it can be

expressed as the sum of technological latency(𝑇𝐿𝑛
𝑇𝑥) and configuration latency (𝑇𝐶𝑛

𝑇𝑥) at

the 𝐸𝑆𝑛.

𝐿𝑛
𝑇𝑥 = 𝑇𝐿𝑛

𝑇𝑥 + 𝑇𝐶𝑛
𝑇𝑥 (2.7)

Technological latency is the time required to accept, process and begin to transmit

the frame at the host partition. It is measured when end-system is not performing any other

task hence it is independent of the traffic load. It is represented as a fixed hardware specific

delay plus the time taken to transmit a frame to the physical layer i.e., contention delay

defined in (2.5) and it is bounded by the standard [4] as in the equation (2.8).

𝑇𝐿𝑛
𝑇𝑥 ≤ 150𝜇𝑠 + 𝑑𝑛

𝑇𝑥 (2.5) (2.8)

Configuration latency depends on the traffic and system configuration and it is

basically arising due to the traffic shaping i.e., BAG. It depends on the maximum

admissible jitter (2.6), the number of frames already in the queue and waiting to be sent

and the BAG value of each. It can be expressed by the equation (2.9) for a 𝑉𝐿𝑖 at the 𝐸𝑆𝑛

and assuming there are 𝑝 frames to be processed.

𝑇𝐶𝑛,𝑖,𝑝
𝑇𝑥 = 𝑝 × 𝐵𝐴𝐺𝑖 + 𝐽𝑛

𝑚𝑎𝑥 (2.9)

9

2.1.3.1.3 Latency in Reception

Reception latency is the overall time spent by a frame until it arrives at the target

partition. Let 𝑡0 be the time when the last bit of the frame leaves the physical media to

enter receiving end-system and 𝑡1be the time when the last bit of a frame enters at the

target partition. In that case, reception latency would bet the time difference between 𝑡0

and 𝑡1.

Reception latency (𝐿𝑛
𝑅𝑥) at the 𝐸𝑆𝑛 is equal to technological latency (𝑇𝐿𝑛

𝑅𝑥). It is

denoted as (2.10) and bounded in the standard [4] as given in equation (2.11).

𝐿𝑛
𝑅𝑥 = 𝑇𝐿𝑛

𝑅𝑥 (2.10)

𝑇𝐿𝑛
𝑅𝑥 ≤ 150𝜇𝑠 + 𝑑𝑛

𝑅𝑥 (2.5) (2.11)

2.1.4. Switch

AFDX nodes are usually combined in a star topology. AFDX switches can be in

contact with up to twenty-four nodes [30]. These contacts might be either with an end-

system or another switch, but it is a one-to-one connection. Switches use

configuration/routing tables to relate port IDs with VL-IDs and route relevant frames

through interested destination ports [24]. An AFDX switch is responsible for traffic

policing, frame filtering and switching.

Figure 2.5 Switch – End-System Connections

Frame filtering is used to eliminate invalid frames. It checks frames integrity which

means the validity of FCS field in Table 2.1, frame size which should not exceed certain

limits ([𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥] 𝑜𝑟 [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥]) and frame path which is required to be a valid,

10

permitted VL-ID. Traffic Policing is used to keep bandwidth bounded and the token-

bucket algorithm ensures that. The details about the token-bucket algorithm is discussed

in chapter 2.1.4.1. After filtering and policing, frames are classified according to their

priorities that can either be HIGH or LOW. Then they are forwarded to the related output

ports according to the VL-port mappings stated in the configuration table. Finally, frames

leave the switch if the line is not busy or stored in queues until line becomes available.

Here, a queueing latency may step-in. This and other latencies are discussed in the next

chapter.

2.1.4.1 Token Bucket Algorithm and Switch Jitter

AFDX Standard [4] proposes a token-bucket algorithm for traffic policing. In this

algorithm, AFDX switch keeps an account 𝐴𝐶𝑖(𝑡) in bytes for each 𝑉𝐿𝑖 (2.12). The credit

𝐴𝐶𝑖 is bounded by sigma (𝜎𝑖). In time 𝑡 some credit that is proportional to rho (𝜌𝑖 is

earned (2.14) where 𝜌𝑖 is the allowed average data stream rate on 𝑉𝐿𝑖 for a 𝐵𝐴𝐺𝑖 window

(2.13). With every message passing, some credit is consumed with a certain amount

which depends on the traffic policing type; byte-based or frame-based. The Equation

(2.15) shows the frame-based policing, Equation (2.16) shows the byte-based policing. In

case there aren’t enough credits, the frame in subject will be dropped [31].

𝜎𝑖 = 𝑆𝑖
𝑚𝑎𝑥 × (1 +

𝐽𝑖
𝑠𝑤𝑖𝑡𝑐ℎ

𝐵𝐴𝐺𝑖
) (2.12)

𝜌𝑖 =
𝑆𝑖

𝑚𝑎𝑥

𝐵𝐴𝐺𝑖
 (2.13)

𝐴𝐶𝑖 = 𝐴𝐶𝑖 + 𝜌𝑖 × 𝑡 (2.14)

𝐴𝐶𝑖 = 𝐴𝐶𝑖 − 𝑆𝑖
𝑚𝑎𝑥 𝑖𝑓 𝐴𝐶𝑖 > 𝑆𝑖

𝑚𝑎𝑥 (2.15)

𝐴𝐶𝑖 = 𝐴𝐶𝑖 − 𝑆𝑖 𝑖𝑓 𝐴𝐶𝑖 > 𝑆𝑖
(2.16)

The tricky part in token-bucket algorithm is the switching jitter (𝐽𝑖
𝑠𝑤𝑖𝑡𝑐ℎ ∀ 𝑉𝐿𝑖). It is

described as the time window that a frame is guaranteed to be placed in and it can be

related to the previous frames. When the time difference between successive frames is

constant i.e., jitter is zero, the maximum credit value (𝐴𝐶𝑖) can raise up to 𝑆𝑖
𝑚𝑎𝑥 (Figure

2.6). However, in a non-zero jitter case, the maximum credit will always be greater than

𝑆𝑖
𝑚𝑎𝑥. This will enable the token-bucket algorithm to handle a moment when a frame

comes early due to this jitter (Figure 2.7).

11

Figure 2.6 Traffic at Traffic Policing when Jitter = 0

Figure 2.7 Traffic at Traffic Policing when Jitter ≠ 0

2.1.4.2 Latencies in an AFDX Switch

During the journey of a frame throughout the switch, it faces certain latencies such as

queueing latency, technological latency, frame transmission time and inter-frame gap.

Technological latency (𝑇𝑠𝑤) is due to transmission times in switch fabric, it is related with

the hardware and bounded with 100 µ𝑠𝑒𝑐. AFDX switches have output buffers for each

output port and zero input buffers [32]. When there are multiple frames directed to the

same port, queueing latency (𝑇𝑄) emerges due to this loading. The time required to

transmit the frame on the medium is the frame transmission time finally, the inter-frame

gap (𝑇𝑚𝑖𝑛𝑔𝑎𝑝
) is the minimum slot that must remain between two successive frames. It is in

seconds and evaluated as 12B at C bps.

12

2.1.5. End-To-End Delay

End-to-end delay is a quite important metric when working with AFDX or any other

avionics protocol. It consists of the sum of latencies in end-systems and switches and

transmission times in between [33]. On the other hand, this delay defines the total amount

of delay that a frame will face and it is used when setting up an avionics architecture.

Hence it is crucial to know end-to-end delays before realizing an avionics network.

2.1.6. Little’s Law

Little’s law is a quite simple mathematical formula and yet its paper [34] is one of

the most cited papers ever [35]. In this paper it is proven that, for a queueing system in the

equilibrium, the average number of items (𝐿) must be equal to the average wait time (𝑊) in

the queue times the average arrival rate into the queue (λ). The Little’s Law is given in

equation (2.17). It can be applied to any queueing systems of all kinds such as people

waiting for a coffee in a queue, products in a manufacturing line or messages queued in a

network. The only assumption for this law is what goes in must come out.

𝐿 = 𝑊 ∗ λ (2.17)

 This law is considered to be important for this thesis because it will be used to

evaluate some experimental results when verifying the model.

2.1.7. Confidence Interval

Confidence interval (CI) can be described as a range for estimates of a certain

parameter that is unknown. It is computed to estimate the population mean based on the

sample mean and a designated confidence level is specified when computing it such as

95% or 99% [36].

 When modeling a system in a simulation environment to have an opinion about the

behavior in advance, it is crucial to collect enough data and obtain results that reflect the

real application. It is not likely to get true mean (µ) since simulation cannot be run forever.

However, it is possible to say that the sample mean 𝑦𝑛 is within %Δ band of the true mean

µ with a confidence level of g% where n goes to infinity. Confidence g is calculated by

equation (2.18 where 𝑆𝑛 is the standard deviation for n samples, 𝑡𝑔 is a constant that can

be selected as 1.96 or 2.58 for designated confidence levels 95% or 99% respectively. The

network configuration and analysis tool (ANCAT) proposed in this thesis in further

chapters is able to calculate CI with both levels and uses it to justify its computations.

13

%Δ =
𝑆𝑛 × 𝑡𝑔

𝑦𝑛 × √𝑛
 (2.18)

3. PREVIOUS WORK

3.1. OMNeT++ and Other Network Simulation Tools

OMNeT++ is a powerful discrete event simulation environment for modeling

communications networks of numerous different domains. It is intended to be used for

research purposes mostly hence under APL license it is free to use for non-profit users.

Instead of providing major simulation components OMNeT++, provides basic tools to

write a functioning simulation [37]. For many specific areas, OMNeT++ community

developed frameworks/packages containing certain models of popular protocols. For

example, the INET framework contains comprehensive models of the internet that are

handling the protocol from physical to application layers and for both wired and wireless

networks [17]. Whereas Mobility Framework includes implementation of some ad-hoc

network models [38].

Providing a whole simulation ecosystem is not only a key feature of OMNeT++ but

this is what distinguishes OMNeT++ from other network simulators such as NS [37]. In

addition to that, OMNeT++ presents a hierarchical structure with a modular architecture

and different user interface options. Most importantly it offers all these features with a

lower complexity when compared to its peers [12].

To create simulations in OMNeT++, C++ and NED (NEtwork Description)

languages are used. With *.ned files, the structure of the model is established. Each block

in the network, connections between them and even the network itself are defined by so

called simple and compound modules in a hierarchical order. In addition to that,

configuration parameters can be defined and evaluated with default values in *.ned files.

While *.ned files are providing a huge flexibility to OMNeT++ when defining the

topology, in another network simulation tool OPNET, the models always use a fixed

topology [39]. OMNeT++ provides class libraries in C++ and it is also used to define the

functional behavior of the blocks when simulation is running. When OMNeT++ is

compared to NS-2 and OPNET is terms of simulation libraries, NS-2 has less built-in

functions and OPNET simulation library is in C instead of C++ which is more modular an

modern which makes OMNeT++ more powerful than both in terms of libraries [39].

14

Furthermore, it is possible to interfere in the simulation behavior by using *.ini

files. The *.ini files are not needed to be compiled and they can be used to re-evaluate

the parameters that are defined in the *.ned file. Thus, it is possible to set up a simulation

and compile it once, then change the configuration by just modifying the *.ini file. NS-

2 and NS-3 also rely on C++ for simulation behavior [11]. But in NS-2 oTcl scripts are

used to control the simulation and specify other aspects such as topology. oTcl scripting

was preferred to reduce recompilations and save time in the past but that design choice

influences simulation performance negatively [40]. That is why the oTcl scripts left their

places to python scripts in NS-3 [12].

OMNeT++ provides a much more integrable, reusable and flexible architecture with

less complexity when compared to the other open-source network simulation tools like NS-

2 and NS-3 [12], [13]. It is open-source and free for non-profit users instead of OPNET

[37]. It is constantly getting updates, properly documented and has a big community that is

growing and contributing. It has a very good and easier to follow graphical interface when

compared to NS-2, NS-3 and OPNET [16]. Due to all these reasons, OMNeT++ is

preferred over other network simulation tools.

3.2. Other AFDX Simulation Models

Over the years, AFDX has been simulated with different tools such as NS-2,

OPNET, Net2Plan, MATLAB/Simulink, QNAP2 (Queueing Network Analysis Package)

and OMNeT++ in a multitude of works. In these previous works, AFDX is modeled with

different tools by mimicking essential behaviors with the blocks at hand. Some essential

metrics are recorded and results are compared with either realistic or theoretical results in

order to authenticate the simulations.

The simulation in [41] is one of the oldest among all examples. In this work, QNAP2

which is a modelling environment that facilitates building, solving and handling queueing

problems [42], is used to model an AFDX network. To simulate the behavior of different

AFDX blocks, specialized queues are used and simulation results are validated by

comparing them with the results calculated with Network Calculus [43]. Although it is

theoretically verified, the simulation is run with only one topology which has only one

switch.

15

There are several models that are established with NS-2 such as [9] and [8]. In these

works, atomic AFDX behaviors are modeled with built-in ethernet elements. In [9], a

network with two switches and several end-systems is investigated in terms of end-to-end

delay and jitter where similar experiments are diversified with data flows of various

priorities under different scheduling strategies in [8].

One of the most popular network simulators, OPNET is used to simulate AFDX as

well. AFDX is modeled by using built-in OPNET blocks in [10], [27] and [25]. A topology

including eight switches and nine end-systems which has been examined before in another

paper [10]. In a similar fashion, the network in the [27] is also selected from a previous

work that was examining a real-life scenario. In both works, the simulation is verified by

comparing results with mentioned previous works. On the other hand, in [25], the effect of

redundancy is examined by comparing a non-redundant network with a dual redundant

one.

The work in [31] is unusual than the other works because real-time data is used to

feed the simulation in that network. The main purpose of the proposed model is to verify

some aircraft system functions without constructing an expensive AFDX network in

hardware. For that purpose, an AFDX model is established in MATLAB/Simulink with

modified built-in blocks and with the help of some additional physical tools, an AFDX

network that is composed of real and simulated elements is constructed. Simulation is

verified and benchmarked with three different scenarios.

In another paper [44], AFDX performance is evaluated over a model created in an

open-source tool called Net2Plan. Net2Plan is used to plan and optimize networks and

besides obtaining actual values with simulation, it is able to calculate worst case end-to-

end latencies via Network calculus and trajectory approach [45]. In this paper, experiment

is conducted for a complex network with eight switches and more than 70 LRUs.

Finally, OMNeT++ is used several times to simulate AFDX before OMNeT++

model [19] is published. Both [16] and [13] have benefited from the ease of using

OMNeT++ INET model [17]. Due to the fact that AFDX and TTEthernet have a lot in

common, the TTEthernet library of INET is used to create an AFDX simulation in [16] and

this model is verified by comparing the results with previous works in [46] and [47]. On

16

the other hand, in [13] the AFDX model that is already verified and presented in [16] is

used and simulation results are investigated.

3.3. OMNeT++ AFDX Simulations

AFDX is modeled with an OMNeT++-like program before [19] and improved in

another thesis for the sake of another work [48]. Before discussing the contributions and

development carried out over this model in the scope of this thesis, the original model and

previous works will be explained in this chapter.

3.3.1. OMNEST Model

The first AFDX model was built by OMNEST team for one of their clients [18].

OMNEST is the commercial version of OMNET++ and it is open source as well. Apart

from licensing, support and some other small features, they are nearly identical and can be

used as substitutes for each other. When building this model, the OMNEST team

considered using the blocks/components that are already available such as INET [17] and

queueinglib [49]. Since Ethernet needs of AFDX are pretty simple, using INET would

bring out a lot of questions that they are not interested in answering. To avoid additional

complexity and possible performance issues, Ethernet and other higher protocol layers

such as IP, TCP and UDP are not implemented. On the other hand, queueinglib was

highly beneficial and it is used to model different functionalities in AFDX model. These

uses are investigated in the following paragraphs.

Figure 3.1 Example AFDX Network

17

An example AFDX network setup is given in Figure 3.1. Two main components of

an AFDX network i.e., end-system and switch, are modeled with compound modules. The

end-system module is responsible for message creation, BAG regulation, queueing and

multiplexing, redundancy management and integrity checking. Whereas the switch module

is responsible for frame filtering, traffic policing, queueing (at the transmitting end only),

priority classifying, scheduling and routing. The OMNEST team mentioned some future

work in the project summary [18]. In short, even though there are some unimplemented

features in this model, it is highly comprehensive and useful.

In an OMNeT++ network, messages floating between blocks can either be in raw

types such as cMessage or cPacket or complex types that are derived from them, such

as Job. Both cMessage and cPacket contains variables that a network message

expected to have such as, length, ID, creation time, priority, classification, type etc. where

additionally cPacket messages consume time when transmitting through Ethernet lines.

In this OMNEST AFDX Model, queueinglib is used as an auxiliary library.

Today, queueinglib is under version control but the version that is used in OMNEST

AFDX model was an intermediate release and thus, not published. In the queueinglib

version used in this model, all blocks send and receive messages in type Job that is

derived from the raw type cPacket.

Figure 3.2 AFDX Message Format

In OMNEST AFDX model, a message type called AFDXMessage (Figure 3.2) that

is derived from Job of queueinglib is used. This message type contains AFDX

specific fields such as source MAC address fields (network ID, Equipment ID, interface

ID), destination MAC address fields (virtual link ID), UDP Structure fields (source and

18

destination port numbers), IP Structure fields (partition ID) and sequence number that are

described in Table 2.1

3.3.1.1 End-System

Figure 3.3 End-System Compound Module

End-system compound module is connected to the Ethernet line by two bidirectional

ports, one is for network A and the other is for network B. It can be logically divided into

two: receiving end and transmitting end (Figure 3.3). Transmitting end involves message

creation, scheduling, redundancy management and transmitting MAC operations, where

receiving end handles integrity and redundancy checking and receiving MAC operations.

The performance metrics that are explained in 2.1.3.1 or in other words, delaying

elements in an end-system, are modeled in this model as well, but not entirely.

Configuration latency (2.9) and technological latency (2.8) that are forming the

transmission latency (2.7) are only partially handled. In terms of configuration latency, the

jitter that emerges due to the scheduling (2.6) is introduced by txQueue-MAC blocks

(3.3.1.1.1.4). But since BAG regulation (3.3.1.1.1.2) is missing in this model,

configuration latency is inadequate. In terms of technological latency, the constant part of

the equation that denotes the load-free hardware-dependent technological delay is not

handled. Finally, the contention/transmission delay that is caused by previously sent

19

frames is simulated by the transmission line itself (that mimics ethernet cable) with

combination of txQueue-MAC blocks (3.3.1.1.1.4).

Generally, the blocks in this end-system model are not VL-aware because this model

doesn’t support multiple traffic sources. Hence, only one VL type is transmitted through an

end-system in each run.

3.3.1.1.1 Transmitting End

3.3.1.1.1.1 Traffic Source

trafficSource block is inherited from the Source block of the

queueinglib library. A Source block is responsible for creating Jobs by the

specified rate, with pre-defined inter-arrival times and until a certain time or number of

events is reached. These specified values are configuration parameters of this block (Table

3.1) and they must be specified either in *.ned or *.ini files. Note that these

parameters are generic parameters for traffic specification. A trafficSource creates

messages just like Source does but its output is AFDXMessage instead of Job. Thus in

addition to the values listed in Table 3.1, it needs AFDX frame fields (Table 2.1) to be

defined in *.ini or *.ned file in order to create the message. trafficSource

doesn’t discriminate against VL-IDs. It creates and schedules new AFDXMessages with

the values specified in configuration in a superficial order.

Table 3.1 Traffic Source Configuration Parameters

Parameters Definition

interArrivalTime(s) Time difference between successive messages

startTime(s) Time that indicates the creation of the first message

stopTime(s) Time that indicates the creation of the last message

jobCounter Maximum number of messages to be created

Figure 3.4 shows the Source.ned file parameters section that contains

parameter definitions with default values. Figure 3.5 shows the actual value assignments of

those configuration parameters consisting of AFDXMessage fields (Figure 3.2) and Job

fields i.e., jobPriority and jobKind.

20

Figure 3.4 Configuration Parameters in Source ned File

Figure 3.5 Configuration Parameters and AFDX Message Fields in *.ini File

3.3.1.1.1.2 Regulator Logic

RegulatorLogic is a block that is designed specifically for the AFDX Model. It

should be responsible for introducing BAG into frame sequences of each VL-ID

separately. But it is not implemented.

If this block would be implemented, the first part of the configuration latency (2.9)

that arises from the BAG regulation, should be introduced by this block. Additionally, it

might be needed to be VL-aware because BAG values are VL specific and shall be

introduced on a per VL-basis.

3.3.1.1.1.3 Redundancy Controller

This block has two duties in terms of redundancy management. First duty is to

increment the sequence number and returns to one when it reaches up to 255. Second duty

21

is to duplicate of each message to be able to send them to both networks A and B.

Redundancy shall be enabled/disabled by the configuration[4]. Thus, this block has some

configuration parameters (Table 3.2.) to satisfy that requirement.

RedundancyController is not VL-aware and does not introduce any delay.

Table 3.2 Redundancy Controller Configuration Parameters

Parameters Definition

copyToLinkA (bool) Enables network A

copyToLinkB (bool) Enables network B

3.3.1.1.1.4 Tx Queue and MAC

txQueue is an object of type PassiveQueue from the queueinglib. When a

PassiveQueue receives a message, it looks for an idle Server among its connections

to direct the message. If one or many servers are available, it selects one and sends the

received message. If there aren’t any selectable servers i.e., all servers are busy with

transmitting previous messages, the received message gets pushed to the queue. If a

connected server makes a pull request before a new message reception, the pushed

message gets popped and sent to the owner of the request.

 MAC is inherited from the Server of the queueinglib library. Due to the

inheritance, MAC can interact with PassiveQueue objects as a Server. In addition to

that, it handles the interaction with the physical layer. When an “idle” server receives a

message from the end-system input, it changes its state from “idle” to “reserved”, it sends

the message through the Ethernet output port to the physical line if the line is not busy, it

waits for an additional IFG time, then changes its state to “idle” again but if the previous

message transmission was not concluded yet, simulation stops with an error. Since a server

changes its state to “reserved” from the beginning of a transmission until it is concluded

successfully, this shouldn’t happen in the best practice. If the line is busy, messages are

kept in the queue until it becomes available again and thus, a frame-

transmission/contention delay will be introduced. This delay is also explained in chapter

2.1.3.1.2 as a part of the technological latency equation (2.8).

These two blocks are working together to fulfil the multiplexing-part of the

scheduling mission of an end-system. VL-IDs are not important for txQueue-MAC pair

because at this point, all frames will be in tandem and must be treated equally. If the ability

22

of adding multiple traffic sources was implemented for the cases similar to the one shown

in the Figure 2.4, incoming parallel frames would be queued by and sent over one by one,

by the txQueue-MAC pair but that is also not implemented.

3.3.1.1.2 Receiving End

3.3.1.1.2.1 MAC

The duties of the MAC block are much simpler in the receiving-end. If a message is

received from the Ethernet input, it gets directed to the end-system by the related port

directly. This block doesn’t introduce any delay and is not VL-aware.

3.3.1.1.2.2 Integrity Checker

In an AFDX end-system, integrity check shall be done by using the Equation (2.4).

The integrityChecker in this simulation, examines the sequence number, compares

the SN of the received frame with zero, (𝑃𝑆𝑁 + 1) and (𝑃𝑆𝑁 + 2) and decides whether it

is appropriate or not. This block should be VL-aware but it is not. This may cause a

mismatch when checking previous sequence numbers. This block doesn’t introduce any

delay.

3.3.1.1.2.3 Redundancy Checker

This block is responsible for eliminating redundant frames. It has two input ports:

one from network A and one from network B. Sequence numbers of successive frames

must be increasing all the time. So, if two successive frames have the same sequence

numbers, one of them must be the redundant copy and thus it is dropped. This is how the

redundancyChecker eliminates redundant frames. In addition to that, there is a time

control with “skewMax” constant. If sequence number is not incremented as expected but

the time difference between the current and the last frames is larger than the “skewMax”,

then this frame is not treated as a redundant frame and sent over. This block should be VL-

aware but it is not. This may cause a mismatch when checking the time difference between

successive frames. This block doesn’t introduce any delay.

23

3.3.1.2 Switch

Figure 3.6 Switch Compound Module – Open Form

The Switch module is composed of two main components (Figure 3.6):

SwitchPort and SwitchFabric. There is one SwitchPort block for each actual

port where there can be up to noOfPorts amounts of ports but a typical AFDX switch is

expected to have 24 ports. To explain the switch internal structure better, Figure 3.7 is

added.

In the switch module of OMNEST AFDX model, the only behavior that VL-

awareness is necessary is traffic policing but it is not implemented. Thus, none of the

blocks in this module is VL-aware. txQueue-MAC blocks are expected to insert queueing

delay. But other latencies mentioned in chapter 2.1.4.1 are not modeled in this version such

as hardware latency and inter-frame gap.

24

Figure 3.7 Switch Compound Module – Open Form

3.3.1.2.1 Switch Port

Figure 3.8 Switch Port Compound Module – Open Form

SwitchPort compound module is connected to the Ethernet line and

SwitchFabric by bidirectional ports (Figure 3.7). Switch port handles the interactions

with the physical layer, performs frame filtering and traffic policing (Figure 3.8).

3.3.1.2.1.1 TxQueue and mac

These two blocks are the same as the ones mentioned in the end-system (3.3.1.1.1).

25

3.3.1.2.1.2 Frame Filter

This block is expected to check frames’ according to the chapter 2.1.4 to avoid

invalid frames to consume credit in later blocks. But it is not implemented in the OMNEST

AFDX Model. Hence this block transparently directs the received frames.

3.3.1.2.1.3 Traffic Policy

This block is expected to apply the token bucket algorithm according to chapter 2.1.4

before directing the frames. But it is not implemented in the OMNEST AFDX Model.

Hence this block transparently directs the received frames.

3.3.1.2.2 Switch Fabric

Figure 3.9 Switch Fabric Compound Module – Open Form

SwitchFabric compound module has noOfPort amount of input and output

ports which are connected to each SwitchPort block. This block is responsible for

priority-based frame classification, scheduling and VL-routing.

3.3.1.2.2.1 Priority Classifier

priorityClassifier is a Classifier from the queueinglib. It

evaluates incoming messages by considering the assigned “priority” values and directs

them to the appropriate output.

3.3.1.2.2.2 Queues and Scheduler

scheduler is a Server from the queueinglib where lowQueue and

highQueue are PassiveQueues. This server-passive queue pair has the same behavior

and responsibility as the ones in the End-System (3.3.1.1.1.4) and Switch Port (3.3.1.2.1.1)

26

3.3.1.2.2.3 Router

This block is a VLRouter. It is expected to read the VL-table and route messages

by considering it to the appropriate ports. But it is partially implemented. It doesn’t read a

configuration table but there is a tiny algorithm that mimics a configuration table and it

routes the messages by considering it.

3.3.2. Improvements Over OMNEST Model

OMNEST AFDX model provides a good insight but it has inadequacies. Within the

design and evaluation of SQDSR, a new real-time ethernet protocol, this AFDX model is

converted into a more realistic one and used for a comparative performance analysis [48].

The improvements made within the scope of the mentioned thesis will be summarized in

this chapter.

3.3.2.1 Technological Latencies

Technological latencies are not modeled in the original model although they are quite

important when calculating end-system and switch latencies and they contribute to the

determinism of the network [4]. In [48], three queueinglib delay blocks are added to

simulate technological latency in transmitting end-system (2.1.3.1.2), receiving end-system

(2.1.3.1.3) and switch (2.1.4.1). Actual delay values are configuration parameters and can

be modified by *.ini and/or *.ned files.

3.3.2.2 Multiple Traffic Source Capability

In a real AFDX network it is very likely for an end-system to have multiple traffic

sources. In fact, a multiplexing behavior is incorporated into the nature of AFDX for such

a case. Although it was possible to add multiple sources in the previous model, it requires

change in the code and thus wasn’t a configuration parameter. With the changes in [48],

the trafficSource object in the end-system compound module is transformed into an

array with a configurable size. Thus, both single and multiple traffic sources became

available and configurable by the *.ini/*.ned file but this contribution comes with a

necessity of VL awareness for the blocks that need to distinguish VL-IDs. Due to multiple

sources, messages with different VL-IDs can be generated in the same end-system and in

some cases such as the time difference between the last frame received matters, each

message of different VL-ID must be handled separately. The blocks that are affected by

this change are RegulatorLogic, redundancyChecker,

RedundancyController and TrafficPolicy.

27

3.3.2.3 BAG Regulation

Although one of the main features of AFDX is BAG regulation as mentioned in

chapter 2.1.2, it is not implemented in the original model. In [48], the

handleMessage(..) function that is called whenever a message is received by the

RegulatorLogic block is modified and as a result this block gained ability to control

the flow by considering BAG values stated in the *.ini/*.ned file. When this

modification is mixed with the one in chapter 3.3.2.2, a VL-awareness need arises.

Because to control the flow, this block keeps the transmission time of previous frames of

each VL and won’t let new ones to go before at least a BAG time interval is passed.

3.3.2.4 Traffic Policing

AFDX switches, control the bandwidth and shape the traffic with a token bucket

algorithm hence traffic policing is very important. But traffic policing functionality is

missing in the very first version of AFDX model. In the thesis mentioned [48], the token

bucket algorithm is implemented. For that sake, the handleMessage(..) function is

modified. In the new model, each time a new message is received, message reception time

is saved, the time difference between the previous message reception is calculated, already

possessed, obtained and spent credits are calculated and a decision is made whether to drop

the frame or let it go. Due to the fact that having multiple sources is available now

(Chapter 3.3.2.2) all these values are kept in per-VL variables.

3.3.2.5 VL Router

Routing packets according to a routing/VL table was the expected behavior and this

was listed as a “to do” in the OMNEST website [18]. As a part of the work in [48], routing

tables that used to match VLIDs with switch port numbers are added for each switch to the

model and VLRouter modified accordingly. With this change, it is possible to specify the

message paths without changing the code manually. An example VL-table can be seen in

Figure 3.10.

28

Figure 3.10 Routing Table Example

3.3.2.6 Other Small Changes

Aside from the ones listed below, there are some other small changes. For example, a

new parameter called frameHeaderLength is added. In the old model, the variable

packetLength was used to set the length of a message. With this new parameter,

summation of both is used to set the message length. This modification enables to set

payload length apart from the header length. Additionally, BAG value is added among

message parameters and can be set via *.ini/*.ned file. Moreover, as a result of the

change mentioned in Chapter 3.3.2.2, redundancyChecker and

RedundancyController classes became VL-aware. Because they both need to keep

track of sequence numbers and since there are multiple sources, keeping previous sequence

numbers in a single variable is not enough. In the scope of this change, the variables that

are used to keep previous sequence numbers are changed into arrays.

For the sake of the work in [48], a new class called NetworkStatistics is

added. It is used to keep necessary measurements and it is called in several places

alongside the project such as PassiveQueue, Sink and Source classes in the

queueinglib.

29

4. AFDX SIMULATION MODEL

One of the main contributions of this thesis is to develop a better, more realistic,

more easily configurable and up to date OMNeT++ AFDX simulation model. The latest

AFDX simulation model at hand is developed in [48]. However, since the main concern of

that thesis wasn’t AFDX and due to the limited time, there were some deficiencies in the

represented mode. In addition to that, OMNeT++ and its libraries such as queueinglib

have faced major updates over time. Therefore, some obligatory and reformative

modifications are made to the model at hand.

4.1. New Network Statistics Class

OMNeT++ environment provides users with some functions to keep records of

interested metrics. Such as the record(double value) function from an internal

library coutvector. With this function, it is possible to record all of the values that a

certain variable takes during the simulation with respect to simulation time. After

simulation is finished, it is possible to plot recorded values within the IDE or export in

*.csv format.

Changes in the scope of [48], bring to AFDX model a new singleton pattern[50] class

called NetworkStatistics. This class has some specific functions such as

CollectStatisticsLatency(..) or CountGeneratedPackets(..) which

calculates certain statistics by collecting certain values. Although those functions are useful

for that work, they are quite application specific.

For the interests of this thesis, NetworkStatistics is renewed. The purpose of

the modifications in this class is to make record keeping much more generic. Simply, there

are two main functions: one is to create a new unique record keeper

(createRecord(recordType, key)) and the other is to add a new value to the

record vector in it (record(recordType, key, value2Record)). These

functions must be called with an enum that defines the record type and a unique key.

Record types are defined by considering the main metrics to be recorded and given in

Figure 4.1. Values with the same unique key and record type will be collected in the same

record vector. These two functions use types and functions of the built-in library

coutvector whose example usage is demonstrated in Figure 4.2.

30

Figure 4.1 Record Types in NetworkStatistics Class

Figure 4.2 Call Examples for NetworkStatistics Functions

4.2. New Queueing Library

On April 13th, 2022, OMNeT++ 6.0 became available [51]. The queueinglib

used in the AFDX Model was so old that it wasn’t even possible to build the code in the

newly released version. Partially due to that difficulty and also due to the fact that a much

never version of queueinglib was released with the update 6.0 [52], the

queueinglib used in the AFDX model is replaced with the new one.

In the first AFDX model (3.3.1) queueinglib was included in the project under a

subfolder inside the project itself, not handled separately. This the case for the work in [48]

as well. However, it was an external library that is handled and updated by another party.

Thus, in the latest model, queueinglib is added to the workspace as a separate library

project and referenced in the AFDX project. By separating two projects, AFDX project

becomes more resistant to changes in the queueinglib.

31

In previous AFDX models, queueinglib was seen as a part of the project and

some changes are made in this external library. For example, application specific record

calls are added manually. Since a logical separation is intended in the new model, those

changes in the queueinglib are removed. Instead, a recommended method is used. In

the samples library provided by OMNeT++, there is a project called

queueinglib_ext[53].In this sample project, how to create new classes by

extending queueinglib is explained. With this method, it is not only possible to use the

functionality of the current functions, but also extend that functionality. For the interests of

this thesis, it is needed to extend Source and Sink classes to add

NetworkStatistics function calls. Hence Source_ext and Sink_ext are

created. There is one exception to this method. There are so many moments needed to be

recorded in the PassiveQueue class of the queueinglib. That’s why, instead of

extending it, PassiveQueue is copied from the queueinglib and modified. This can

be fixed in the future.

As described in chapter 3.3.1, in the old queueinglib version that is used in the

old AFDX model, Jobs that are derived from raw type cPacket were floating through

blocks. But unfortunately, in the latest version the parent class is changed from cPacket

to cMessage (Figure 4.3). cPacket was preferable because it consumes time

according to the message length when transmitting through Ethernet line unlike

cMessage. To solve this problem quickly, Job is changed back to the way it was and

derived from cPacket. This is the only change that is made over the external

queueinglib library. Although it is intended to keep the original queueinglib

untouched, this change was inevitable with current knowledge. This problem could be

solved in the future.

32

Figure 4.3 Old (Top) and Latest (Bottom) Job Classes

4.3. Changes In integrity Checker

The expected behavior from an AFDX integrity checker is to control PSN according

to the equation (2.4). Although in the AFDX model that is used in [48], Integrity

Checker checks only whether the SN is smaller than 255 or bigger than zero, it is fixed

in the scope of this thesis and PSN check is added.

4.4. Changes In Traffic Policy

In the previous version of the AFDX model, for the sake of the work in [48], some

specific VL-IDs were specially handled in this block. That code blocks are removed.

Additionally, rho and sigma values that are explained in chapter 2.1.4.1 were calculated

over and over at each term which is unnecessary and inefficient. Thus, rho and sigma are

added as configuration parameters and their calculations are retained to the user in the

newest version. Finally, when the token bucket algorithm results in a credit shortage, the

previous version of the simulation was stopped with an error. It is modified to take record

instead of stopping.

4.5. A New Connection Type: Cable

When creating a simulation with OMNeT++, it is possible to connect blocks by using

regular channel or DatarateChannel. The difference is that simulation time progresses

33

when cPackets are transmitted through DatarateChannel. In other words,

DatarateChannel can be considered as a realistic connection where the regular one is

a more symbolic connection with infinite connection speed. Almost all the connections

within the end-system and the ones within the switch are regular. On the other hand, the

ones that model real, physical connections such as end-system – switch connections are

DatarateChannels.

The built-in type DatarateChannel has several parameters such as delay (in

sec) that symbolizes the propagation delay and data rate (in bps) which is the bus speed.

Propagation delay is calculated with cable length and wave propagation speed (2𝑒8 m/s). It

is not very convenient to expect a propagation speed from the user. Thus, in this new

connection type that extends DatarateChannel (Figure 4.4), cable length is

included as a parameter and propagation delay is calculated internally. A similar approach

was also followed in INET type EtherLink [54].

Figure 4.4 New Connection Type Cable

4.6. Changes In Message Types and Source Structure

By considering the industry needs, a major modification is made. In old versions,

there was a trafficSource and it was creating AFDXMessages. But in order to be

able to run a more realistic scenario, trafficSource is divided into a

messageSource and an AFDXMarshall and instead of the regular channel these two

blocks are connected with the new connection type Cable that is described in chapter 4.5

. The old and new structures are demonstrated in Figure 4.5.

34

Figure 4.5 Old (Top) and Latest (Bottom) Source Structures

As a result of these changes, messageSource became a more generic message

source that extends queueinglib type Source. It sends a message of type called

SubsystemMessage which does not have any AFDX specific fields and its length is set

only by considering payload length. On the other hand, AFDXMessage contains all the

AFDX specific fields and its length is set by considering payload length plus other AFDX

related overheads. For a better understanding, two message fields are shown in Figure 4.6.

35

Figure 4.6 Subsystem (Top) and AFDX (Bottom) Message

After a SubsystemMessage is created and sent from messageSource,

AFDXMarshall converts SubsystemMessage into a AFDXMessage and fills it by

using configuration parameters set from *.ini/*.ned file. By these changes,

messageSource and cable elements together can mimic a real partition, for instance a

sensor sending data from RS485 in any data rate such as 115200 bps.

In addition to these changes, rho, sigma and three other simtime_t parameters are

added. Rho and sigma are added due to the changes in TrafficPolicy and

simtime_t parameters are added for record purposes.

4.7. A New Type: ConnDef and New Network Definition

Aside from some inadequacies, a major motive behind these improvements is to

make this simulation more configurable and make it useful for those who are not familiar

with the OMNeT++environment. In this regard, many hard coded parameters converted to

configuration parameters and hence almost every characteristic of a network became

36

configurable. But here is one characteristic that is really hard to alter without changing the

code itself, network topology. Network topology is defined with connections between end-

systems and switches. In an AFDX model, this is defined by the connections section

of the network *.ned file. In short, to modify the topology, *.ned file of the network

must be configured. Although OMNeT++ is a really flexible environment and it allows

certain parameters of *.ned file to be configured via *.ini file, it is not as easy to alter

connections through in the same way. This chapter explains the key enhancement that

enables network topology to be configurable.

A new type called ConnDef is added which is an acronym for “Connection

Definition”. This type is used to define a connection between blocks therefore it contains

parameters to define each end of the connection. There can only be two ends for a

connection and the blocks at each end can either be a switch or end-system. As a bonus,

cable length of the connection is also added among other fields. ConnDef is demonstrated

in Figure 4.7.

Figure 4.7 A New Type: ConnDef

In order to make network topology configurable, the *.ned file that defines the

AFDX network is modified accordingly. Two new configuration parameters are added for

the number of switches and number end-systems. End-systems and Switches are converted

into arrays of variable sizes. For each end-system – Switch connection, a ConnDef block

is added, which is also an array with size of [number of switches + number of end-systems

- 1]. When defining the connections, parameters of ConnDef are used which is the actual

tricky part. Finally, all the configuration parameters mentioned and fields of ConnDefs

are filled from *.ini file. By this way, network topology became configurable by *.ini

file only. The resulting network is named as “Auto Network” and described with

AutoNetwork.ned file. It can be reviewed from the GitHub repository [20].

37

Not to forget, to make the simulation run properly, routing tables shall also be filled

by considering the topology. Although it is easier than changing the code and recompiling

it every time, there are still some works to do for the user such as creating an appropriate

*.ini file and routing tables. To ease this procedure as well, a new network configuration

tool named as ANCAT is proposed in this thesis. ANCAT will be explained in upcoming

chapters is proposed.

4.7.1. Other Small Changes

Major improvements are listed above. Here, remaining smaller changes are

summarized.

1. The per-VL queue inside the RegulatorLogic was unlimited. By considering

the industry needs, this queue became upper-bounded.

2. After the latest update, unconnected ends started to give compile-time errors.

There was a loose end in the connections of priorityClassifier in the

SwitchFabric. The Classifier block of the queueinglib has multiple

ports such as inputs (in[]) for entering packets, outputs (out[]) for classified

output packets and a rest output for the packets there are not able to be

classified. priorityClassifier’s inputs were connected to each

SwitchPort and outputs were connected to lowQueue and highQueue.

Which remains the port rest unconnected. To solve the issue,

allowunconnected keyword is added to the connections section of

SwitchFabric.ned.

3. VLRouter.cc class is used to contain a code section that drops certain kinds of

messages with a certain possibility. This was added for a specific application

about the work in [48] and it is removed since there is not a generic approach.

Addition to that, code is slightly optimized and the routing table name became a

configuration parameter.

4. redundancyChecker is modified by considering code readability.

5. Some redundant parameters and code blocks are removed all over the project and

comments are added.

6. Deprecated functions are either removed or modified.

7. To keep record of a pre-defined set of metrics, NetworkStatistics function

calls are added all over the project. Such as, MAC (For ES scheduling time and

38

switch entry/exit moments), PassiveQueue (For switch queueing metrics),

Source_ext (For creation times), RedundancyController and

RegulatorLogic (For BAG latency)

5. PROPOSED NETWORK CONFIGURATION AND ANALYSIS

TOOL FOR AFDX (ANCAT)

In this thesis, a new network configuration and analysis tool for AFDX is proposed.

A strong motivation of this thesis is to present an easily configurable simulation. The

modifications made in the AFDX simulation model makes it easier to configure the

simulation by using *.ini file. But changing *.ini file still requires some OMNeT++

experience. Reviewing simulation results also requires familiarity to OMNeT++

environment similar to the input configuration.

To save the user from that burden, a python-based tool ANCAT is proposed. It

simply takes simulation configuration in a generic format such as *.xlsx, runs the

simulation from the command shell and creates a report by processing simulation results.

All users need to do is to prepare an “input.xlsx” file and run the batch file after specifying

some important paths such as the location of the AFDX Simulation or OMNeT++ files.

 ANCAT is composed of one batch file named “ANCAT_run.bat” and three python

scripts that are called “PreProcessor.py”, “SimProcessor.py” and “PostProcessor.py”

(Figure 5.1).

Figure 5.1 ANCAT components

The batch file named as ANCAT_run.bat is responsible for calling python scripts by

specifying required options/paths. PreProcessor reads the input file then creates *.ini file

39

and routing table(s). Outputs of PreProcessor are created under the AFDX simulation

folders. SimProcessor runs the simulation via command line interface and recording files

(*.vci, *.vec) are created as a result. Finally, PostProcessor creates a report by using

recording files. This process is demonstrated with a block diagram in Figure 5.2.

Figure 5.2 ANCAT Logical Block Diagram

5.1. PreProcessor and Input File

The AutoNetwork.ini file is the backbone of the simulation. PreProcessor creates the

*.ini file and the routing table(s) and put them under the specified folder which is

expected to be the “simulations” folder in the AFDX Simulation (Figure 5.3). Number of

routing tables depends on the number of switches in the network configuration and its

format is demonstrated in Figure 3.10.

40

Figure 5.3 AFDX Model “simulations” Folder

 Preprocessor fills the *.ini file partially with the information provided in the input

configuration file, partially with some constant data. For example, some lines are added to

enable/disable certain records or indicate the network name. In addition, there are some

variables that don’t affect the simulation behavior but needed to be specified. Lines for

those variables are also created by the Preprocessor itself. The constant lines of both types

that are created for an example *.ini files are demonstrated in Figure 5.4 and Figure 5.5.

Figure 5.4 An Example Ini File – General Network and Record Settings Section

Figure 5.5 An Example Ini File – Simulation Constants

41

For the other lines, the input *.xlsx file that is composed of four pages is used.

The detail of each page is summarized below:

1. Instructions: Includes summarized explanations about each page of the input file

and an example table demonstrating page 4 (Message Set).

2. Topology: The information contained in this page are used to define the lines

about the connections between end-systems and switches in the *.ini file. Each

end of the connections in the network shall be defined with cable lengths here. In

addition to that, each end is supposed to be named according to their types such

as “ES<n>” for end-systems and “SW<n>” for switches where “n” indicates the

index and cable length shall be stated with a unit such as “m”. An example

topology page can be seen in Figure 5.6 and resulting *.ini file section is

demonstrated in Figure 5.7.

Figure 5.6 ANCAT Input File – Topology Page

Figure 5.7 An Example Ini File – Connection Definitions Section

3. Settings: This page contains general settings and constants such as, technological

delays, ethernet speed, skew max and the size of the per-VL queue in

RegulatorLogic. Figure 5.8 shows a setting page of an example input file

and Figure 5.9 demonstrates the resulting *.ini file lines.

42

Figure 5.8 ANCAT Input File – Settings Page

Figure 5.9 An Example Ini File – AFDX General Settings Section

4. Message Set: This is the most crowded page and contains an entry for each

intended message source. By using the values stated in this page, the newly

created SubsystemMessages and AFDXMessages are filled with. Hence this

page includes detailed AFDX message information such as VL-ID, Partition ID,

BAG, payload length, rho and sigma. In addition to those, some message source

specific information is provided here. Simulation metrics such as start and stop

times and cable length between messageSource and AFDXMarshall can

be given as examples. Moreover, the information about source and destination

end systems (Source ES and Destination ES) are combined with the ones in the

Topology page. With this data, graphs are generated and the shortest paths

between end-systems are obtained by using the Dijkstra Algorithm [55] to create

VL-Routing tables. An example Message Set page is demonstrated in Figure

5.10. The resulting *.ini file lines are more than one page long. A small

portion of them are shown in Figure 5.11.

43

Figure 5.10 ANCAT Input File – Message Set Page

Figure 5.11 An Example Ini File –AFDX Message Settings Section (Cropped)

5.2. Python Script Options and Batch File

The three python scripts require some paths or file names to be given as inputs.

These paths and file names are used in the scripts to get the input files or to put the outputs

in. Detailed information about these options is reachable to the user by “-h” command line

option which is demonstrated in Figure 5.12, Figure 5.13 and Figure 5.14. As can be seen

in the figures, PreProcessor needs input configuration file location and output file location

to be specified. SimProcessor requires OMNeT++ installation and AFDX Simulation

folders. Finally, PostProcessor needs the location of recording files, location and name for

the output report. In addition to the listed options, it is possible to affect the behavior of the

44

script with specified flags which is not mandatory. Detailed information about these flags

is demonstrated in Figure 5.14.

Figure 5.12 PreProcessor Help (“-h”) Printout

Figure 5.13 SimProcessor Help (“-h”) Printout

45

Figure 5.14 PostProcessor Help “-h” Printout

These needed paths must be provided by the user but to make the process easier,

place holders are used in the batch file. The first six lines of the batch file are added to get

the required location of certain files that depend on the user settings and assign them to

relevant place holders. After that, the batch file runs the python scripts with place holders.

An example batch file content is shown in Figure 5.15.

Figure 5.15 Example Batch File

5.3. Output

After simulation is completed, data that is recorded during the session are saved in

record files in *.vec and *.vci formats and put under the folder “results” automatically

(Figure 5.16). Finally, ANCAT takes these record files, processes them and creates a

report.

46

Figure 5.16 AFDX Model “results” Folder

There are three types of records with respect to key values that they are grouped

under, per-VL, per-Switch and combined. The keys for per-VL records are VL-IDs and the

keys for the per-Switch records are switch indexes. But the combined ones are a little more

complicated. There are some records that are needed to be grouped under more than one

characteristic. For example, token-bucket credits being recorded only per-VL doesn’t tell

much. Because this record will show combinations of credit values in all switches i.e.,

without separating each switch. Let’s say, there is a message from a certain VL-ID and it

passes through more than one switches. Thus, token-bucket credit records will be taken

each time this message enters a switch and these records will be combined together since

this record doesn’t distinguish switches. Finally, the resulting record will be showing credit

management of different switches in the same batch which is meaningless. Therefore, "the

key for credit records is defined as a combination of VL-ID and Switch index. Another

example is the end-to-end latency. There is one per-VL end-to-end latency record. But this

record groups only the end-to-end latencies with respect to the VL-IDs. If one VL is

directed to multiple destination end-systems, this record will be showing a combination of

end-to-end latencies recorded in different destinations. Thus, another record is added to get

end-to-end latencies of messages arriving at each destination end-system per VL-ID and to

do that, the key is defined as a combination of VL-ID and destination end-system index.

The information that is contained in the recording files can listed as below:

Per-VL Records:

- End-to-End Latency

47

- ES BAG Latency

- ES Scheduling Latency

- ES Total Latency

- Switch Queueing Time

- Dropped Frames in Queue

- Dropped Frames Count at TrafficPolicy

Per-Switch Records:

- Switch Queueing Time

- Switch Queueing Length

Combined records:

- Token-Bucket Credit (Per-VL + Per-Switch)

- End-to-End Latency (Per-VL + Per-Receiver ES)

- Switch Queueing Time (Per-VL + Per-Switch)

- Switch Queueing Time (Per-SW + Per-Port)

- Switch Queueing Time (Per-SW + Per-Port + Per-VL)

- Switch Queue Length (Per-VL + Per-Switch)

Output results report is composed of three main parts. “Overall Statistics”, “Per-

Switch Statistics” and “Per-VL Statistics”. Each statistics is explained in detail below.

1. Overall Statistics: This part summarizes all results. The first page shows some

general quantities such as “Overall Frame Count”, “Overall Simulation Time”,

“Overall Dropped Frame Count” and “Overall Dropped Frame Percentage”.

Aside from these, it gives maximum and mean values and confidence intervals

(Chapter 2.1.7) of all the metrics that are recorded. The remaining pages of this

section show overall metrics. For example, where per-VL metrics are plotted for

all VL-IDs together per-switch metrics are plotted for all switches together.

2. Per Switch Statistics: This part demonstrates records per-switch and some of the

combined records separately for each switch

3. Per VL Statistics: This part demonstrates records per-VL and some of the

combined records separately for each VL-ID.

48

6. AFDX MODEL VERIFICATION TESTS

Presented AFDX model is verified based on the experiment results and their

theoretical results computed-on-paper to see if they comply with them or not. In each

experiment, a network topology is designed and one or more scenarios are defined with

message characteristics (BAG, period, message length, sigma, rho, etc.). To evaluate the

simulation, certain aspects (time, packet count, etc.) are recorded at some points marked in

Figure 6.1. The experiments are executed with the contributions of ANCAT. The metrics

and plots that are mentioned in the following chapters are extracted from the records and

interpreted by the tool itself.

Figure 6.1 Record Points

6.1. Experiment 1: Regulator BAG Enforcement

Figure 6.2 Experiment 1 – Topology

This experiment’s objective is to demonstrate the BAG regulation behavior of the

model. There are two end-systems in this network. ES0 is sending messages while ES1 is

49

receiving them. Three scenarios will be held in this experiment and the main distinction

among them is the relations between inter-arrival times and BAG values. The values that

are given in Table 6.1 are simulation constants and Table 6.2 presents scenario specific

parameters.

Table 6.1 Experiment 1 – Simulation Constants

Definition Value

Start time of the simulation 0 s

Stop time of the simulation 1 s

End-system technological latency 32 us

Switch technological latency 4 us

Table 6.2 Experiment 1 – Scenario Characteristics

Scenario # Of VLs Inter-arrival time (msec) BAG (msec)

1

1

1 0.5

2 0.5 1

3 1±𝑟𝑎𝑛𝑑1(0,0.2) 1

To assess the results, two aspects will be investigated. One is the time difference

between end-system output (t1 in Figure 6.1) and message creation time (t0 in Figure 6.1)

which is the total end-system latency. The other is the frequencies of specified ranges i.e.,

histograms for inter-arrival time values that are measured at message creation (t0 in Figure

6.1) and after BAG regulation (t2 in Figure 6.1). Since there is only one VL in this

experiment, messages will not be facing any jitter. Only delaying element will be the BAG

regulation.

To interpret the simulation results, latencies and inter-arrival times will be reviewed

for each scenario. In terms of end-system latency, the difference “t1 – t0” i.e., total end-

system latency will be investigated and for the inter-arrival times, measured time

differences at MessageSource (Δt0) and RegulatorLogic (Δt2) will either be

represented textually or with tables.

1 rand: random. It depicts a random number generator function that creates random numbers between

0 and 0.2.

50

6.1.1. Scenario 1

In this scenario, message creation period is bigger than the BAG. Therefore, it is

expected to see that messages are leaving the end-system in the period that they are

created. Regulator will not be introducing any additional delay. Thus, messages will not be

facing BAG latency and total end-system latency will be equal to end-system technological

latency.

In fact, simulation results are conforming these expectations. At the end of the

simulation, one thousand packets are created and then reached to the sink. When the

difference between successive measurements of t0 and t2 values are calculated separately,

they appeared to be equal as expected. Moreover, measured end-system latency values are

equal to the technological latency as expected. Results can be seen in Table 6.3.

Table 6.3 Time Difference Measurements

Time differences (Δt, msec) Frame

Count Expected Measured

Creation (Δt0) 1 1 1000

After BAG Regulation (Δt2) 1 1 1000

Overall End-System Latency (t1 – t0) 32 (= tech. latency) 32 1000

6.1.2. Scenario 2

In this scenario, the message creation period is smaller than the BAG, one half of it

to be exact (Period = BAG/2). Even though this approach does not comply with the best

practice, it is used to assess the behavior of the simulation model in a data burst situation.

It is expected to see that for every two messages created in each BAG slot, only one

message will be sent. This will result in an overload and this experiment will last twice of

the expected duration i.e., two seconds.

At the end of this simulation, 2000 packets are created and then reached to the sink.

Even though the difference between successive measurements of t0(at source) is 0.5 msec,

the difference between successive t2(after BAG regulation) measurements is 1 msec, i.e.,

BAG, as expected. This difference is due to the BAG regulation; every one out of two

messages are delayed until BAG in the RegulatorLogic block.

51

Table 6.4 Time Difference Measurements

Time differences (Δt, msec)

Frame Count
Expected Measured

Creation (Δt0) 0.5 msec 0.5 msec 2000

After BAG Regulation (Δt2) 1 msec 1 msec 2000

Figure 6.3 shows the total end-system latency and Figure 6.4 provides a closer look.

Since the messages are created in a higher pace than the BAG, after the first message, each

one must wait for the BAG regulator to allow them to go. While the first message is

delayed by 32 µs (as technological latency), the succeeding messages are delayed more

and more, cumulatively. This behavior can be seen in the Figure 6.3, the latest frame is

facing with a latency of one second. As opposed to the Scenario 1; the simulation is

concluded at t = 2s instead of t = 1s.

Figure 6.3 Scenario 2 - Total End-System Latency – Close Up

Figure 6.4 Scenario 2 - Total End-System Latency

6.1.3. Scenario 3

In this scenario, inter-arrival times of each message are varying around the BAG

with a uniform random distribution. Accordingly, inter-arrival time will be both bigger and

smaller than the BAG occasionally during the simulation. This may result in momentary

overloads but the simulation is expected to be balanced and does not take additional time.

52

Figure 6.5 clearly indicates that messages are created in the expected paces. Whereas

in the Figure 6.6, all frames are regulated according to the BAG and the smallest time

difference between successive frames becomes 1 msec as expected. Remaining two tiny

bins in Figure 6.6 show the frames with inter-arrival times higher than BAG.

Figure 6.5 Scenario 3 – Inter-arrival Time Histogram at Creation

Figure 6.6 Scenario 3 – Inter-Arrival Time Histogram After BAG Regulation

Since there are frames faster than BAG, this topology presents a behavior similar to

the one in Scenario 2 in the moments where inter-arrival times are smaller than the BAG.

This attitude shows up in Figure 6.7 with increasing values of latency. On the other hand,

the frames with inter-arrival times bigger than or equal to the BAG, behave in a fashion

similar to the ones in Scenario 1 and drain-out the overloaded frames. That is why,

simulation is still finished at about one second unlike Scenario 2 and Figure 6.7 has a lot of

ups and downs.

53

Figure 6.7 Scenario 3 – Total End-System Latency

6.2. Experiment 2: End-System Jitter

Figure 6.8 Experiment 2 – Topology

The purpose of this experiment is to examine the end-system jitter that is explained

in chapter 2.1.3.1.1. The topology is given in Figure 6.8 and the simulation constants in

Table 6.1 are binding for this experiment as well. As for scenario characteristics, Table 6.5

is added. In the table, the value given under the transmission time can also be viewed as

contention delay which is calculated by using Equation (2.5) where C is taken 100 Mbps.

Table 6.5 Experiment 2 – Scenario Characteristics

of VLs Inter-arrival time (msec) BAG (msec) S (bytes) Transmission Time (µs)

4 1 1 1250 100

In this experiment, there are messages of four different VLs that are leaving their

source at the same time. Since inter-arrival time is equal to the BAG and they have

different VL-IDs, each batch of messages will pass through the regulator block without

getting queued. As a result, messages of four VLs will arrive at the queue of the “MAC

block at the same time. The MAC block which is responsible for handing over the messages

to the physical line, must wait before the previous message is completely transmitted.

54

Thus, even though messages from four VLs arrive at the MAC’s queue simultaneously, they

will wait for each other and jitter with an amount of transmission time will be introduced.

For jitter measurement, the time difference between the message creation (t0 in

Figure 6.1) and end-system output (t1 in Figure 6.1) are recorded when they are about to

leave the end-system. The total end-system latency plot is given in Figure 6.9 and the

actual values are listed in Table 6.6 for a more readable demonstration.

Figure 6.9 Experiment 2 – Total End-System Latencies

Table 6.6 Experiment 2 – Total End-System Latencies

VL-ID ES Latency

1 0.000032

2 0.000132

3 0.000232

4 0.000332

As can be seen in Figure 6.9 and Table 6.6 while the first message is facing with a

technological latency only, the other are delayed as technological latency plus total

transmission time of the all previous messages as denoted in the equation (2.6).

6.3. Experiment 3: Account Management

The purpose of this experiment is to monitor the behavior of the TrafficPolicy block,

i.e., the token-bucket algorithm by playing with the switch jitter. As described in chapter

2.1.4.1, the token-bucket algorithm is used to control the bandwidth. If two successive

frames of the same VL are intended to be sent too close to each other, the second one

couldn’t gain enough credit and get dropped as in the equation (2.14). Normally, the time

difference between two messages of the same VL is controlled in the end-system with

BAG. However, sometimes due to additional delays caused by multiple end-systems, VLs

55

or switches, two messages might get closer than they should. In that case, it is expected to

switch to police that traffic.

Figure 6.10 Demonstration – Network Topology

To demonstrate this issue, let us assume that there are three end-systems in a

network, one is transmitter (ES0), and the other two are receivers (ES1 and ES2). There are

‘n’ VLs leaving the ES0 and while one of them is addressed to ES1, the other ‘n-1’ ones

are addressed to ES2. Network and VLs are denoted in Figure 6.10. For the sake of the

demonstration, inter-arrival time (ti) for VL1 is selected as 1 msec and 3 msec for all the

other VLs.

56

Figure 6.11 Demonstration – Message Traffic at Switch Input

In every three msecs, ‘n-1’ messages of other VL-IDs in addition to the one message

of VL1 (frame B) will be entering the switch and causing a delay to VL1. The next

message after this turn will be a message of VL1 (frame C) and the time difference

between two VL1 messages will be shorter than BAG due to the contention. By

considering the amount of credit, frame B will be dropped or not. This expected behavior

is visualized in Figure 6.11.

Figure 6.12 Experiment 3 – Topology

57

Table 6.7 Experiment 3 – Scenario Characteristics

of VLs
Inter-Arrival

Time (msec)

Transmission

Time (µs)
BAG (msec)

S

(bits)

Rho

(Mbps)
Sigma (bits)

1 1
100 1 10000 10

15000, 20000

6 3 15000

In this experiment, the previously explained demonstration will be run by the AFDX

simulation with 7 VLs (n = 7), the characteristics of which are given in Table 6.7 and the

topology given in Figure 6.12. If the scenario given in Figure 6.11 is considered together

with these characteristics, the transmission of successive frames from each VL is expected

to take 700 usec in total which coincides with the time interval [t2-t1]. The BAG value is

also marked in the Figure 6.11 with time interval [t3-t1] and it is equal to 1000 usec.

Therefore, the time difference between two successive VL1 frames, i.e., [t3-t2], must be

300 usec. The derivations are given with equation (6.1).

Total transmission time = 𝑡2 − 𝑡1 = 7 ∗ 100 = 700 usec

𝐵𝐴𝐺 = 𝑡3 − 𝑡1 = 1 𝑚𝑠𝑒𝑐 = 1000 𝑢𝑠𝑒𝑐

𝑡3 − 𝑡2 = 1000 − 700 = 300 usec (6.1)

Token-bucket algorithm is computed with these timings for the frames that are

denoted as A, B, C and D and for two different sigma values that are given Table 6.7. The

expected results for sigma = 15000 and sigma = 20000 are given in Table 6.8 and

respectively. The moment that packet drop is expected to happen is marked with red in

Table 6.8. In a regular token-bucket computation, token value cannot be negative and in

case of obtained token is less than the token that is needed to be spent, the frame is

dropped. But for simplicity, packet drop is represented with a negative remaining credit.

Table 6.8 Experiment 3 – Credits when Sigma = 15000 bits

Tokens (bits)
Frame A

 (t = 1 msec)

Frame B

(t = 0.3 msec)

Frame C

(t = 1.7 msec)

Frame D

(t = 1 msec)

Initial 15000 5000 8000 10000

Obtain-ed 10000 3000 17000 10000

Total 15000 8000 15000 15000

Remaining 5000 -2000 5000 5000

58

Table 6.9 Experiment 3 – Credits when Sigma = 20000 bits

Tokens (bits)
Frame A

 (t = 1 msec)

Frame B

(t = 0.3 msec)

Frame C

(t = 1.7 msec)

Frame D

(t = 1 msec)

Initial 20000 10000 3000 10000

Obtained 10000 3000 17000 10000

Total 20000 13000 20000 20000

Remaining 10000 3000 10000 10000

After the simulation is executed with the mentioned characteristics, results are

processed and following figures are obtained (Figure 6.13 and Figure 6.14). There might

be insignificant differences between computations and simulation outputs because small

time differences like IFG are not considered in the theoretical derivations for simplicity.

But even so, simulation results are fully satisfying the expectations. The frame drop

moments are shown with negative spikes in the simulation results and as expected they are

only seen in the (sigma = 15000) scenario. Graphs are very close to the theoretical traffic

graph (Figure 6.11) and the values are almost the same as the computations (Table 6.8).

Figure 6.13 Experiment 3 – Change in Credit for Sigma = 15000 bits

Figure 6.14 Experiment 3 – Change in Credit for Sigma = 20000 bits

59

6.4. Experiment 4: Switch Latency and Queue Management

Figure 6.15 Experiment 4 – Topology

The purpose of this experiment is to investigate the behavior of the AFDX switch by

using Little’s Law (2.1.6). The topology is given in Figure 6.15 and the simulation

constants in Table 6.1 are binding for this experiment as well. As for scenario

characteristics, Table 6.10 is added. To be able to apply the Little’s Law, packet drops

must be hindered. Since the purpose of this experiment is to investigate the queueing

behavior not traffic policing, sigma is intentionally set to a value that is bigger than

necessary to prevent any packet drops.

Table 6.10 Experiment 4 – Scenario Characteristics

of VLs Inter-arrival time (msec) BAG (msec) S (bytes) Sigma

4
1±𝑟𝑎𝑛𝑑(0,0.2) 1 1250 5*S

4

Three metrics are needed to apply Little’s Law. First one is the average number of

items in a queue (𝐿). This can also be expressed as the average queue length of the switch

and measured in the txQueue block by counting entering/exiting frames which is marked

in the Figure 6.16 with “𝐿” in red. The second parameter is the average queueing time (𝑊)

which can also be expressed as the time difference for a frame between entry and exit

moments in and out of the queue. In this experiment, the time difference between entry and

exit points are calculated and recorded at the txQueue block when frames are leaving the

queue. The measurement points are marked with labels “tin” and “tout” in Figure 6.16. The

third and final parameter is the average frame rate (λ). Since this simulation setup is

specifically designed to assess the switch behavior and there are no packet drops, all

frames follow the same path through the switch until the Sink block. Hence average

60

frame rate is calculated with the total number of frames arriving at the Sink divided by

the total simulation time which is the time of the latest frame entering to the Sink.

In the current setup, since there are 8 different VLs with 1msec of BAG, it is

expected to see an average frame rate of 8 frames/msec. Hence average queue length per

average queueing time shall give approximately 8 frames/msec to satisfy the equation

(2.17).

Figure 6.16 Experiment 4 – Measurement Points

 The simulation results given in Table 6.11 presents the essential metrics for Little’s

Law. With total frame count and total simulation time, the average frame rate (λ) is

evaluated as 7945.32 frame/second or 7.94 frame/msec which is approximately equal to 8

frame/msec as anticipated. Moreover, the calculations given in (6.2) clearly show that the

modeled AFDX switch satisfies Little’s Law as expected. The results also proves that the

measurements recorded at the switch are valid and accurate.

Table 6.11 Experiment 4 – Simulation Results

Total Frame Count 8019

Total Simulation Time 1.0092 sec

Average Queue Length (𝐿) 0.3035 frames

Average Queueing Time (𝑊) 38.202 usec

0.3035 =
?

38.202𝑒−6 ∗
8019

1.0092

= 0.3035 ∎ (6.2)

61

6.5. Experiment 5: Skew Max Control

The purpose of this experiment is to show the behavior of AFDX Model when a

redundant frame is delayed more than skewMax. The expected behavior is explained in

chapter 2.1.3. In this experiment the topology (Figure 6.15) and characteristics (Table

6.10) used in Experiment 4 (Chapter 6.4) will be used. Additionally, skewMax is selected

as 10msec.

To be able to demonstrate that case, a test block is added to the end-system module

between integrityCheckers and redundancyChecker that is called

skewMaxTester. This block has two inputs and two outputs. It manipulates the traffic

of frames with a certain VL-ID but for all other frames, it is transparent. It directs frames

received from integrityCheckerA to redundancyChecker’s inA port and

integrityCheckerB to redundancyChecker’s inB port. Connections and

placement can be seen in Figure 6.17.

Figure 6.17 Experiment 5 – Skew Max Tester Block in End-System

If the received frame’s VL-ID is equal to one, skewMaxTester will operate. It

will delete certain messages in order to widen the time difference between successive

frames. After more than 10 msec passes, it will resend the latest frame and it is expected

from redundancyChecker to accept this frame one more time. Because messages

received after a time difference more than skewMax should not be considered as a

redundant frame even though they are the same.

62

Figure 6.18 Experiment 5 – Simulation Logs

The simulation logs listed in Figure 6.18 can be investigated under three main

sectors. First sector is in green and the third sector is in red. Second sector is in orange and

composed of three parts which are marked with 2.1, 2.2 and 2.3 respectively.

63

 First sector shows the regular flow. skewMaxTester forwards two frames with

SN-49 directly to redundancyChecker where they are either accepted or deleted.

This sequence is repeated for all the frames other than the ones in between SN-50 and SN-

65.

Second sector shows the sequence that is added to trigger skewMax behavior. In the

part marked with 2.1, the first frame of SN-50 is forwarded which is coming from

network-A and the one from network-B is deleted. In the part marked with 2.2, the

following 14 frames from both network-A and network-B are also deleted and finally, in

the part marked with 2.3 the latest frames’ sequence numbers are changed from 65 to 50. It

can be seen that redundancyChecker accepted its last frame at t = 0.054 (s) and after

all the deletes, the next frame will be sent in t = 0.067 (s). Thus, a time difference of more

than 10 msec is being created.

In the final sector in red, redundancyChecker receives the frame with SN-50

one more time after 13 msec from network-B and it accepts after the skewMax control and

it got back to the regular flow.

7. MODEL PERFORMANCE EVALUATION IN REALISTIC

CONDITIONS

7.1. Flight Management System Experiment

Integrated modular avionics (IMA) is investigated over a realistic AFDX case study

in [56]. A flight management system (FMS) is presented and certain metrics are procured

both theoretically and by modelling. After that, the same network is modeled and studied

via OPNET in [27].

In the scope of this experiment, a network is created, run and documented with the

help of ANCAT by using topology and characteristics used in [27] and [56]. The network

created in OMNeT++ is demonstrated in Figure 7.1. ES0 block represents a module

containing Keyboard Unit (KU) and Multi-Function Display (MFD) subsystems inside as

well as ES1. ES2 and ES3 are Flight Manager (FM) modules. ES4 and ES5 modules

contain Air Data Inertial Reference Units (ADIRU) which are gathering data from ES6 and

ES7 namely Remote Data Centers (RDC). Not to mention, RDCs are connected with

appropriate sensors. Finally, ES8 is Navigation Database (NDB) and it sends

latitude/longitude data when requested.

64

Figure 7.1 Flight Management System Network

Network characteristics that are given in Table 7.1 are gathered from the referenced

works. In [56] data length is denoted with S however length of the smallest message in the

mentioned thesis is 512 bits/64 bytes which is the smallest possible value of L (L and S

concepts are explained in chapter 2.1.1). Since S is 20 more than L, this is not possible.

Therefore, data lengths are taken as L instead of S. Moreover, length of one of the

messages in [56] is 700 bits, which doesn’t seem sensible because 700 bits of length means

87.5 bytes. To solve that problem, the latency calculations in [27] are investigated and it is

discovered that in those calculations, message length of that particular message was taken

as 800 instead of 700.

After the topology and characteristics extracted from the papers, ANCAT input excel

is prepared and simulation is executed. In the paper [27], end-to-end latencies for three

selected VL’s and for two different types of switches were presented. The difference

between switches is denoted by switch technological latency. For SW-type1 it is given as

140 usec where for SW-type2 16 usec. In Table 7.2 the results obtained from OMNeT++

AFDX model are compared to the ones obtained from OPNET in [27]. As expected, results

are corroborative on behalf of AFDX OMNeT++ Model.

65

Table 7.1 Flight Management System Characteristics

VL-ID
Source

ES

Destination

ES
S (byte)

BAG

(msec)

Period

(msec)

Rho

(Mbps)

Sigma

(bits)

0x1 ES0 ES2, ES3 95 32 50 0.02375 761.1875

0x2 ES1 ES2, ES3 95 32 50 0.02375 761.1875

0x3 ES2 ES0 [145-645] 8 60 0.645 5192.25

0x4 ES2 ES8 145 16 60 0.0725 1163.625

0x5 ES3 ES1 [145-645] 8 60 0.645 5192.25

0x6 ES3 ES8 145 16 60 0.0725 1163.625

0x7 ES8 ES2 520 64 100 0.065 4163.25

0x8 ES8 ES3 520 64 100 0.065 4163.25

0x9 ES6 ES4 84 32 60 0.021 673.05

0xA ES7 ES5 84 32 60 0.021 673.05

0xB ES4 ES2, ES3 120 32 60 0.03 961.5

0xC ES5 ES2, ES3 120 32 60 0.03 961.5

Table 7.2 Flight Management System Comparison of Results

VL-ID

End-to-End Latency (usec)

SW-type1 SW-type2

Safwat et al.[27] Proposed Model Safwat et al.[27] Proposed Model

0x7 477 442 194 194

0x9 154 151 33 27

0xB 492 454 92 82

7.2. Commercial Avionics Architecture Experiment

A real network architecture and message set that is supplied from a commercial

avionics company is investigated in [48]. In the scope of that thesis, mentioned architecture

is implemented with both AFDX and the proposed protocol SQSDR (Shared Queue based

Dynamic Slot Reservation). Implementations are conducted over OMNeT++ simulations.

While SQSDR is modeled with INET framework [17], for AFDX, an improved version of

the existing AFDX OMNEST model (Chapter 3.3.1) is used. The AFDX model that is used

in [48] and improvements over OMNEST model for that sake are explained in Chapter

3.3.2. After the simulations are conducted, resulting end-to-end latencies and queue

metrics are compared to assess the behavior of SQSDR compared to AFDX.

66

In this chapter, the same network is implemented with the same configurations

mentioned in [48] to verify the behavior of the proposed AFDX model. Moreover, after

reviewing the simulation results, network configuration is revised to improve outcomes.

The proposed network contains many avionic subsystems such as sensors, actuators,

controllers and data loggers. It has 23 end-systems and 2 switches and it is modeled in

Figure 7.2. First 10 end-systems are connected to Switch-0 and the remaining 13 are

connected to Switch-1. Technological latencies of switch and end-systems are taken as 50

usec. Simulation is executed for 10 secs and the time that messages are started to be sent

are specified randomly (rand(0, 5ms)). The connection assignments are determined by

considering the physical placements of end-systems in the actual architecture. Similarly, all

message characteristics that are listed in Table 7.3 are inherited from the real-world set-up.

Figure 7.2 Proposed Network in [48]

67

Table 7.3 Message Characteristics of [48]

Periodic

(P) or

Sporadic

(S)

VLID
Source

ES
Destination ES BAG Period

Payload

Length

P 0x1000 ES0 ES14, ES19 4ms 5ms 100

P 0x1100 ES1 ES14, ES19 4ms 5ms 200

P 0x1200 ES2 ES14, ES19 4ms 5ms 100

P 0x1300 ES3 ES14, ES19 4ms 5ms 200

P 0x1400 ES4 ES14, ES19 4ms 5ms 200

P 0x1500 ES5 ES14, ES19 4ms 5ms 200

P 0x1600 ES6 ES14, ES19 4ms 5ms 100

P 0x1700 ES7 ES14, ES19 4ms 5ms 100

P 0x1800 ES8 ES14, ES19 4ms 5ms 100

P 0x1900 ES9 ES19 1ms 5ms 1471

P 0x1900 ES9 ES19 1ms 5ms 1471

P 0x1900 ES9 ES19 1ms 5ms 1471

P 0x1900 ES9 ES19 1ms 5ms 587

P 0x2000 ES10 ES14, ES19, ES22 1ms 1ms 250

P 0x2100 ES11 ES14, ES19, ES22 1ms 1ms 750

P 0x2200 ES12 ES14, ES19, ES22 32ms 50ms 750

P 0x2300 ES13 ES14, ES19, ES22 32ms 50ms 750

S 0x2400 ES14 ES19 4ms rand(0s, 2*5ms) 100

P 0x2500 ES15 ES14, ES19, ES22 4ms 5ms 200

P 0x2600 ES16 ES14, ES19, ES22 4ms 5ms 200

P 0x2700 ES17 ES14, ES19, ES22 4ms 5ms 100

P 0x2800 ES18 ES14, ES19, ES22 64ms 100ms 1000

S 0x2A00 ES20 ES19 1ms rand(0s, 3*2*4.21ms) 1316

S 0x2A01 ES20 ES19 1ms rand(0s, 3*2*4.21ms) 1316

S 0x2A02 ES20 ES19 1ms rand(0s, 3*2*4.21ms) 1316

S 0x2B00 ES21 ES19 1ms rand(0s, 3*2*4.21ms) 1316

S 0x2B01 ES21 ES19 1ms rand(0s, 3*2*4.21ms) 1316

S 0x2B02 ES21 ES19 1ms rand(0s, 3*2*4.21ms) 1316

P 0x2C00 ES22 ES14, ES15, ES19 4ms 5ms 200

P 0x2C01 ES22 ES14, ES16, ES19 4ms 5ms 200

P 0x2C02 ES22 ES14, ES17, ES19 4ms 5ms 100

P 0x2C03 ES22 ES14, ES19, ES0 4ms 5ms 100

P 0x2C04 ES22 ES14, ES19, ES1 4ms 5ms 200

68

Periodic

(P) or

Sporadic

(S)

VLID
Source

ES
Destination ES BAG Period

Payload

Length

P 0x2C05 ES22 ES14, ES19, ES2 4ms 5ms 100

P 0x2C06 ES22 ES14, ES19, ES3 4ms 5ms 200

P 0x2C07 ES22 ES14, ES19, ES4 4ms 5ms 200

P 0x2C08 ES22 ES14, ES19, ES5 4ms 5ms 200

P 0x2C09 ES22 ES14, ES19, ES6 4ms 5ms 100

P 0x2C0A ES22 ES14, ES19, ES7 4ms 5ms 100

P 0x2C0B ES22 ES14, ES19, ES8 4ms 5ms 100

P 0x2C0C ES22 ES14, ES18, ES19 64ms 100ms 1000

To verify the proposed AFDX model, the simulation is executed with the given

topology (Figure 7.2) and message characteristics (Table 7.3). The results are compared

with the ones presented in [48]. As can be seen in Table 7.4, results are consistent.

Table 7.4 End-to-End Latencies for Sporadic and Periodic Messages

End-to-End Latencies

Atik[48] Model Proposed Model

Sporadic
Mean 1.21 msec 1.426 msec

Max 24.118 msec 21.133 msec

Periodic
Mean 0.335 msec 0.309 msec

Max 3.72 msec 2.634 msec

In this network, there are both periodic and sporadic messages. Sporadic messages

are implemented with random inter-arrival times in the previous configuration as can be

seen in Table 7.3. But when looked closely, it can be noticed that the range of the random

function starts with ‘0s’, which means messages can be generated at a rate faster than

BAG. This is not only contradicting with the nature of sporadic messages, but also

damaging the AFDX performance. A similar case is demonstrated in Scenario 3 of

Experiment 1 (Chapter 6.1.3). It is explained in that chapter that messages with a period

faster than BAG will overload the system. Hence the time that elapses for messages to

leave the end-system will be increased due to BAG regulation. In other words, this is a

design mistake. Besides, having an end-to-end latency around 20 msecs when BAG is 1 or

4 msec shows the seriousness of the problem. Although the network is quite loaded, it can

be seen in the simulation results that, the queueing times in the switch for sporadic

69

messages are much lower than the elapsed time in the end-system (Table 7.5) which shows

that end-system latency is the one having a major share in the end-to-end latency instead of

the switch latency. Therefore, it is fair to say that the end-to-end latency that these

messages are facing are caused by the faulty design. In addition to that, sporadic messages

shall not come faster than their period. Thus, they are generated with inter-arrival times

varying between the specified period and a bigger value.

Table 7.5 ES and Switch-1 Latencies for Sporadic Messages (Old Configuration)

VL-ID
ES Latency (msec) SW Latency (msec)

Mean Max Mean Max

0x2A00 0.707 5.93 0.069 0.478

0x2A01 0.659 5.586 0.069 0.449

0x2A02 0.807 8.525 0.067 0.443

0x2B00 0.742 5.993 0.067 0.443

0x2B01 0.829 7.613 0.068 0.459

0x2B02 0.774 7.661 0.069 0.43

0x2400 2.923 21.008 0.095 0.526

To make the architecture better, inter-arrival times are renewed by considering the

sporadic messages and relationship between BAGs and inter-arrival times as demonstrated

in Table 7.6. Moreover, small adjustments are done in message set. After this modification,

end-to-end latencies in sporadic messages that are given with Table 7.8 became much

smaller. Moreover, even though the queueing latencies in the switch did not get affected

significantly from this improvement, the total end-system latencies decreased around 10

times (Table 7.9). For clarity, the network with these improved characteristics is denoted as

“New Configuration” and the original characteristics that are used in Atik’s model [48] is

denoted as “Old Configuration”.

Table 7.6 Modified Message Characteristics (New Configuration)

VL-ID
BAG

(msec)

Inter-arrival Times

Old (msec) New (msec)

0x2400 4 rand(0, 2*5) rand(5, 10)

0x2A00, 0x2A01, 0x2A02,

0x2B00, 0x2B01, 0x2B02
1 rand(0, 3*2*4.21) rand(1.263, 5)

70

Table 7.7 Modified Message Destination Nodes (New Configuration)

VLID Source ES Destination ES

0x1000 – 0x1008 ES0 – ES8 ES14, ES19, ES22

0x1900 ES9 ES19, ES14

Table 7.8 Comparison of End-to-End Latencies

 End-to-End Latencies in Proposed Model

Old Configuration New Configuration

Sporadic
Mean 1.426 msec 0.419 msec

Max 21.133 msec 1.444 msec

Periodic
Mean 0.309 msec 0.414 msec

Max 2.634 msec 3.298 msec

Table 7.9 ES and Switch-1 Latencies for Sporadic Messages (New Configuration)

VL-ID
ES Latency (msec) SW Latency (msec)

Mean Max Mean Max

0x2A00 0.054 0.267 0.033 0.368

0x2A01 0.054 0.197 0.027 0.28

0x2A02 0.054 0.235 0.027 0.339

0x2B00 0.054 0.229 0.026 0.284

0x2B01 0.054 0.244 0.026 0.291

0x2B02 0.054 0.16 0.026 0.34

0x2400 0.05 0.05 0.027 0.3

In terms of switch characteristics, when the message paths are reviewed, one switch

port which is connected to the ES19 attracts the attention. It represents a data logger that is

designed to get all messages from all VLs which results in a highly loaded traffic and

hence queueing in the switch. To get an idea about the busyness in that switch port,

checking the actual bandwidth usage and maximum usable bandwidth for each message

that is directed to that port (i.e., all messages) can be useful which are calculated as S (bits)

per period and L (bits) per BAG respectively. For each switch port, total values are

calculated by summing up individual values for each message that is using the port. Most

loaded ports are listed for both new and old configurations in Table 7.10 and Table 7.11.

The small difference between two configurations is resulted from newly added destination

nodes. As can be seen in the tables, for both configurations maximum usable bandwidth

exceeds the bandwidth that the bus can provide which is 100 Mbps. Thus, this network can

71

be considered as highly loaded, which should be considered in the design phase. However,

the concern in this thesis is not investigation the original design but reviewing its

performance. That’s why, the actual bandwidths are checked which are also showing a

highly loaded (almost 80%) network.

Table 7.10 Bandwidth Requirements of Most Loaded VLs (Old Configuration)

VL-ID Ports
Actual BW Usage

(Mbps)

Max Usable BW

(Mbps)

All SW1-ES19 79.09 129.02

All except sporadic SW1-ES14 17.83 20.16

0x2500-0x2800 SW1-ES22 10.54 11.01

0x1000-0x1900,

0x2C03-0x2C0B
SW1-ES19 14.52 49.75

Table 7.11 Bandwidth Requirements of Most Loaded VLs (New Configuration)

VL-ID Ports
Actual BW Usage

(Mbps)

Max Usable

BW (Mbps)

All SW1-ES19 79.09 128.9

All except sporadic SW1-ES14 26.26 73.37

0x2500-0x2800 SW1-ES22 13.58 14.82

0x1000-0x1900,

0x2C03-0x2C0B
SW1-ES14 14.52 49.75

When queueing times are investigated, it can be seen that they are insignificant when

compared to the periods. Queueing latency plots for the mentioned end-systems are given

in Figure 7.3, Figure 7.4, Figure 7.5 and Figure 7.6 and a summary containing maximum

and average values are given in Table 7.12.

Table 7.12 SW Queueing Latencies for Highly Loaded Ports (New Configuration)

VL-ID Ports
Queueing Time (msec)

Max Mean

All SW1-ES19 0.388 0.034

All except sporadic SW1-ES14 0.146 0.012

0x2500-0x2800 SW1-ES22 0.022 0.004

0x1000-0x1900,

0x2C03-0x2C0B
SW0-SW1 0.041 0.005

72

Figure 7.3 Queueing Time for SW0-ES14

Figure 7.4 Queueing Time for SW0-ES19

Figure 7.5 Queueing Time for SW0-ES22

73

Figure 7.6 Queueing Time for SW0-SW1

Furthermore, to construct this network (Figure 7.2) in OMNeT++, a long *.ini file

composed of almost 400 lines, is required. But with the help of the proposed network

configuration and analysis tool ANCAT (Chapter 5), it is much simpler to build this

network. Instead of dealing with an *.ini file, filling certain columns of a standard

*.xlsx file saves a lot of time especially when repeating the tests with different

characteristics.

Results show that, presented AFDX Model is consistent with the previous work,

which is a real-life avionics application. In addition to that, with an improvement in the

network configuration, simulation results are changed in the positive direction. With the

proposed AFDX Model and ANCAT, it takes seconds to try different configurations and

obtain detailed results.

7.3. Custom Network Experiment

In both realistic experiments, new network configuration and analysis tool ANCAT

is used with the improved OMNeT++ AFDX Model to configure, run and analyze the

network and obtained results are compared with previous works. However, in this chapter,

a new network is established by combining topology of Flight Management System

(Chapter 7.1) and message structure of Commercial Avionics Architecture (Chapter 7.2).

By doing so, the network in Flight Management System became more loaded similar the

one in the Commercial Avionics Architecture. The intention in creating such a network is

to investigate a complicated, realistic AFDX network and to show capabilities of ANCAT

while doing so.

74

In the original FMS (Flight Management System) network, there were two user

interface end-systems containing keyboard and monitor, two flight managers (FM), two

remote data center (RDC), two inertial reference units (ADIRU) and one navigation

database. In this network, when some end-systems are sending periodic data to each other,

some end-systems are working in a command-response fashion. According to the

sequence, RDCs sends the data that is gathered from sensors to the ADIRUs and ADIRUs

direct those data to the FM after making additional calculations. On the other hand, when a

user request estimated arrival of time and distance to the target from the user interface, the

responsible end-systems sends a request to the FM which results in another request from

FM to the navigation database. Finally, FM calculates the requested information by

combining the navigational data with sensor data that are already gathered periodically and

sends to the end-system that is responsible of user interface, again periodically.

In custom network, five new end-systems are added to the existing FMS network.

These are, two cameras, one data logger and two actuators. Cameras are sending sporadic

video data that is split into three VLs each in order to not exceed the dedicated bandwidth

of a VL. Actuators are expecting some time-critical data from FMs. Lastly, the data logger

listens all messages from all VLs except from the cameras. In addition to the new end-

systems, to be able to compute required time-critical data for the actuators, 4 new fast VLs

that are transmitting data from RDCs to FMs are added. Moreover, again to be able to

compute the data that will be sent to the actuators in time, BAG and period of the VLs

between RDCs to ADIRUs are decreased. Finally, the end-system technological latency

wasn’t included in the original FMS network, thus it is set to 40 us where the original

switch technological latency that is equal to140 us is kept. The custom network that is

created by modifying the flight management system that is given in Figure 7.1.

75

Figure 7.7 Custom Network

76

Table 7.13 Message Characteristics of Custom Network

Periodic

(P) or

Sporadic

(S)

VLID
Source

ES

Destination

ES

BAG

(msec)
Period (msec)

Payload

Length

S 0x1 ES0 ES2, ES9 32 rand (50,100) 28

S 0x2 ES0 ES3, ES9 32 rand (50,100) 28

S 0x3 ES1 ES3, ES9 32 rand (50,100) 28

S 0x4 ES1 ES2, ES9 32 rand (50,100) 28

S 0x5 ES2 ES8, ES9 16 rand (60,100) 78

S 0x6 ES3 ES8, ES9 16 rand (60,100) 78

S 0x7 ES8 ES2, ES9 64 rand (100,150) 453

S 0x8 ES8 ES3, ES9 64 rand (100,150) 453

P 0x9 ES6 ES4, ES9 4 4 17

P 0xA ES7 ES5, ES9 4 4 17

S 0x10 ES6 ES2, ES9 1 rand (1,5) 1471

S 0x11 ES6 ES3, ES9 1 rand (1,5) 1471

S 0x12 ES7 ES2, ES9 1 rand (1,5) 1471

S 0x13 ES7 ES3, ES9 1 rand (1,5) 1471

P 0x14 ES4 ES2, ES9 32 40 53

P 0x15 ES4 ES3, ES9 32 40 53

P 0x16 ES5 ES3, ES9 32 40 53

P 0x17 ES5 ES2, ES9 32 40 53

P 0x18 ES2 ES0, ES9 8 40 rand(683, 1183)

P 0x19 ES3 ES1, ES9 8 40 rand(683, 1183)

S 0x20 ES10 ES0 1 rand(1.632, 5) 1316

S 0x21 ES10 ES0 1 rand(1.632, 5) 1316

S 0x22 ES10 ES0 1 rand(1.632, 5) 1316

S 0x30 ES11 ES1 1 rand(1.632, 5) 1316

S 0x31 ES11 ES1 1 rand(1.632, 5) 1316

S 0x32 ES11 ES1 1 rand(1.632, 5) 1316

P 0xB ES2 ES12, ES9 2 2 1471

P 0xC ES3 ES13, ES9 2 2 1471

P 0xD ES2 ES13, ES9 2 2 1471

P 0xE ES3 ES12, ES9 2 2 1471

77

Table 7.14 Per-Port Bandwidth Requirements of Switches

Switch
VL-IDs

Actual BW

Usage (Mbps)

Max Usable BW

(Mbps) ID Port

0

0 0x18, 0x20, 0x21, 0x22 26.53 34.44

1 0x19, 0x30, 0x31, 0x32 26.53 34.44

2 0x5, 0x6 0.038 0.145

3

0x1, 0x2, 0x3, 0x4, 0x7, 0x8,

0x9, 0x10, 0x11, 0x12, 0x13,

0x14, 0x15, 0x16, 0x17, 0x18,

0x19, 0xB, 0xC, 0xD, 0xE

74.90 77.01

4
0x1, 0x4, 0x7, 0x10, 0x12, 0x14,

0x17, 0xE
30.88 30.93

5
0x2, 0x8, 0x11, 0x13, 0x15,

0x16, 0xD
30.84 30.87

1

0
0x1, 0x4, 0x7, 0x10, 0x12, 0x14,

0x17
24.73 24.78

1 0xB, 0xE 12.30 12.30

2 0x5, 0x18, 0xD 6.421 7.474

2

0
0x2, 0x3, 0x8, 0x11, 0x13, 0x15,

0x16
24.73 24.78

1 0xC, 0xD 12.30 12.30

2 0x6, 0x19, 0xE 6.421 7.474

3
0 0x9 0.168 0.168

1 0x9, 0x10, 0x11, 0x14, 0x15 24.82 24.84

4
0 0xA 0.168 0.168

1 0xA, 0x12, 0x13, 0x16, 0x17 24.82 24.83

In the, Table 7.13 source and destination end-systems of each VL are given with

BAG and period values. Judging by this table and the scenario, the busiest destination end-

system is expected to be ES9 which is the logger. Additionally, Table 7.14 contains

bandwidth requirements that is binding for each port of each switch. Port-2 of SW0, which

is also the one that logger is connected, it requires the maximum bandwidth due to its

overload.

When simulation is executed with these inputs and final records are interpreted by

ANCAT, obtained results are as follows:

No packet drops occur in the switch. As can be seen in the

78

1. Table 7.14, all bandwidth requirements are withing the acceptable range (smaller

than100Mbps).

2. Within all five switches, SW0 is the busiest one since it is handling majority of

the VLs. As can be seen in the Table 7.15, queueing latency of SW0 is

significantly high than other switches.

Table 7.15 Switch Queuing Latencies

Switch
Queueing Latency (msec)

Mean Min Max

0 0.052 0 0.848

1 0.001 0 0.33

2 0.001 0 0.384

3 0.003 0 0.136

4 0.003 0 0.136

Table 7.16 Queueing Latencies for All Switches Per Port

Switch
VL-IDs

Queueing Latency (msec)

ID Port Mean Min Max

0

0 0x18, 0x20, 0x21, 0x22 0 0 0.146

1 0x19, 0x30, 0x31, 0x32 0 0 0.145

8 0x5, 0x6 0 0 0.122

9

0x1, 0x2, 0x3, 0x4, 0x7, 0x8, 0x9, 0x10,

0x11, 0x12, 0x13, 0x14, 0x15, 0x16,

0x17, 0x18, 0x19, 0xB, 0xC, 0xD, 0xE

0.106 0 0.848

14
0x1, 0x4, 0x7, 0x10, 0x12, 0x14, 0x17,

0xE
0.006 0 0.238

16 0x2, 0x8, 0x11, 0x13, 0x15, 0x16, 0xD 0.007 0 0.271

1

2 0x1, 0x4, 0x7, 0x10, 0x12, 0x14, 0x17 0.002 0 0.33

12 0xB, 0xE 0 0 0

14 0x5, 0x18, 0xD 0.001 0 0.111

2

3 0x2, 0x3, 0x8, 0x11, 0x13, 0x15, 0x16 0.003 0 0.384

13 0xC, 0xD 0 0 0

16 0x6, 0x19, 0xE 0.001 0 0.111

3
4 0x9 0 0 0

15 0x9, 0x10, 0x11, 0x14, 0x15 0.004 0 0.136

4
5 0xA 0 0 0

17 0xA, 0x12, 0x13, 0x16, 0x17 0.004 0 0.136

79

3. Maximum end-to-end latency in the system is 1.6 msec which is in 0.3% of the

true mean with %95 confidence. Maximum, minimum and mean values for each

VL are given in Table 7.17.

Table 7.17 End-to-end Latencies for All VLs

VL-ID Mean (msec) Min (msec) Max (msec)

0x1 0.348 0.233 0.711

0x2 0.367 0.233 0.801

0x3 0.356 0.233 0.728

0x4 0.353 0.233 0.764

0x5 0.486 0.392 1.209

0x6 0.482 0.392 1.3

0x7 0.438 0.301 0.737

0x8 0.441 0.301 0.943

0x9 0.334 0.232 1.343

0xA 0.897 0.726 1.319

0x10 0.895 0.726 1.576

0x11 0.893 0.726 1.402

0x12 0.897 0.726 1.466

0x13 0.511 0.395 0.873

0x14 0.487 0.386 0.919

0x15 0.507 0.397 0.89

0x16 0.493 0.386 0.847

0x17 1.067 0.845 1.681

0x18 0.864 0.722 1.215

0x19 0.444 0.439 0.593

0x20 0.443 0.439 0.551

0x21 0.443 0.439 0.658

0x22 0.444 0.439 0.657

0x30 0.443 0.439 0.712

0x31 0.444 0.439 0.63

0x32 0.331 0.232 1.136

0xB 0.662 0.464 1.068

0xC 0.803 0.586 1.805

0xD 1.119 0.971 1.589

0xE 0.866 0.726 1.192

80

8. CONCLUSION AND FUTURE WORK

Due to deficiencies of previous avionics communication protocols a deterministic,

dual-redundant, full-duplex, high speed ethernet protocol that provides guaranteed

bandwidth, is presented and standardized as ARINC664 p7 or namely AFDX. AFDX

keeps the end-to-end latency under control with the help of Bandwidth Allocation Gap

(BAG) regulation and token-bucket algorithm and thus bring determinism to the system.

The avionic systems using AFDX are mostly safety-critical systems with very strict timing

requirements and hard real-time control loops. Thus, these systems must be investigated

thoroughly in terms of latencies, utilization rates etc. to avoid unexpected setbacks later on.

To make a performance analysis, the actual system can be used but it would not be

possible to produce different scenarios with real subsystems. Mathematical computations

can be used to foresee worst-case scenarios but they may remain incapable of giving

average results. When these two options are eliminated, using a network simulation seems

like the most realistic and comprehensive approach. For all these mentioned reasons, a

fully functional AFDX model running in the environment is proposed in this thesis.

In order to execute an AFDX simulation, a network simulation tool is necessary.

When selecting a network simulation tool, different papers that are comparing certain tools

are reviewed. These papers are comparing simulation tools such as NS2, NS3, OPNET,

OMNeT++, MATLAB/SIMULINK and so much more by taking price, community,

language, complexity, testability, integrability, flexibility, CPU and memory usages and

some other similar aspects into consideration. Although each tool has its own benefits,

OMNeT++ comes forward in multiple reviews. The advantages of using OMNeT++ is that

It is free for non-commercial purposes, easy to develop models, supports object-oriented

programming, has an active community, has built-in libraries/example projects and open

source. By considering all these aspects, OMNeT++ is preferred.

To develop the mentioned AFDX model, an existing one is used as a base. By fixing

missing aspects and running numerous test scenarios, the model becomes fully AFDX

compliant. The contribution of this thesis is not just producing a good simulation tool but

also making it easy to configure without the need of re-compiling the code. Therefore,

every feature and configuration parameter that may be needed to be changed by the user

become accessible from one *.ini file. This includes parameters like cable length, BAG,

81

period, message length, data rate of message source etc. but also aspects like network

topology.

In addition to the ready-to-use, realistic and easy to configure AFDX model, a

network configuration and analysis tool named ANCAT is proposed. For those who are not

familiar with OMNeT++ or for those who does not want to deal with the process of

changing the *.ini file, running the simulation and reviewing the results in the

OMNeT++ environment, ANCAT is a game changer. It expects an excel file in a certain

format containing information about the network topology, general system settings and

message VL configurations. It creates an *.ini file and VL-routing table(s) accordingly.

After that, it runs the simulation with generated files. Finally, it creates a report by

analyzing the simulation output files (*.vci, *.vec). In order to complete its missions,

ANCAT only needs a configuration excel and certain file paths such as OMNeT++ setup

folder or AFDX simulation folder.

By using AFDX simulation model and ANCAT, many experiments are conducted.

Some of them are artificial experiment with easily predictable results such as, BAG

regulation assessment, jitter measurement, account and queue management and latencies in

the switch, skew max control. For those experiments, the expectations and outcomes are

explained and compared clearly. In addition to that, realistic experiments are executed. For

those, some realistic topologies and message sets are gathered from other thesis and papers

then they are executed with the proposed AFDX model. After that, obtained simulation

results are compared with the original works. Both artificial and realistic experiments

fulfill the expectations. Thus proposed AFDX model and ANCAT are verified.

To expend this thesis, followings can be done:

- All queues in the simulation model are FIFO (First In, First Out) queues. Thus,

scheduling in the end-system and switch port are FIFO scheduling. In fact,

different type of scheduling algorithms are provided in the queueinglib. Option to

select different scheduling algorithms can be provided to the user. [8]

- Frame Filtering functionality of an AFDX end-system was not implemented in

the legacy project and not handled in the scope of this work. The test scenarios

are executed with valid frame sequences hence not having frame filtering doesn’t

82

affect realistic features of this simulation. But it can be added to filter-out invalid

frames.

- Ethernet layers other than MAC are not handled in the presented simulation

because the only concern was AFDX protocol itself. But it can be useful for

community so it should be added in the future. In addition to that merging the

proposed AFDX simulation with INET framework, can make adding other layers

much easier and can also provide more to the community.

- ANCAT is not covering faulty scenarios and does not handle the errors occurred

during the simulation run. It can check the excel file if all inputs are written

correctly and report the errors thrown from the OMNeT++.

- ANCAT is not capable of identifying design errors. It can be edited to detect

some design errors and prompt warning.

- ANCAT can be modified to take inputs from user interface instead of an xlsx file.

- Simulation results can be verified further. Setting up a real AFDX network and

comparing its outcomes with simulation results would justify this simulation for

sure.

83

REFERENCES

[1] H. Xu, “Design of Avionics Integration Architecture and Data Network for A-17

”ZEPHYR",” 2017. doi: 10.13140/RG.2.2.26673.12649.

[2] T. Gaska, C. Watkin, and Y. Chen, “Integrated modular avionics - Past, present, and

future,” IEEE Aerospace and Electronic Systems Magazine, vol. 30, no. 9, pp. 12–23,

2015, doi: 10.1109/MAES.2015.150014.

[3] R. L. Alena, J. P. Ossenfort IV, K. I. Laws, A. Goforth, and F. Figueroa, “Communications

for Integrated Modular Avionics,” in IEEE Aerospace Conference Proceedings, 2007, pp.

1–18. doi: 10.1109/AERO.2007.352639.

[4] Airlines Electronic Engineering Committee, “ARINC 664 P7-1: Aircraft Data Network

Part 7 Avionics Full-Duplex Switched Ethernet Network,” ARINC 664 Specification. 2009.

[5] “AFDX®/ARINC664P7 Tutorial - What is AFDX - AIM Online.” https://www.aim-

online.com/products-overview/tutorials/afdx-arinc664p7-tutorial/ (accessed Apr. 01,

2022).

[6] Q. Xu and X. Yang, “Performance evaluation on packet transmission for distributed real-

time avionics networks using forward end-to-end delay analysis,” Trans Jpn Soc Aeronaut

Space Sci, vol. 64, no. 1, pp. 1–12, 2021, doi: 10.2322/TJSASS.64.1.

[7] H. Bauer, J. L. Scharbarg, and C. Fraboul, “Improving the worst-case delay analysis of an

AFDX network using an optimized Trajectory approach,” IEEE Transactions on Industrial

Informatics, vol. 6, no. 4, pp. 521–533, 2010, doi: 10.1109/TII.2010.2055877.

[8] Y. Tian, Z. Ma, and S. Zhou, “Analysis of AFDX network delay based on NS2,” Journal

of Physics: Conference Series, vol. 2026, no. 1, p. 012010, 2021, doi: 10.1088/1742-

6596/2026/1/012010.

[9] D. Song, X. Zeng, L. Ding, and Q. Hu, “The design and implementation of the AFDX

network simulation system,” in 2010 International Conference on Multimedia Technology,

ICMT 2010, 2010, vol. 2, pp. 2–5. doi: 10.1109/ICMULT.2010.5629728.

84

[10] X. Jiqiang, “Study on Real-time Performance of AFDX Using OPNET,” in 2011

International Conference on Control, Automation and Systems Engineering (CASE), 2011,

pp. 1–5. doi: 10.1109/ICCASE.2011.5997784.

[11] E. Weingärtner, H. vom Lehn, and K. Wehrle, “Performance Comparison of Recent

Network Simulators,” in IEEE International Conference on Communications, 2009, pp. 1–

5. doi: 10.1109/ICC.2009.5198657.

[12] A. Zarrad and I. Alsmadi, “Evaluating network test scenarios for network simulators

systems,” International Journal of Distributed Sensor Networks, vol. 13, no. 10, pp. 1–17,

2017, doi: 10.1177/1550147717738216.

[13] Q. Yang, H. Lu, and X. Tu, “Simulation and Experiment of AFDX Network Based on

OMNeT++,” in Proceedings - 2020 Chinese Automation Congress, CAC 2020, 2020, pp.

5849–5854. doi: 10.1109/CAC51589.2020.9326633.

[14] “OMNeT++ Discrete Event Simulator.” https://omnetpp.org/ (accessed Apr. 02, 2022).

[15] T. Steinbach, H. Dieumo Kenfack, F. Korf, and T. Schmidt, “An Extension of the

OMNeT++ INET Framework for Simulating Real-time Ethernet with High Accuracy,” in

Proceedings of the 4th International ICST Conference on Simulation Tools and

Techniques, 2011, pp. 375–382. doi: 10.4108/icst.simutools.2011.245510.

[16] N. Rejeb, A. K. ben Salem, and S. ben Saoud, “AFDX simulation based on TTEthernet

model under OMNeT++,” in Proceedings of International Conference on Advanced

Systems and Electric Technologies, IC_ASET 2017, 2017, pp. 423–429. doi:

10.1109/ASET.2017.7983731.

[17] “inet-framework/inet: INET Framework for the OMNeT++ discrete event simulator,”

2022. https://github.com/inet-framework/inet (accessed Apr. 01, 2022).

[18] “OMNEST - Performance Modeling Case Studies.” https://omnest.com/casestudy-

afdx.php (accessed Apr. 19, 2022).

[19] “omnetpp-models/afdx: Avionics Full-Duplex Switched Ethernet model for OMNeT++,”

2022. https://github.com/omnetpp-models/afdx (accessed Apr. 01, 2022).

85

[20] “badapplexx/AFDX,” 2022. https://github.com/badapplexx/AFDX (accessed Apr. 02,

2022).

[21] F. Molina, P. Corral, M. Aljaro, G. de Scals, and A. Rodriguez, “Implementation of an

AFDX interface with Zynq SoC Board in FPGA,” Elektronika ir Elektrotechnika, vol. 26,

no. 5, pp. 11–15, 2020, doi: 10.5755/J01.EIE.26.5.26008.

[22] H. Charara, J. L. Scharbarg, J. Ermont, and C. Fraboul, “Methods for bounding end-to-end

delays on an AFDX network,” Proceedings - Euromicro Conference on Real-Time

Systems, vol. 2006, no. August, pp. 193–202, 2006, doi: 10.1109/ECRTS.2006.15.

[23] F. He, L. Zhao, and E. Li, “Impact analysis of flow shaping in ethernet-AVB/TSN and

AFDX from network calculus and simulation perspective,” Sensors (Switzerland), vol. 17,

no. 5, 2017, doi: 10.3390/s17051181.

[24] P. M. Vdovin and V. A. Kostenko, “Organizing message transmission in AFDX

networks,” Programming and Computer Software, vol. 43, no. 1, pp. 1–12, 2017, doi:

10.1134/S0361768817010078.

[25] X. Liu, Z. Du, and K. Lu, “Modeling and Simulation of Avionics Full Duplex Switched

Ethernet(AFDX Network) Based on OPNET,” Atlatntis Highlights in Enginnering, vol. 3,

no. Jimec 2018, pp. 1–4, 2018, doi: 10.2991/jimec-18.2018.65.

[26] T. Ricker, “Avionics Bus Technology: Which Bus Should I Get On?,” in 2017 IEEE/AIAA

36th Digital Avionics Systems Conference (DASC), 2017, pp. 1–12. doi:

10.1109/DASC.2017.8102152.

[27] N. E. D. Safwat, A. Zekry, and M. Abouelatta, “Avionics Full-duplex switched Ethernet

(AFDX): Modeling and simulation,” in National Radio Science Conference, NRSC,

Proceedings, 2015, vol. 2015-June, pp. 286–296. doi: 10.1109/NRSC.2015.7117841.

[28] N. El-Din Safwat, M. A. El-Dakroury, and A. Zekry, “The Evolution of Aircraft Data

Networks,” International Journal of Computer Applications, vol. 94, no. 11, pp. 27–32,

2014, doi: 10.5120/16389-5968.

86

[29] C. Suthaputchakun, Z. Sun, C. Kavadias, and P. Ricco, “Performance analysis of AFDX

switch for space onboard data networks,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 52, no. 4, pp. 1714–1727, 2016, doi: 10.1109/TAES.2016.150304.

[30] Actel, “Developing AFDX Solutions,” no. March. pp. 1–18, 2005.

[31] B. Annighoefer, H. Ihle, and F. Thielecke, “An easy-to-use real-time AFDX simulation

framework,” AIAA/IEEE Digital Avionics Systems Conference - Proceedings, vol. 2016-

Decem, pp. 1–9, 2016, doi: 10.1109/DASC.2016.7778027.

[32] T. Hamza, J. L. Scharbarg, and C. Fraboul, “Priority assignment on an avionics switched

Ethernet Network (QoS AFDX),” IEEE International Workshop on Factory

Communication Systems - Proceedings, WFCS, 2014, doi: 10.1109/WFCS.2014.6837580.

[33] Y. Hua and X. Liu, “Scheduling design and analysis for end-to-end heterogeneous flows in

an avionics network,” Proceedings - IEEE INFOCOM, pp. 2417–2425, 2011, doi:

10.1109/INFCOM.2011.5935062.

[34] J. D. C. Little, “A Proof for the Queuing Formula: L= λ W,” Operations Research, vol. 9,

no. 3, pp. 383–387, May 1961, [Online]. Available: http://www.jstor.org/stable/167570

[35] D. Simchi-Levi and M. A. Trick, “Introduction to ‘little’s law as viewed on its 50th

anniversary,’” Operations Research, vol. 59, no. 3, p. 535, 2011, doi:

10.1287/opre.1110.0941.

[36] F. M. Dekking, C. Kraaikamp, H. P. Lopuhaä, and L. E. Meester, “A Modern Introduction

to Probability and Statistics,” 2005, doi: 10.1007/1-84628-168-7.

[37] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation environment,”

SIMUTools 2008 - 1st International ICST Conference on Simulation Tools and Techniques

for Communications, Networks and Systems, 2008, doi:

10.4108/ICST.SIMUTOOLS2008.3027.

[38] “lidongming/mf-opp4: Mobility Framework for OMNeT++ 4.”

https://github.com/lidongming/mf-opp4 (accessed Apr. 09, 2022).

87

[39] X. Xian, W. Shi, and H. Huang, “Comparison of OMNET++ and other simulator for WSN

simulation,” 2008 3rd IEEE Conference on Industrial Electronics and Applications, ICIEA

2008, pp. 1439–1443, 2008, doi: 10.1109/ICIEA.2008.4582757.

[40] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley, “ns-3 Project Goals.” 2006.

[41] H. Charara and C. Fraboul, “Modelling and simulation of an avionics full duplex Switched

Ethernet,” in Proceedings - Advanced Industrial Conference on

Telecommunications/Service Assurance with Partial and Intermittent Resources

Conference/E-Learning on Telecommunications Workshop AICT/SAPIR/ELETE 2005,

2005, pp. 207–212. doi: 10.1109/AICT.2005.58.

[42] M. Veran and D. Potier, “QNAP 2: A Portable environment for Queueing Systems

Modelling,” Modelling Techniques and Tools for Performance Analysis, pp. 5–24, 1984.

[43] P. T. Jean-Yves Boudec, Network Calculus, vol. 2050. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2001. doi: 10.1007/3-540-45318-0.

[44] L. Fernandez-Olmos, F. Burrull, and P. Pavon-Marino, “Net2Plan-AFDX: An open-source

tool for optimization and performance evaluation of AFDX networks,” AIAA/IEEE Digital

Avionics Systems Conference - Proceedings, vol. 2016-Decem, pp. 1–7, 2016, doi:

10.1109/DASC.2016.7778026.

[45] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Applying Trajectory approach to AFDX

avionics network,” 2009.

[46] H. Charara, J. L. Scharbarg, J. Ermont, and C. Fraboul, “Methods for bounding end-to-end

delays on an AFDX network,” Proceedings - Euromicro Conference on Real-Time

Systems, vol. 2006, pp. 193–202, 2006, doi: 10.1109/ECRTS.2006.15.

[47] H. Bauer, J. L. Scharbarg, and C. Fraboul, “Applying and optimizing trajectory approach

for performance evaluation of AFDX avionics network,” ETFA 2009 - 2009 IEEE

Conference on Emerging Technologies and Factory Automation, 2009, doi:

10.1109/ETFA.2009.5347083.

[48] E. Atik, “A new fault tolerant real-time ethernet protocol: desing and evaluation,” 2021.

[Online]. Available: https://open.metu.edu.tr/handle/11511/89745

88

[49] “omnetpp-models/queueing: A general queueing library for the OMNeT++ simulator.”

https://github.com/omnetpp-models/queueing (accessed Apr. 19, 2022).

[50] E. Gamma, R. Helm, R. Johnson, and V. John, Design patterns : elements of reusable

object-oriented software. Addison-Wesley, 1995.

[51] “OMNeT++ 6.0 Available,” 2022. https://omnetpp.org/software/2022/04/13/omnet-6-

released.html (accessed May 14, 2022).

[52] “omnetpp/samples/queueinglib at master · omnetpp/omnetpp.”

https://github.com/omnetpp/omnetpp/tree/master/samples/queueinglib (accessed May 16,

2022).

[53] “omnetpp/samples/queueinglibext at master · omnetpp/omnetpp.”

https://github.com/omnetpp/omnetpp/tree/master/samples/queueinglibext (accessed May

15, 2022).

[54] “EtherLink.” https://doc.omnetpp.org/inet/api-

current/neddoc/inet.node.ethernet.EtherLink.html (accessed May 15, 2022).

[55] C. Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, “Dijkstra’s

algorithm,” in Introduction to Algorithms, 2001, pp. 595–601.

[56] M. Lauer, “Une méthode globale pour la vérification d’exigences temps réel : application à

l’Avionique Modulaire Intégrée,” Institut National Polytechnique de Toulouse, 2012.

	ACKNOWLEDGEMENTS
	ABSTRACT
	ÖZET
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1. INTRODUCTION
	2. BACKGROUND
	2.1. AFDX Overview
	2.1.1. AFDX Frame
	2.1.2. Virtual Link (VL) and BAG Concepts
	2.1.3. End-System
	2.1.3.1 Performance Metrics at the End-System
	2.1.3.1.1 Jitter
	2.1.3.1.2 Latency in Transmission
	2.1.3.1.3 Latency in Reception

	2.1.4. Switch
	2.1.4.1 Token Bucket Algorithm and Switch Jitter
	2.1.4.2 Latencies in an AFDX Switch

	2.1.5. End-To-End Delay
	2.1.6. Little’s Law
	2.1.7. Confidence Interval

	3. PREVIOUS WORK
	3.1. OMNeT++ and Other Network Simulation Tools
	3.2. Other AFDX Simulation Models
	3.3. OMNeT++ AFDX Simulations
	3.3.1. OMNEST Model
	3.3.1.1 End-System
	3.3.1.1.1 Transmitting End
	3.3.1.1.1.1 Traffic Source
	3.3.1.1.1.2 Regulator Logic
	3.3.1.1.1.3 Redundancy Controller
	3.3.1.1.1.4 Tx Queue and MAC

	3.3.1.1.2 Receiving End
	3.3.1.1.2.1 MAC
	3.3.1.1.2.2 Integrity Checker
	3.3.1.1.2.3 Redundancy Checker

	3.3.1.2 Switch
	3.3.1.2.1 Switch Port
	3.3.1.2.1.1 TxQueue and mac
	3.3.1.2.1.2 Frame Filter
	3.3.1.2.1.3 Traffic Policy

	3.3.1.2.2 Switch Fabric
	3.3.1.2.2.1 Priority Classifier
	3.3.1.2.2.2 Queues and Scheduler
	3.3.1.2.2.3 Router

	3.3.2. Improvements Over OMNEST Model
	3.3.2.1 Technological Latencies
	3.3.2.2 Multiple Traffic Source Capability
	3.3.2.3 BAG Regulation
	3.3.2.4 Traffic Policing
	3.3.2.5 VL Router
	3.3.2.6 Other Small Changes

	4. AFDX SIMULATION MODEL
	4.1. New Network Statistics Class
	4.2. New Queueing Library
	4.3. Changes In integrity Checker
	4.4. Changes In Traffic Policy
	4.5. A New Connection Type: Cable
	4.6. Changes In Message Types and Source Structure
	4.7. A New Type: ConnDef and New Network Definition
	4.7.1. Other Small Changes

	5. PROPOSED NETWORK CONFIGURATION AND ANALYSIS TOOL FOR AFDX (ANCAT)
	5.1. PreProcessor and Input File
	5.2. Python Script Options and Batch File
	5.3. Output

	6. AFDX MODEL VERIFICATION TESTS
	6.1. Experiment 1: Regulator BAG Enforcement
	6.1.1. Scenario 1
	6.1.2. Scenario 2
	6.1.3. Scenario 3

	6.2. Experiment 2: End-System Jitter
	6.3. Experiment 3: Account Management
	6.4. Experiment 4: Switch Latency and Queue Management
	6.5. Experiment 5: Skew Max Control

	7. MODEL PERFORMANCE EVALUATION IN REALISTIC CONDITIONS
	7.1. Flight Management System Experiment
	7.2. Commercial Avionics Architecture Experiment
	7.3. Custom Network Experiment

	8. CONCLUSION AND FUTURE WORK
	REFERENCES

