• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Enstitüler / Institutes
  • Fen Bilimleri Enstitüsü / Science Institute
  • View Item
  •   DSpace Home
  • Enstitüler / Institutes
  • Fen Bilimleri Enstitüsü / Science Institute
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Alerjen proteinlerin otomatik sınıflandırılması

Thumbnail
View/Open
00277.pdf (3.967Mb)
Date
2008
Author
Eren, Öykü
Metadata
Show full item record
Abstract
Alerjen proteinlerin tanınması ve sınıflandırılması, özellikle son yıllarda sıkça kullanılan genetik değisikliğe uğramıs gıdaların denetlenmesi ve biyo-ilaçların tasarımı açısından büyük önem kazanmıstır. Dünya Sağlık Örgütü ve Gıda ve Tarım Örgütü kurumları bu amaçla alerjen proteinlerin tespiti için bazı rehberler hazırlamıstır. Ancak, bu rehberlerde önerilen yöntemler çoğunlukla yarı-otomatik gerçeklestirilen ve tahmin yeterliliği düsük olan yöntemlerdir. Son birkaç yılda bazı otomatik yöntemler önerilse de bunlar ya istenilen yeterlilik seviyesine ulasamamıs ya da islem zamanı ve bellek gereksinimi açısından avantajsız olmuslardır. Bu çalısmada, alerjen proteinlerin sadece dizilim verisi kullanılarak, farklı makine öğrenme yöntemleri bilinen bazı dizilim gösterim yaklasımları ile denenmistir. Farklı dizilim gösterim yöntemleri için K-En Yakın Komsu, Bulanık K-En Yakın Komsu ve Destek Vektör Makineleri (DVM) kullanılmıs ve sonuçlar karsılastırmalı olarak verilmistir. The prediction and classification of the allergen proteins have received great importance on the inspection of genetically modified food, which are used especially in the recent years, and the design of bio-pharmaceuticals. World Health Organization (WHO) and Food and Agriculture Organization (FAO) prepared guidelines for the prediction of allergen proteins. However, the methods proposed in these guidelines are mostly semi-automatic and have low prediction accuracy. Although some automated methods have been proposed in the last few years, either they could not reach the required sufficiency level or they were insufficient as for the processing time and memory usage. In this study, various machine learning methods were tried with some known sequence representation approaches by using only the sequence data of the allergen proteins. For various sequence representation approaches, K-Nearest Neighbour, Fuzzy K-Nearest Neighbour and Support Vector Machines (SVM) were used and the results were given with comparison.
URI
http://hdl.handle.net/11727/2134
Collections
  • Fen Bilimleri Enstitüsü / Science Institute [300]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Politika
Açık Bilim Politikası
Kullanıcı Rehberi
Başkent Üniversitesi Kütüphanesi
Başkent Üniversitesi


sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageCategoryThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageCategory

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV