• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Fakülteler / Faculties
  • Diş Hekimliği Fakültesi / Faculty of Dentistry
  • View Item
  •   DSpace Home
  • Fakülteler / Faculties
  • Diş Hekimliği Fakültesi / Faculty of Dentistry
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Odontogenic effects of two calcium silicate-based biomaterials in human dental pulp cells

Thumbnail
View/Open
1541.pdf (911.3Kb)
Date
2018
Author
Onay, Emel Olga
Yurtcu, Erkan
Terzi, Yunus Kasim
Ungor, Mete
Oguz, Yener
Sahin, Feride İffet
Metadata
Show full item record
Abstract
Background. The goal of treating exposed pulp with an appropriate pulp capping material is to promote the dentinogenic potential of the pulpal cells. There have been recent attempts to develop more effective pulp-capping materials. Objectives. The aim of this study was to evaluate the effect of newly developed calcium silicate-based material on odontogenic differentiation of primary human dental pulp cells (HDPCs), in comparison with a contemporary calcium silicate-based material. Material and methods. Human dental pulp cells isolated from dental pulps were cultured in standard culture conditions in Dulbecco's Modified Eagle's Medium (DMEM) and then the effects of Micro-Mega mineral trioxide aggregate (MM-MTA) (Micro-Mega, Besancon, France) and ProRoot MTA (MTA) (Dentsply Sirona, Tulsa, USA) (positive control) were evaluated on HDPCs at 1, 7 and 14 days. Untreated cells were used as a negative control. Odontoblastic differentiation was assessed by alkaline phosphatase (ALP) activity. Runtrelated transcription factor 2 (RUNX2), alkaline phosphatase liver/bone/kidney (ALPL), bone morphogenetic protein 2 (BMP2), dentin sialophosphoprotein (DSPP), and Distal-less homeobox 3 (DLX3), as odontoblastic/ osteoblastic expression markers, were evaluated by semi-quantitative real-time polymerase chain reaction (RT-PCR) analysis. Calcium levels of culture media were also determined. Results. The MM-MTA group significantly increased the expression of BMP2 compared with that of the MTA group at 3 different time periods (p < 0.05). The up-regulation of ALPL between day 1 and 14 and the up-regulation of DSPP between day 7 and 14 were significant in both groups (p < 0.05). Micro-Mega MTA and MTA exhibited similar messenger RNA (mRNA) expression levels of ALPL, DSPP, RUNX2, DLX3, and ALP activities, as well as calcium levels. Conclusions. Based on the cell responses observed in this study, MM-MTA might be used efficiently in dental pulp therapy as a potential alternative to MTA.
URI
http://www.advances.umed.wroc.pl/pdf/2018/27/11/1541.pdf
http://hdl.handle.net/11727/3093
Collections
  • Diş Hekimliği Fakültesi / Faculty of Dentistry [124]
  • PubMed İndeksli Yayınlar Koleksiyonu [1683]
  • Scopus İndeksli Yayınlar Koleksiyonu [2093]
  • Wos İndeksli Yayınlar Koleksiyonu [2919]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Politika
Açık Bilim Politikası
Kullanıcı Rehberi
Başkent Üniversitesi Kütüphanesi
Başkent Üniversitesi


sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageCategoryThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageCategory

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV