• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Fakülteler / Faculties
  • Eczacılık Fakültesi / Faculty of Pharmacy
  • View Item
  •   DSpace Home
  • Fakülteler / Faculties
  • Eczacılık Fakültesi / Faculty of Pharmacy
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Preparation and in vitro/in vivo evaluation of flurbiprofen nanosuspension-based gel for dermal application

Thumbnail
Date
2020
Author
Oktay, Ayse Nur
Ilbasmis-Tamer, Sibel
Han, Sevtap
Uludag, Orhan
Celebi, Nevin
Metadata
Show full item record
Abstract
Flurbiprofen (FB) is an analgesic and anti-inflammatory drug, but its low water solubility (BCS Class II) limits its dermal bioavailability. The aim of this study is to develop a FB nanosuspension (NS) based gel and to evaluate its analgesic and anti-inflammatory activities in rats. FB-NS was produced by the wet milling method with Plantacare 2000 (R), as stabilizer. The FB-NS was then incorporated in different carrier gels such as hydroxypropyl methyl cellulose (HPMC), polycarbophil, oleogel, and chitosan. To select the optimum gel type, visual examinations, pH and rheological property measurements, texture profile analysis, in vitro release and ex vivo permeation studies were performed. Following these tests, the analgesic and anti-inflammatory activities of the optimum NS based gel were evaluated using the tail flick and carrageenan-induced paw edema methods consecutively. The NS was successfully prepared with the wet milling method, and the PS, PDI and ZP values were found to be 237.7 +/- 6.8 nm, 0.133 +/- 0.030, and -30.4 +/- 0.7 mV; respectively. Among the NS-based gels, HPMC gel showed more suitable rheological and mechanical properties, also the percentage of permeated FB and the flux value observed for HPMC gel were higher for HPMC than for the other gels. Thus, HPMC gel was selected as a carrier gel for in vivo pharmacodynamics studies. The anti-inflammatory activity of FB-NS HPMC gel was higher than that of the physical mixture gel and that of the coarse suspension gel. Results of our analgesic activity studies showed that, in the 180th min of FB nanosuspension treatment, the latency time was significantly prolonged compared to that of the control group (p<0.05). As a conclusion, while nanosuspensions increased the in vivo pharmacodynamics effect of FB by means of nanosized particles and a large surface area, the HPMC gel as a carrier prolonged the contact time of NSs with skin and eased the dermal application.
URI
http://hdl.handle.net/11727/5746
Collections
  • Eczacılık Fakültesi / Faculty of Pharmacy [12]
  • PubMed İndeksli Yayınlar Koleksiyonu [1656]
  • Scopus İndeksli Yayınlar Koleksiyonu [2051]
  • Wos İndeksli Yayınlar Koleksiyonu [2860]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Politika
Açık Bilim Politikası
Kullanıcı Rehberi
Başkent Üniversitesi Kütüphanesi
Başkent Üniversitesi


sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageCategoryThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageCategory

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV