Neighborhoods of Analytic Functions Associated with Fractional Derivative
dc.contributor.author | Altintas, Osman | |
dc.date.accessioned | 2023-06-21T10:45:40Z | |
dc.date.available | 2023-06-21T10:45:40Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 2194-1009 | en_US |
dc.identifier.uri | http://hdl.handle.net/11727/9749 | |
dc.description.abstract | In this paper we define a differential operator and introduce the subclasses F-n,p(q) (lambda, alpha, delta) and K-n,p(q) (lambda, alpha, delta, mu) of functions which are analytic and p-valent in the open unit disk. Also we derive coefficient bounds, distortion inequalities, associated inclusion relation for (n, epsilon)-neighborhoods of the classes, which are defined by means of a certain non-homogeneous differential equation. | en_US |
dc.language.iso | eng | en_US |
dc.relation.isversionof | 10.1007/978-3-319-28443-9_20 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | NEGATIVE COEFFICIENTS | en_US |
dc.subject | UNIVALENT-FUNCTIONS | en_US |
dc.title | Neighborhoods of Analytic Functions Associated with Fractional Derivative | en_US |
dc.type | conferenceObject | en_US |
dc.relation.journal | 3rd International Conference on Applied Mathematics and Approximation Theory (AMAT) | en_US |
dc.identifier.volume | 155 | en_US |
dc.identifier.startpage | 289 | en_US |
dc.identifier.endpage | 297 | en_US |
dc.identifier.wos | 000389514200020 | en_US |
dc.identifier.scopus | 2-s2.0-84978496762 | en_US |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |