• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Fakülteler / Faculties
  • Fen Edebiyat Fakültesi / Faculty of Letters and Science
  • View Item
  •   DSpace Home
  • Fakülteler / Faculties
  • Fen Edebiyat Fakültesi / Faculty of Letters and Science
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Approximation by Truncated Lupas Operators of Max-Product Kind

Thumbnail
View/Open
10.31801-cfsuasmas.898098-1642945.pdf (479.1Kb)
Date
2021
Author
Mediha, Orkcu
Dalmanoglu, Ozge
Hatipoglu, Fatma Busra
Metadata
Show full item record
Abstract
The goals of the present paper are to introduce truncated Lupas type operators of max-product kind and give an estimation for the degree of approximation with respect to first modulus of continuity function. We prove that this estimate can not be improved; on the other hand, for some subclasses of functions, better degree of approximation is obtained. We also showed the piecewise convexity of the constructed operators on the interval [0, 1].
URI
https://dergipark.org.tr/en/download/article-file/1642945
http://hdl.handle.net/11727/10611
Collections
  • Fen Edebiyat Fakültesi / Faculty of Letters and Science [119]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Politika
Kullanıcı Rehberi
Başkent Üniversitesi Kütüphanesi
Başkent Üniversitesi

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typexmlui.ArtifactBrowser.Navigation.browse_languagexmlui.ArtifactBrowser.Navigation.browse_publicationcategoryThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typexmlui.ArtifactBrowser.Navigation.browse_languagexmlui.ArtifactBrowser.Navigation.browse_publicationcategory

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV