Show simple item record

dc.contributor.authorTolun, Mehmet R.
dc.contributor.authorKarim, Ahmad M.
dc.contributor.authorGuzel, Mehmet S.
dc.contributor.authorKaya, Hilal
dc.contributor.authorCelebi, Fatih V.
dc.date.accessioned2019-05-07T08:20:23Z
dc.date.available2019-05-07T08:20:23Z
dc.date.issued2018
dc.identifier.issn1024-123X
dc.identifier.urihttps://www.hindawi.com/journals/mpe/2018/3145947/abs/
dc.identifier.urihttp://hdl.handle.net/11727/3232
dc.description.abstractDeep autoencoder neural networks have been widely used in several image classification and recognition problems, including hand-writing recognition, medical imaging, and face recognition. The overall performance of deep autoencoder neural networks mainly depends on the number of parameters used, structure of neural networks, and the compatibility of the transfer functions. However, an inappropriate structure design can cause a reduction in the performance of deep autoencoder neural networks. A novel framework, which primarily integrates the Taguchi Method to a deep autoencoder based system without considering to modify the overall structure of the network, is presented. Several experiments are performed using various data sets from different fields, i.e., network security and medicine. The results show that the proposed method is more robust than some of the well-known methods in the literature as most of the time our method performed better. Therefore, the results are quite encouraging and verified the overall performance of the proposed framework.en_US
dc.language.isoengen_US
dc.relation.isversionof10.1155/2018/3145947en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectARTIFICIAL NEURAL-NETWORKen_US
dc.subjectEPILEPSYen_US
dc.subjectSYSTEMen_US
dc.titleA New Generalized Deep Learning Framework Combining Sparse Autoencoder and Taguchi Method for Novel Data Classification and Processingen_US
dc.typearticleen_US
dc.relation.journalMATHEMATICAL PROBLEMS IN ENGINEERINGen_US
dc.identifier.wos000435820300001


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record